An Overview of Immunosensors and Their Application

  • Chapter
  • First Online:
Biomaterials-Based Sensors

Abstract

A key challenge in clinical healthcare is meeting the need to detect a disease at an early stage. Early and accurate diagnosis not only cuts the treatment cost but can also reduce disease burden, mortality rate, and social inequalities. Therefore, researchers are always searching for a method that allows rapid, simple, sensitive, selective, and cost-effective detection of the target biomarker (peptides, proteins, or nucleic acid). Immunosensors are one such point-of-care diagnostic device that can play an important role in almost all clinical healthcare fields. They are a promising alternative to the traditional immunoassays and state-of-the-art affinity sensors to diagnose clinically important analytes/antigens due to their high affinity, versatility, compact size, fast response time, minimum sample processing, and the measurements’ reproducibility. For many decades now, significant advancement has been made in the immunosensor field in which the use of nanomaterials for increased sensitivity, multiplexing, or microfluidic-based devices may have the potential for promising use in clinical analysis. This chapter will provide an overview of the currently available immunosensor technology, its types that are currently being developed, and the limitations and future directions of immunosensor technology for the clinical laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Spain)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 149.79
Price includes VAT (Spain)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 187.19
Price includes VAT (Spain)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 187.19
Price includes VAT (Spain)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Clark LC, Lyons C. Electrode systems for continuous monitoring in cardiovascular surgery. Ann N Y Acad Sci. 1962;102:29–45. https://doi.org/10.1111/j.1749-6632.1962.tb13623.x.

    Article  CAS  PubMed  Google Scholar 

  2. Fracchiolla NS, Artuso S, Cortelezzi A. Biosensors in clinical practice: focus on oncohematology. Sensors. 2013;13:6423–47. https://doi.org/10.3390/s130506423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Newman JD, Turner APF. Home blood glucose biosensors: a commercial perspective. Biosens Bioelectron. 2005;20:2435–53. https://doi.org/10.1016/j.bios.2004.11.012.

    Article  CAS  PubMed  Google Scholar 

  4. Patel S, Nanda R, Sahoo S, Mohapatra E. Biosensors in health care: the milestones achieved in their development towards lab-on-chip-analysis. Biochem Res Int. 2016;2016:1–12. https://doi.org/10.1155/2016/3130469.

    Article  CAS  Google Scholar 

  5. Hasan A, Nurunnabi M, Morshed M, et al. Recent advances in application of biosensors in tissue engineering. Biomed Res Int. 2014;2014:1–18. https://doi.org/10.1155/2014/307519.

    Article  CAS  Google Scholar 

  6. Lim SA, Ahmed MU. Chapter 1: Introduction to immunosensors. 2019. p. 1–20. https://doi.org/10.1039/9781788016162-00001.

  7. Sawant SN. Chapter 13: Development of biosensors from biopolymer composites. In: Sadasivuni KK, Ponnamma D, Kim J, et al., editors. Biopolymer composites in electronics. Elsevier; 2017. p. 353–83.

    Chapter  Google Scholar 

  8. Li Z, Chen G-Y. Current conjugation methods for immunosensors. Nanomaterials. 2018;8:278. https://doi.org/10.3390/nano8050278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Aizawa M. Immunosensors for clinical analysis. In: Spiegel HE, editor. Advances in clinical chemistry. Elsevier; 1994. p. 247–75.

    Google Scholar 

  10. Luppa PB. Immunosensor technology—principles and applications. Immunosensor-Technologie—Grundlagen und Anwendungen. J Lab Med. 2001;25:388–98. https://doi.org/10.1515/labm.2001.25.9-10.388.

    Article  CAS  Google Scholar 

  11. Nguyen HH, Lee SH, Lee UJ, et al. Immobilized enzymes in biosensor applications. Materials. 2019;12:121. https://doi.org/10.3390/ma12010121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rocchitta G, Spanu A, Babudieri S, et al. Enzyme biosensors for biomedical applications: strategies for safeguarding analytical performances in biological fluids. Sensors. 2016;16:780. https://doi.org/10.3390/s16060780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Singh S, Kumar V, Dhanjal DS, et al. Biological biosensors for monitoring and diagnosis. In: Singh J, Vyas A, Wang S, Prasad R, editors. Microbial biotechnology: basic research and applications. Singapore: Springer; 2020. p. 317–35.

    Chapter  Google Scholar 

  14. Liang S-L, Chan DW. Enzymes and related proteins as cancer biomarkers: a proteomic approach. Clin Chim Acta. 2007;381:93–7. https://doi.org/10.1016/j.cca.2007.02.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Burcu Bahadır E, Kemal Sezgintürk M. Applications of electrochemical immunosensors for early clinical diagnostics. Talanta. 2015;132:162–74. https://doi.org/10.1016/j.talanta.2014.08.063.

    Article  CAS  PubMed  Google Scholar 

  16. Shen C, Wang L, Zhang H, et al. An electrochemical sandwich immunosensor based on signal amplification technique for the determination of alpha-fetoprotein. Front Chem. 2020;8:589560. https://doi.org/10.3389/fchem.2020.589560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Justino C, Duarte A, Rocha-Santos T. Recent progress in biosensors for environmental monitoring: a review. Sensors. 2017;17:2918. https://doi.org/10.3390/s17122918.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rocha-Gaso M-I, Villarreal-Gómez L-J, Beyssen D, et al. Biosensors to diagnose Chagas disease: a brief review. Sensors. 2017;17:2629. https://doi.org/10.3390/s17112629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tertis M, Hosu O, Luminita F, et al. A novel label-free immunosensor based on activated graphene oxide for acetaminophen detection. Electroanalysis. 2015;27:638. https://doi.org/10.1002/elan.201400583.

    Article  CAS  Google Scholar 

  20. Morales MA, Halpern JM. Guide to selecting a biorecognition element for biosensors. Bioconjug Chem. 2018;29:3231–9. https://doi.org/10.1021/acs.bioconjchem.8b00592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Janeway CA, Travers P, Walport M, Shlomchik MJ. Immunobiology: the immune system in health and disease. New York: Grand Science; 2001.

    Google Scholar 

  22. Ahmad ZA, Yeap SK, Ali AM, et al. scFv antibody: principles and clinical application. Clin Dev Immunol. 2012. https://www.hindawi.com/journals/jir/2012/980250/. Accessed 3 Dec 2020.

  23. Griffiths AD, Duncan AR. Strategies for selection of antibodies by phage display. Curr Opin Biotechnol. 1998;9:102–8. https://doi.org/10.1016/S0958-1669(98)80092-X.

    Article  CAS  PubMed  Google Scholar 

  24. Nelson AL. Antibody fragments. mAbs. 2010;2:77–83. https://doi.org/10.4161/mabs.2.1.10786.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Welch NG, Scoble JA, Muir BW, Pigram PJ. Orientation and characterization of immobilized antibodies for improved immunoassays (Review). Biointerphases. 2017;12:02D301. https://doi.org/10.1116/1.4978435.

    Article  CAS  PubMed  Google Scholar 

  26. Layqah LA, Eissa S. An electrochemical immunosensor for the corona virus associated with the Middle East respiratory syndrome using an array of gold nanoparticle-modified carbon electrodes. Mikrochim Acta. 2019;186:224. https://doi.org/10.1007/s00604-019-3345-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mohamad NR, Marzuki NHC, Buang NA, et al. An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnol Biotechnol Equip. 2015;29:205. https://doi.org/10.1080/13102818.2015.1008192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Marshall KA, Ellington AD. [14] In vitro selection of RNA aptamers. In: Methods in enzymology. Academic; 2000. p. 193–214.

    Google Scholar 

  29. Stoltenburg R, Reinemann C, Strehlitz B. SELEX—a (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng. 2007;24:381–403. https://doi.org/10.1016/j.bioeng.2007.06.001.

    Article  CAS  PubMed  Google Scholar 

  30. Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990;249:505–10. https://doi.org/10.1126/science.2200121.

    Article  CAS  PubMed  Google Scholar 

  31. Hong P, Li W, Li J. Applications of aptasensors in clinical diagnostics. Sensors. 2012;12:1181–93. https://doi.org/10.3390/s120201181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mairal T, Cengiz Özalp V, Lozano Sánchez P, et al. Aptamers: molecular tools for analytical applications. Anal Bioanal Chem. 2008;390:989–1007. https://doi.org/10.1007/s00216-007-1346-4.

    Article  CAS  PubMed  Google Scholar 

  33. Blank M, Blind M. Aptamers as tools for target validation. Curr Opin Chem Biol. 2005;9:336–42. https://doi.org/10.1016/j.cbpa.2005.06.011.

    Article  CAS  PubMed  Google Scholar 

  34. Mir M, Katakis I. Aptamers as elements of bioelectronic devices. Mol BioSyst. 2007;3:620–2. https://doi.org/10.1039/B708858B.

    Article  CAS  PubMed  Google Scholar 

  35. O’Sullivan CK. Aptasensors—the future of biosensing? Anal Bioanal Chem. 2002;372:44–8. https://doi.org/10.1007/s00216-001-1189-3.

    Article  CAS  PubMed  Google Scholar 

  36. Animesh S, Singh YD. A comprehensive study on aptasensors for cancer diagnosis. Curr Pharm Biotechnol. 2021;22(8):1069–84. https://doi.org/10.2174/1389201021999200918152721. PMID: 32957883.

    Article  CAS  PubMed  Google Scholar 

  37. Kang Y, Feng K-J, Chen J-W, et al. Electrochemical detection of thrombin by sandwich approach using antibody and aptamer. Bioelectrochemistry. 2008;73:76–81. https://doi.org/10.1016/j.bioelechem.2008.04.024.

    Article  CAS  PubMed  Google Scholar 

  38. Qureshi A, Gurbuz Y, Niazi JH. Capacitive aptamer–antibody based sandwich assay for the detection of VEGF cancer biomarker in serum. Sens Actuators B Chem. 2015;209:645–51. https://doi.org/10.1016/j.snb.2014.12.040.

    Article  CAS  Google Scholar 

  39. Zhu Y, Chandra P, Shim Y-B. Ultrasensitive and selective electrochemical diagnosis of breast cancer based on a hydrazine–Au nanoparticle–aptamer bioconjugate. Anal Chem. 2013;85:1058–64. https://doi.org/10.1021/ac302923k.

    Article  CAS  PubMed  Google Scholar 

  40. Guo L, Kim D-H. LSPR biomolecular assay with high sensitivity induced by aptamer–antigen–antibody sandwich complex. Biosens Bioelectron. 2012;31:567–70. https://doi.org/10.1016/j.bios.2011.10.047.

    Article  CAS  PubMed  Google Scholar 

  41. Crivianu-Gaita V, Thompson M. Aptamers, antibody scFv, and antibody Fab’ fragments: an overview and comparison of three of the most versatile biosensor biorecognition elements. Biosens Bioelectron. 2016;85:32–45. https://doi.org/10.1016/j.bios.2016.04.091.

    Article  CAS  PubMed  Google Scholar 

  42. Jiang X, Li D, Xu X, et al. Immunosensors for detection of pesticide residues. Biosens Bioelectron. 2008;23:1577–87. https://doi.org/10.1016/j.bios.2008.01.035.

    Article  CAS  PubMed  Google Scholar 

  43. Rapp BE, Gruhl FJ, Länge K. Biosensors with label-free detection designed for diagnostic applications. Anal Bioanal Chem. 2010;398:2403–12. https://doi.org/10.1007/s00216-010-3906-2.

    Article  CAS  PubMed  Google Scholar 

  44. Fowler JM, Wong DKY, Halsall HB, Heineman WR. Chapter 5: Recent developments in electrochemical immunoassays and immunosensors. In: Zhang X, Ju H, Wang J, editors. Electrochemical sensors, biosensors and their biomedical applications. San Diego: Academic; 2008. p. 115–43.

    Chapter  Google Scholar 

  45. Mollarasouli F, Kurbanoglu S, Ozkan SA. The role of electrochemical immunosensors in clinical analysis. Biosensors. 2019;9:86. https://doi.org/10.3390/bios9030086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Diaz-Amigo C. Antibody-based detection methods: from theory to practice. In: Molecular biological and immunological techniques and applications for food chemists. Wiley; 2009. p. 221–45.

    Google Scholar 

  47. Ronkainen NJ, Halsall HB, Heineman WR. Electrochemical biosensors. Chem Soc Rev. 2010;39:1747–63. https://doi.org/10.1039/B714449K.

    Article  CAS  PubMed  Google Scholar 

  48. Bakker E. Electrochemical sensors. 2004. https://pubs.acs.org/doi/pdf/10.1021/ac049580z.

  49. Jia Y, Qin M, Zhang H, Niu W, Li X, Wang L, Li X, Bai Y, Cao Y, Feng X. Label-free biosensor: a novel phage-modified light addressable potentiometric sensor system for cancer cell monitoring. Biosens Bioelectron. 2007;22(12):3261–6. https://doi.org/10.1016/j.bios.2007.01.018S0956566307000334.

    Article  CAS  PubMed  Google Scholar 

  50. Arora N. Recent advances in biosensors technology: a review | Sciencebeingjournal. 2013. http://sciencebeingjournal.com/octa-journal-biosciences/recent-advances-biosensors-technology-review.

  51. Grieshaber D, MacKenzie R, Vörös J, Reimhult E. Electrochemical biosensors—sensor principles and architectures. Sensors. 2008;8:1400–58. https://doi.org/10.3390/s80314000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hayat A, Catanante G, Marty JL. Current trends in nanomaterial-based amperometric biosensors. Sensors. 2014;14:23439–61. https://doi.org/10.3390/s141223439.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Mistry KK, Layek K, Chell TN, et al. Design and development of an amperometric immunosensor based on screen-printed electrodes. Anal Methods. 2016;8:3096–101. https://doi.org/10.1039/C6AY00164E.

    Article  CAS  Google Scholar 

  54. Ding J, Qin W. Recent advances in potentiometric biosensors. TrAC Trends Anal Chem. 2020;124:115803. https://doi.org/10.1016/j.trac.2019.115803.

    Article  CAS  Google Scholar 

  55. Purvis D, Leonardova O, Farmakovsky D, Cherkasov V. An ultrasensitive and stable potentiometric immunosensor. Biosens Bioelectron. 2003;18:1385–90. https://doi.org/10.1016/S0956-5663(03)00066-6.

    Article  CAS  PubMed  Google Scholar 

  56. Darsanaki R, Azizzadeh A, Nourbakhsh M, et al. Biosensors: functions and applications. J Biol Todays World. 2013;2:53–61. https://doi.org/10.15412/J.JBTW.01020105.

    Article  Google Scholar 

  57. Pearson JE, Gill A, Vadgama P. Analytical aspects of biosensors. Ann Clin Biochem. 2000;37(Pt 2):119–45. https://doi.org/10.1258/0004563001899131.

    Article  CAS  PubMed  Google Scholar 

  58. Daniels JS, Pourmand N. Label-free impedance biosensors: opportunities and challenges. Electroanalysis. 2007;19:1239–57. https://doi.org/10.1002/elan.200603855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Leva-Bueno J, Peyman SA, Millner PA. A review on impedimetric immunosensors for pathogen and biomarker detection. Med Microbiol Immunol (Berl). 2020;209:343–62. https://doi.org/10.1007/s00430-020-00668-0.

    Article  CAS  PubMed  Google Scholar 

  60. Prodromidis MI. Impedimetric immunosensors—a review. Electrochim Acta. 2010;55:4227–33. https://doi.org/10.1016/j.electacta.2009.01.081.

    Article  CAS  Google Scholar 

  61. Chen Z-G. Conductometric immunosensors for the detection of staphylococcal enterotoxin B based bio-electrocalytic reaction on micro-comb electrodes. Bioprocess Biosyst Eng. 2008;31:345–50. https://doi.org/10.1007/s00449-007-0168-2.

    Article  CAS  PubMed  Google Scholar 

  62. Estrela P, Damborský P, Švitel J, Katrlík J. Optical biosensors. Essays Biochem. 2016;60:91–100. https://doi.org/10.1042/EBC20150010.

    Article  Google Scholar 

  63. González-Martínez MA, Puchades R, Maquieira A. Optical immunosensors for environmental monitoring: how far have we come? Anal Bioanal Chem. 2007;387:205–18. https://doi.org/10.1007/s00216-006-0849-8.

    Article  CAS  PubMed  Google Scholar 

  64. Lee D, Hwang J, Seo Y, et al. Optical immunosensors for the efficient detection of target biomolecules. Biotechnol Bioprocess Eng. 2018;23:123–33. https://doi.org/10.1007/s12257-018-0087-x.

    Article  CAS  Google Scholar 

  65. Dey D, Goswami T. Optical biosensors: a revolution towards quantum nanoscale electronics device fabrication. J Biomed Biotechnol. 2011. https://www.hindawi.com/journals/bmri/2011/348218/.

  66. Liu BL, Saltman MA. Immunosensor technology: historical perspective and future outlook. Lab Med. 1996;27:109–15. https://doi.org/10.1093/labmed/27.2.109.

    Article  Google Scholar 

  67. Robinson GA. Optical immunosensing systems—meeting the market needs. Biosens Bioelectron. 1991;6:183–91. https://doi.org/10.1016/0956-5663(91)80003-G.

    Article  CAS  PubMed  Google Scholar 

  68. Vigneshvar S, Sudhakumari CC, Senthilkumaran B, Prakash H. Recent advances in biosensor technology for potential applications—an overview. Front Bioeng Biotechnol. 2016;4:11. https://doi.org/10.3389/fbioe.2016.00011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Du Y, Bingling L, Wang E. “Fitting” makes “sensing” simple: label-free detection strategies based on nucleic acid aptamers | Accounts of Chemical Research. 2013. https://pubs.acs.org/doi/pdf/10.1021/ar300011g. Accessed 3 Dec 2020.

  70. Liedberg B, Nylander C, Lundström I. Biosensing with surface plasmon resonance—how it all started. Biosens Bioelectron. 1995;10:i–ix. https://doi.org/10.1016/0956-5663(95)96965-2.

    Article  CAS  PubMed  Google Scholar 

  71. Cruz HJ, Rosa CC, Oliva AG. Immunosensors for diagnostic applications. Parasitol Res. 2002;88:S4–7. https://doi.org/10.1007/s00436-001-0559-2.

    Article  PubMed  Google Scholar 

  72. Ramanathan K, Danielsson B. Principles and applications of thermal biosensors. Biosens Bioelectron. 2001;16:417–23. https://doi.org/10.1016/S0956-5663(01)00124-5.

    Article  CAS  PubMed  Google Scholar 

  73. Bianconi ML. Calorimetry of enzyme-catalyzed reactions. Biophys Chem. 2007;126:59–64. https://doi.org/10.1016/j.bpc.2006.05.017.

    Article  CAS  PubMed  Google Scholar 

  74. Bari SMI, Reis LG, Nestorova GG. Calorimetric sandwich-type immunosensor for quantification of TNF-α. Biosens Bioelectron. 2019;126:82–7. https://doi.org/10.1016/j.bios.2018.10.028.

    Article  CAS  PubMed  Google Scholar 

  75. Datta S, Christena LR, Rajaram YRS. Enzyme immobilization: an overview on techniques and support materials. 3 Biotech. 2013;3:1. https://doi.org/10.1007/s13205-012-0071-7.

    Article  PubMed  Google Scholar 

  76. Brena BM, Batista-Viera F. Immobilization of enzymes. In: Guisan JM, editor. Immobilization of enzymes and cells. Totowa: Humana Press; 2006. p. 15–30.

    Chapter  Google Scholar 

  77. Nguyen HH, Kim M. An overview of techniques in enzyme immobilization. Appl Sci Converg Technol. 2017;26:157–63. https://doi.org/10.5757/ASCT.2017.26.6.157.

    Article  Google Scholar 

  78. Yusdy, Patel SR, Yap MGS, Wang DIC. Immobilization of l-lactate dehydrogenase on magnetic nanoclusters for chiral synthesis of pharmaceutical compounds. Biochem Eng J. 2009;48:13–21. https://doi.org/10.1016/j.bej.2009.07.017.

    Article  CAS  Google Scholar 

  79. Virgen-Ortíz JJ, dos Santos JCS, Berenguer-Murcia Á, et al. Polyethylenimine: a very useful ionic polymer in the design of immobilized enzyme biocatalysts. J Mater Chem B. 2017;5:7461–90. https://doi.org/10.1039/C7TB01639E.

    Article  PubMed  Google Scholar 

  80. Park J-K, Sohn J-H, Park H-W, Lee Y-H. Encapsulation of whole cell CGTase from concentrated broth solution. Biotechnol Bioprocess Eng. 2001;6:67. https://doi.org/10.1007/BF02942253.

    Article  CAS  Google Scholar 

  81. Parhi R. Cross-linked hydrogel for pharmaceutical applications: a review. Adv Pharm Bull. 2017;7:515. https://doi.org/10.15171/apb.2017.064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Vashist SK, Luong JHT. Antibody immobilization and surface functionalization chemistries for immunodiagnostics. In: Handbook of immunoassay technologies. Elsevier; 2018. p. 19–46.

    Google Scholar 

  83. Yamaguchi H, Kiyota Y, Miyazaki M. Techniques for preparation of cross-linked enzyme aggregates and their applications in bioconversions. Catalysts. 2018;8:174. https://doi.org/10.3390/catal8050174.

    Article  CAS  Google Scholar 

  84. Prabhakar R, Kumar D. Studies on polyacrylate-starch/polyaniline conducting hydrogel. Curr Smart Mater. 2019. https://www.eurekaselect.com/170687/article. Accessed 2 Dec 2020.

  85. Echalier C, Valot L, Martinez J, et al. Chemical cross-linking methods for cell encapsulation in hydrogels. Mater Today Commun. 2019;20:100536. https://doi.org/10.1016/j.mtcomm.2019.05.012.

    Article  CAS  Google Scholar 

  86. Atkinson AJ, Colburn WA, DeGruttola VG, et al. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69:89–95. https://doi.org/10.1067/mcp.2001.113989.

    Article  Google Scholar 

  87. Li W, Li C, Zhou T, et al. Role of exosomal proteins in cancer diagnosis. Mol Cancer. 2017;16:145. https://doi.org/10.1186/s12943-017-0706-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Soung YH, Ford S, Zhang V, Chung J. Exosomes in cancer diagnostics. Cancers. 2017;9:8. https://doi.org/10.3390/cancers9010008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wu J, Fu Z, Yan F, Ju H. Biomedical and clinical applications of immunoassays and immunosensors for tumor markers. TrAC Trends Anal Chem. 2007;26:679–88. https://doi.org/10.1016/j.trac.2007.05.007.

    Article  CAS  Google Scholar 

  90. Chiu N-F, Yang H-T. High-sensitivity detection of the lung cancer biomarker CYFRA21-1 in serum samples using a carboxyl-MoS2 functional film for SPR-based immunosensors. Front Bioeng Biotechnol. 2020;8:234. https://doi.org/10.3389/fbioe.2020.00234.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Salimi A, Kavosi B, Fathi F, Hallaj R. Highly sensitive immunosensing of prostate-specific antigen based on ionic liquid–carbon nanotubes modified electrode: application as cancer biomarker for prostate biopsies. Biosens Bioelectron. 2013;42:439–46. https://doi.org/10.1016/j.bios.2012.10.053.

    Article  CAS  PubMed  Google Scholar 

  92. Johari-Ahar M, Rashidi MR, Barar J, et al. An ultra-sensitive impedimetric immunosensor for detection of the serum oncomarker CA-125 in ovarian cancer patients. Nanoscale. 2015;7:3768–79. https://doi.org/10.1039/C4NR06687A.

    Article  CAS  PubMed  Google Scholar 

  93. Yang K, Qi L, Gao Z, et al. A novel electrochemical immunosensor for prostate-specific antigen based on noncovalent nanocomposite of ferrocene monocarboxylic acid with graphene oxide. Anal Lett. 2014;47:2266–80. https://doi.org/10.1080/00032719.2014.902463.

    Article  CAS  Google Scholar 

  94. **ao P, Sun Z, Huang Y, et al. Development of an optical microfiber immunosensor for prostate specific antigen analysis using a high-order-diffraction long period grating. Opt Express. 2020;28:15783–93. https://doi.org/10.1364/OE.391889.

    Article  CAS  PubMed  Google Scholar 

  95. Zhong H, Zhao C, Chen J, et al. Electrochemical immunosensor with surface-confined probe for sensitive and reagentless detection of breast cancer biomarker. RSC Adv. 2020;10:22291–6. https://doi.org/10.1039/D0RA01192D.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Sharma S, Zapatero-Rodríguez J, Saxena R, et al. Ultrasensitive direct impedimetric immunosensor for detection of serum HER2. Biosens Bioelectron. 2018;106:78–85. https://doi.org/10.1016/j.bios.2018.01.056.

    Article  CAS  PubMed  Google Scholar 

  97. Duangkaew P, Tapaneeyakorn S, Apiwat C, et al. Ultrasensitive electrochemical immunosensor based on dual signal amplification process for p16INK4a cervical cancer detection in clinical samples. Biosens Bioelectron. 2015;74:673–9. https://doi.org/10.1016/j.bios.2015.07.004.

    Article  CAS  PubMed  Google Scholar 

  98. Yang L, Huang X, Sun L, Xu L. A piezoelectric immunosensor for the rapid detection of p16INK4a expression in liquid-based cervical cytology specimens. Sens Actuators B Chem. 2016;224:863–7. https://doi.org/10.1016/j.snb.2015.11.002.

    Article  CAS  Google Scholar 

  99. Amani J, Khoshroo A, Rahimi-Nasrabadi M. Electrochemical immunosensor for the breast cancer marker CA 15–3 based on the catalytic activity of a CuS/reduced graphene oxide nanocomposite towards the electrooxidation of catechol | SpringerLink. 2017. https://springer.longhoe.net/article/10.1007%2Fs00604-017-2532-5.

  100. Li H, He J, Li S, Turner APF. Electrochemical immunosensor with N-doped graphene-modified electrode for label-free detection of the breast cancer biomarker CA 15-3. Biosens Bioelectron. 2013;43:25–9. https://doi.org/10.1016/j.bios.2012.11.037.

    Article  CAS  PubMed  Google Scholar 

  101. Elshafey R, Tavares AC, Siaj M, Zourob M. Electrochemical impedance immunosensor based on gold nanoparticles–protein G for the detection of cancer marker epidermal growth factor receptor in human plasma and brain tissue. Biosens Bioelectron. 2013;50:143–9. https://doi.org/10.1016/j.bios.2013.05.063.

    Article  CAS  PubMed  Google Scholar 

  102. Asav E, Sezgintürk MK. A novel impedimetric disposable immunosensor for rapid detection of a potential cancer biomarker. Int J Biol Macromol. 2014;66:273–80. https://doi.org/10.1016/j.ijbiomac.2014.02.032.

    Article  CAS  PubMed  Google Scholar 

  103. Vasudev A, Kaushik A, Bhansali S. Electrochemical immunosensor for label free epidermal growth factor receptor (EGFR) detection. Biosens Bioelectron. 2013;39:300–5. https://doi.org/10.1016/j.bios.2012.06.012.

    Article  CAS  PubMed  Google Scholar 

  104. Jayanthi VSPKSA, Das AB, Saxena U. Fabrication of an immunosensor for quantitative detection of breast cancer biomarker UBE2C. RSC Adv. 2019;9:16738–45. https://doi.org/10.1039/C8RA10245G.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ma X, Wang Z, He S, et al. Development of an immunosensor based on the exothermic reaction between H2O and CaO using a common thermometer as readout. ACS Sens. 2019;4:2375–80. https://doi.org/10.1021/acssensors.9b00968.

    Article  CAS  PubMed  Google Scholar 

  106. Wang Z, Tian X, Sun D, et al. A new Bi2MoO6 nano-tremella-based electrochemical immunosensor for the sensitive detection of a carcinoembryonic antigen. RSC Adv. 2020;10:15870–80. https://doi.org/10.1039/D0RA01922D.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Aydın EB, Sezgintürk MK. A sensitive and disposable electrochemical immunosensor for detection of SOX2, a biomarker of cancer. Talanta. 2017;172:162–70. https://doi.org/10.1016/j.talanta.2017.05.048.

    Article  CAS  PubMed  Google Scholar 

  108. Aydın EB, Aydın M, Sezgintürk MK. A label-free immunosensor for sensitive detection of RACK 1 cancer biomarker based on conjugated polymer modified ITO electrode. J Pharm Biomed Anal. 2020;190:113517. https://doi.org/10.1016/j.jpba.2020.113517.

    Article  CAS  PubMed  Google Scholar 

  109. Wang Y, Li Y, Ma H, et al. An ultrasensitive electrochemical immunosensor for the detection of CD146 based on TiO2 colloidal sphere laden Au/Pd nanoparticles. Analyst. 2015;140:3557–64. https://doi.org/10.1039/C5AN00156K.

    Article  CAS  PubMed  Google Scholar 

  110. Wang Y, Zhang Z, Jain V, Yi J, Mueller S, Sokolov J, Liu Z, Levon K, Rigas B, Rafailovich M. Potentiometric sensors based on surface molecular imprinting: detection of cancer biomarkers and viruses. Sens Actuators B Chem. 2010;146(1):381–7. https://doi.org/10.1016/j.snb.2010.02.032S092540051000136X.

    Article  CAS  Google Scholar 

  111. Lima D, Inaba J, Clarindo Lopes L, et al. Label-free impedimetric immunosensor based on arginine-functionalized gold nanoparticles for detection of DHEAS, a biomarker of pediatric adrenocortical carcinoma. Biosens Bioelectron. 2019;133:86–93. https://doi.org/10.1016/j.bios.2019.02.063.

    Article  CAS  PubMed  Google Scholar 

  112. Lu L, Liu B, Zhao Z, et al. Ultrasensitive electrochemical immunosensor for HE4 based on rolling circle amplification. Biosens Bioelectron. 2012;33:216–21. https://doi.org/10.1016/j.bios.2012.01.004.

    Article  CAS  PubMed  Google Scholar 

  113. Suwansa-ard S, Kanatharana P, Asawatreratanakul P, et al. Comparison of surface plasmon resonance and capacitive immunosensors for cancer antigen 125 detection in human serum samples. Biosens Bioelectron. 2009;24:3436–41. https://doi.org/10.1016/j.bios.2009.04.008.

    Article  CAS  PubMed  Google Scholar 

  114. Du X, Zheng X, Zhang Z, Wu X, Sun L, Zhou J, Liu M. A label-free electrochemical immunosensor for detection of the tumor marker CA242 based on reduced graphene oxide-gold-palladium nanocomposite. Nanomaterials (Basel). 2019;9(9):1335. https://doi.org/10.3390/nano9091335. PMID: 31540374; PMCID: PMC6781068.

  115. Kim D-M, Noh H-B, Park DS, et al. Immunosensors for detection of Annexin II and MUC5AC for early diagnosis of lung cancer. Biosens Bioelectron. 2009;25:456–62. https://doi.org/10.1016/j.bios.2009.08.007.

    Article  CAS  PubMed  Google Scholar 

  116. Mathur A, Blais S, Goparaju MV, Neubert T, Pass H, Levon K. Development of a biosensor for detection of pleural mesothelioma cancer biomarker using surface imprinting. PLoS One. 2013;8(3):e57681. https://doi.org/10.1371/journal.pone.0057681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. He X, Yuan R, Chai Y, Shi Y. A sensitive amperometric immunosensor for carcinoembryonic antigen detection with porous nanogold film and nano-Au/chitosan composite as immobilization matrix. J Biochem Biophys Methods. 2008;70:823–9. https://doi.org/10.1016/j.jbbm.2007.06.002.

    Article  CAS  PubMed  Google Scholar 

  118. Mascini M, Tombelli S. Biosensors for biomarkers in medical diagnostics. Biomarkers. 2008;13:637–57. https://doi.org/10.1080/13547500802645905.

    Article  CAS  PubMed  Google Scholar 

  119. Wu J, Tang J-H, Dai Z, et al. A disposable electrochemical immunosensor for flow injection immunoassay of carcinoembryonic antigen. Biosens Bioelectron. 2006;22:102–8. https://doi.org/10.1016/j.bios.2005.12.008.

    Article  CAS  PubMed  Google Scholar 

  120. Zhang Y, Guo X, Fan L, et al. A novel magnetoelastic immunosensor for ultrasensitively detecting carcinoembryonic antigen. Nanoscale Res Lett. 2018;13:258. https://doi.org/10.1186/s11671-018-2632-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Maeng J-H, Lee B-C, Ko Y-J, et al. A novel microfluidic biosensor based on an electrical detection system for alpha-fetoprotein. Biosens Bioelectron. 2008;23:1319–25. https://doi.org/10.1016/j.bios.2007.11.019.

    Article  CAS  PubMed  Google Scholar 

  122. Martin VS, Sullivan BA, Walker K, et al. Surface plasmon resonance investigations of human epidermal growth factor receptor 2. Appl Spectrosc. 2006;60:994–1003.

    Article  CAS  PubMed  Google Scholar 

  123. Krishnamoorthy S, Iliadis AA, Bei T, Chrousos GP. An interleukin-6 ZnO/SiO(2)/Si surface acoustic wave biosensor. Biosens Bioelectron. 2008;24:313–8. https://doi.org/10.1016/j.bios.2008.04.011.

    Article  CAS  PubMed  Google Scholar 

  124. Tan W, Sabet L, Li Y, et al. Optical protein sensor for detecting cancer markers in saliva. Biosens Bioelectron. 2008;24:266–71. https://doi.org/10.1016/j.bios.2008.03.037.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Nyholm L. Electrochemical techniques for lab-on-a-chip applications. Analyst. 2005;130:599–605. https://doi.org/10.1039/B415004J.

    Article  CAS  PubMed  Google Scholar 

  126. Wilson MS, Nie W. Multiplex measurement of seven tumor markers using an electrochemical protein chip. Anal Chem. 2006;78:6476–83. https://doi.org/10.1021/ac060843u.

    Article  CAS  PubMed  Google Scholar 

  127. Altintas Z, Fakanya WM, Tothill IE. Cardiovascular disease detection using bio-sensing techniques. Talanta. 2014;128:177–86. https://doi.org/10.1016/j.talanta.2014.04.060.

    Article  CAS  PubMed  Google Scholar 

  128. Wang H, Naghavi M, Allen C, et al. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388:1459–544. https://doi.org/10.1016/S0140-6736(16)31012-1.

    Article  Google Scholar 

  129. Wang G, He X, Chen L, Zhu Y, Zhang X. Ultrasensitive IL-6 electrochemical immunosensor based on Au nanoparticles-graphene-silica biointerface. Colloids Surf B Biointerfaces. 2014;116:714–9. https://doi.org/10.1016/j.colsurfb.2013.11.015.

    Article  CAS  PubMed  Google Scholar 

  130. Suprun EV, Shilovskaya AL, Lisitsa AV, et al. Electrochemical immunosensor based on metal nanoparticles for cardiac myoglobin detection in human blood plasma. Electroanalysis. 2011;23:1051–7. https://doi.org/10.1002/elan.201000668.

    Article  CAS  Google Scholar 

  131. Sharma A, Jang J. Flexible electrical aptasensor using dielectrophoretic assembly of graphene oxide and its subsequent reduction for cardiac biomarker detection | Scientific Reports. 2019. https://www.nature.com/articles/s41598-019-42506-1. Accessed 3 Dec 2020.

  132. Dutra RF, Mendes RK, Lins da Silva V, Kubota LT. Surface plasmon resonance immunosensor for human cardiac troponin T based on self-assembled monolayer. J Pharm Biomed Anal. 2007;43:1744–50. https://doi.org/10.1016/j.jpba.2006.12.013.

    Article  CAS  PubMed  Google Scholar 

  133. Kwon Y-C, Kim M-G, Kim E-M, et al. Development of a surface plasmon resonance-based immunosensor for the rapid detection of cardiac troponin I. Biotechnol Lett. 2011;33:921–7. https://doi.org/10.1007/s10529-010-0509-0.

    Article  CAS  PubMed  Google Scholar 

  134. Luo B, Wu S, Zhang Z, et al. Human heart failure biomarker immunosensor based on excessively tilted fiber gratings. Biomed Opt Express. 2017;8:57–67. https://doi.org/10.1364/BOE.8.000057.

    Article  CAS  PubMed  Google Scholar 

  135. Shen W, Tian D, Cui H, et al. Nanoparticle-based electrochemiluminescence immunosensor with enhanced sensitivity for cardiac troponin I using N-(aminobutyl)-N-(ethylisoluminol)-functionalized gold nanoparticles as labels. Biosens Bioelectron. 2011;27:18–24. https://doi.org/10.1016/j.bios.2011.05.022.

    Article  CAS  PubMed  Google Scholar 

  136. Silva BVM, Cavalcanti IT, Mattos AB, et al. Disposable immunosensor for human cardiac troponin T based on streptavidin-microsphere modified screen-printed electrode. Biosens Bioelectron. 2010;26:1062–7. https://doi.org/10.1016/j.bios.2010.08.051.

    Article  CAS  PubMed  Google Scholar 

  137. Yan W, Chen X, Li X, et al. Fabrication of a label-free electrochemical immunosensor of low-density lipoprotein. J Phys Chem B. 2008;112:1275–81. https://doi.org/10.1021/jp0765594.

    Article  CAS  PubMed  Google Scholar 

  138. Zhou F, Lu M, Wang W, et al. Electrochemical immunosensor for simultaneous detection of dual cardiac markers based on a poly(dimethylsiloxane)-gold nanoparticles composite microfluidic chip: a proof of principle. Clin Chem. 2010;56:1701–7. https://doi.org/10.1373/clinchem.2010.147256.

    Article  CAS  PubMed  Google Scholar 

  139. Khan R, Pal M, Kuzikov AV, et al. Impedimetric immunosensor for detection of cardiovascular disorder risk biomarker. Mater Sci Eng C. 2016;68:52–8. https://doi.org/10.1016/j.msec.2016.05.107.

    Article  CAS  Google Scholar 

  140. Ko S, Kim B, Jo S-S, et al. Electrochemical detection of cardiac troponin I using a microchip with the surface-functionalized poly(dimethylsiloxane) channel. Biosens Bioelectron. 2007;23:51–9. https://doi.org/10.1016/j.bios.2007.03.013.

    Article  CAS  PubMed  Google Scholar 

  141. Mattos AB, Freitas TA, Kubota LT, Dutra RF. An o-aminobenzoic acid film-based immunoelectrode for detection of the cardiac troponin T in human serum. Biochem Eng J. 2013;71:97–104. https://doi.org/10.1016/j.bej.2012.12.005.

    Article  CAS  Google Scholar 

  142. Timucin C, Gul O, Kutuk O, Basaga PDH. Antibody array–based immunosensor for detecting cardiovascular disease risk markers. J Immunoassay Immunochem. 2012;33:275–90. https://doi.org/10.1080/15321819.2011.638407.

    Article  CAS  PubMed  Google Scholar 

  143. Davidson A, Diamond B. Autoimmune diseases. 2009. https://www.nejm.org/doi/10.1056/NEJM200108023450506.

  144. Shoenfeld Y, Tincani A, Gershwin ME. Sex gender and autoimmunity. J Autoimmun. 2012;38:J71–3. https://doi.org/10.1016/j.jaut.2011.12.007.

    Article  CAS  PubMed  Google Scholar 

  145. Florea A, Melinte G, Simon I, Cristea C. Electrochemical biosensors as potential diagnostic devices for autoimmune diseases. Biosensors. 2019;9:38. https://doi.org/10.3390/bios9010038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Wu H, Liao J, Li Q, et al. Epigenetics as biomarkers in autoimmune diseases. Clin Immunol. 2018;196:34–9. https://doi.org/10.1016/j.clim.2018.03.011.

    Article  CAS  PubMed  Google Scholar 

  147. Petri M, Orbai AM, Alarcõn GS, et al. Derivation and validation of the systemic lupus international collaborating clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum. 2012;64:2677–86. https://doi.org/10.1002/art.34473.

    Article  PubMed  PubMed Central  Google Scholar 

  148. Iskandar HN, Ciorba MA. Biomarkers in inflammatory bowel disease: current practices and recent advances. Transl Res. 2012;159:313–25. https://doi.org/10.1016/j.trsl.2012.01.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Seo P, Stone JH. The antineutrophil cytoplasmic antibody–associated vasculitides. Am J Med. 2004;117:39–50. https://doi.org/10.1016/j.amjmed.2004.02.030.

    Article  CAS  PubMed  Google Scholar 

  150. Iaccarino L, Ghirardello A, Canova M, et al. Anti-annexins autoantibodies: their role as biomarkers of autoimmune diseases. Autoimmun Rev. 2011;10:553–8. https://doi.org/10.1016/j.autrev.2011.04.007.

    Article  CAS  PubMed  Google Scholar 

  151. Chopra S, Matsuyama K, Tran T, et al. Evaluation of gyrase B as a drug target in Mycobacterium tuberculosis. J Antimicrob Chemother. 2012;67:415–21. https://doi.org/10.1093/jac/dkr449.

    Article  CAS  PubMed  Google Scholar 

  152. Hueber W, Robinson WH. Proteomic biomarkers for autoimmune disease—Hueber—2006—PROTEOMICS—Wiley Online Library. 2006. https://onlinelibrary.wiley.com/doi/abs/10.1002/pmic.200600017.

  153. Prince HE. Biomarkers for diagnosing and monitoring autoimmune diseases. Biomarkers. 2005;10:44–9. https://doi.org/10.1080/13547500500214194.

    Article  CAS  Google Scholar 

  154. Shi G, Zhang Z, Li Q. New biomarkers in autoimmune disease. J Immunol Res. 2017. https://www.hindawi.com/journals/jir/2017/8702425/. Accessed 3 Dec 2020.

  155. Neves MMPS, González-García MB, Nouws HPA, Costa-García A. Celiac disease detection using a transglutaminase electrochemical immunosensor fabricated on nanohybrid screen-printed carbon electrodes. Biosens Bioelectron. 2012;31:95–100. https://doi.org/10.1016/j.bios.2011.09.044.

    Article  CAS  PubMed  Google Scholar 

  156. Martín-Yerga D, Costa-García A. Towards a blocking-free electrochemical immunosensing strategy for anti-transglutaminase antibodies using screen-printed electrodes. Bioelectrochemistry. 2015;105:88–94. https://doi.org/10.1016/j.bioelechem.2015.05.014.

    Article  CAS  PubMed  Google Scholar 

  157. Derkus B, Emregul E, Yucesan C, Cebesoy Emregul K. Myelin basic protein immunosensor for multiple sclerosis detection based upon label-free electrochemical impedance spectroscopy. Biosens Bioelectron. 2013;46:53–60. https://doi.org/10.1016/j.bios.2013.01.060.

    Article  CAS  PubMed  Google Scholar 

  158. Bleher O, Schindler A, Yin M-X, et al. Development of a new parallelized, optical biosensor platform for label-free detection of autoimmunity-related antibodies. Anal Bioanal Chem. 2014;406:3305–14. https://doi.org/10.1007/s00216-013-7504-y.

    Article  CAS  PubMed  Google Scholar 

  159. Mastrototaro JJ, Cooper K, Shah R. Early clinical experience with an integrated continuous glucose sensor/insulin pump platform. Diabetes Res Clin Pract. 2006;74:S156–9. https://doi.org/10.1016/S0168-8227(06)70022-5.

    Article  CAS  Google Scholar 

  160. McGarraugh G. The chemistry of commercial continuous glucose monitors. Diabetes Technol Ther. 2009;11:S-17. https://doi.org/10.1089/dia.2008.0133.

    Article  CAS  Google Scholar 

  161. Paek S-H, Cho I-H, Seo S-M, et al. Production of rapidly reversible antibody and its performance characterization as binder for continuous glucose monitoring. Analyst. 2011;136:4268–76. https://doi.org/10.1039/C1AN15338B.

    Article  CAS  PubMed  Google Scholar 

  162. Martinez-Hervas S, Ascaso JF. Hypercholesterolemia. In: Huhtaniemi I, Martini L, editors. Encyclopedia of endocrine diseases. 2nd ed. Oxford: Academic; 2019. p. 320–6.

    Chapter  Google Scholar 

  163. Robinet P, Wang Z, Hazen SL, Smith JD. A simple and sensitive enzymatic method for cholesterol quantification in macrophages and foam cells. J Lipid Res. 2010;51:3364. https://doi.org/10.1194/jlr.D007336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Kaur G, Tomar M, Gupta V. Development of a microfluidic electrochemical biosensor: prospect for point-of-care cholesterol monitoring. Sens Actuators B Chem. 2018;261:460–6. https://doi.org/10.1016/j.snb.2018.01.144.

    Article  CAS  Google Scholar 

  165. Huang Y, Cui L, Xue Y, et al. Ultrasensitive cholesterol biosensor based on enzymatic silver deposition on gold nanoparticles modified screen-printed carbon electrode. Mater Sci Eng C. 2017;77:1–8. https://doi.org/10.1016/j.msec.2017.03.253.

    Article  CAS  Google Scholar 

  166. Cinti S, Arduini F, Moscone D, et al. Cholesterol biosensor based on inkjet-printed Prussian blue nanoparticle-modified screen-printed electrodes. Sens Actuators B Chem. 2015;221:187–90. https://doi.org/10.1016/j.snb.2015.06.054.

    Article  CAS  Google Scholar 

  167. Huang Y, Tan J, Cui L, et al. Graphene and Au NPs co-mediated enzymatic silver deposition for the ultrasensitive electrochemical detection of cholesterol. Biosens Bioelectron. 2018;102:560–7. https://doi.org/10.1016/j.bios.2017.11.037.

    Article  CAS  PubMed  Google Scholar 

  168. Vidal J-C, Garcia E, Castillo J-R. Development of a platinized and ferrocene-mediated cholesterol amperometric biosensor based on electropolymerization of polypyrrole in a flow system. Anal Sci. 2002;18:537–42. https://doi.org/10.2116/analsci.18.537.

    Article  CAS  PubMed  Google Scholar 

  169. Singh S, Chaubey A, Malhotra B. Amperometric cholesterol biosensor based on immobilized cholesterol esterase and cholesterol oxidase on conducting polypyrrole films. Anal Chim Acta. 2004;502:229–34. https://doi.org/10.1016/j.aca.2003.09.064.

    Article  CAS  Google Scholar 

  170. Pundir CS, Narang J, Chauhan N, et al. An amperometric cholesterol biosensor based on epoxy resin membrane bound cholesterol oxidase. Indian J Med Res. 2012;136:633–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Rahman MM, Li X, Kim J, et al. A cholesterol biosensor based on a bi-enzyme immobilized on conducting poly(thionine) film. Sens Actuators B Chem. 2014;202:536–42. https://doi.org/10.1016/j.snb.2014.05.114.

    Article  CAS  Google Scholar 

  172. Umar A, Ahmad R, Kumar R, et al. Bi2O2CO3 nanoplates: fabrication and characterization of highly sensitive and selective cholesterol biosensor. J Alloys Compd. 2016;683:433–8. https://doi.org/10.1016/j.jallcom.2016.05.063.

    Article  CAS  Google Scholar 

  173. Fernandes AR, de Souza PS, de Oliveira AE, et al. A new method for the determination of creatinine in urine samples based on disposable pipette extraction. J Braz Chem Soc. 2018;29:695–700. https://doi.org/10.21577/0103-5053.20170187.

    Article  CAS  Google Scholar 

  174. Küme T, Sağlam B, Ergon C, Sişman A. Evaluation and comparison of Abbott Jaffe and enzymatic creatinine methods: could the old method meet the new requirements? J Clin Lab Anal. 2017;32:e22168. https://doi.org/10.1002/jcla.22168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Kozitsina AN, Svalova TS, Malysheva NN, et al. Sensors based on bio and biomimetic receptors in medical diagnostic, environment, and food analysis. Biosensors. 2018;8:35. https://doi.org/10.3390/bios8020035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Tang S, Zhao Q, Tu Y. A sensitive electrochemiluminescent cholesterol biosensor based on Au/hollowed-TiO2 nano-composite pre-functionalized electrode. Sens Actuators B Chem. 2016;237:416–22. https://doi.org/10.1016/j.snb.2016.06.110.

    Article  CAS  Google Scholar 

  177. Wang H, Gao X, Ma Z. Multifunctional substrate of label-free electrochemical immunosensor for ultrasensitive detection of cytokeratins antigen 21-1. Sci Rep. 2017;7:1023. https://doi.org/10.1038/s41598-017-01250-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Deshantri AK, Moreira A, Ecker V, et al. Nanomedicines for the treatment of hematological malignancies. J Control Release. 2018;287:194. https://doi.org/10.1016/j.jconrel.2018.08.034.

    Article  CAS  PubMed  Google Scholar 

  179. Trindade EKG, Dutra RF. A label-free and reagentless immunoelectrode for antibodies against hepatitis B core antigen (anti-HBc) detection. Colloids Surf B Biointerfaces. 2018;172:272–9. https://doi.org/10.1016/j.colsurfb.2018.08.050.

    Article  CAS  PubMed  Google Scholar 

  180. Abdi Z, Roushani M. Novel electrochemical sensor based on graphene quantum dots/riboflavin nanocomposite for the detection of persulfate. Sens Actuators B Chem. 2014;201:503–10.

    Article  Google Scholar 

  181. Trindade EKG, Silva BVM, Dutra RF. A probeless and label-free electrochemical immunosensor for cystatin C detection based on ferrocene 77 functionalized-graphene platform. Biosens Bioelectron. 2019;138:111311. https://doi.org/10.1016/j.bios.2019.05.016.

    Article  CAS  PubMed  Google Scholar 

  182. Singh A, Gopinath K, Singh N, Singh S. Deciphering the sequential events during in vivo acquisition of drug resistance in Mycobacterium tuberculosis. Int J Mycobacteriol. 2014;3:36–40. https://doi.org/10.1016/j.ijmyco.2013.10.006.

    Article  PubMed  Google Scholar 

  183. Singh A, Gupta AK, Gopinath K, et al. Evaluation of 5 Novel protein biomarkers for the rapid diagnosis of pulmonary and extra-pulmonary tuberculosis: preliminary results. Sci Rep. 2017;7:1–10. https://doi.org/10.1038/srep44121.

    Article  CAS  Google Scholar 

  184. Adalja AA, Watson M, Toner ES, et al. Characteristics of microbes most likely to cause pandemics and global catastrophes. Glob Catastrophic Biol Risks. 2019;424:1–20. https://doi.org/10.1007/82_2019_176.

    Article  Google Scholar 

  185. Clerc O, Greub G. Routine use of point-of-care tests: usefulness and application in clinical microbiology. Clin Microbiol Infect. 2010;16:1054–61. https://doi.org/10.1111/j.1469-0691.2010.03281.x.

    Article  CAS  PubMed  Google Scholar 

  186. Fu Z, Lu Y-C, Lai JJ. Recent advances in biosensors for nucleic acid and exosome detection. Chonnam Med J. 2019;55:86–98. https://doi.org/10.4068/cmj.2019.55.2.86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Taubenberger JK, Morens DM. The pathology of influenza virus infections. Annu Rev Pathol. 2008;3:499–522. https://doi.org/10.1146/annurev.pathmechdis.3.121806.154316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Spackman E, Senne DA, Myers TJ, et al. Development of a real-time reverse transcriptase PCR assay for type a influenza virus and the avian H5 and H7 hemagglutinin subtypes. J Clin Microbiol. 2002;40:3256–60. https://doi.org/10.1128/JCM.40.9.3256-3260.2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Cristea C, Florea A, Tertiș M, Săndulescu R. Immunosensors. Biosens—Micro Nanoscale Appl. 2015. https://doi.org/10.5772/60524.

  190. Wrammert J, Koutsonanos D, Li G-M, et al. Broadly cross-reactive antibodies dominate the human B cell response against 2009 pandemic H1N1 influenza virus infection. J Exp Med. 2011;208:181–93. https://doi.org/10.1084/jem.20101352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Su D, Wu K, Krishna VD, Klein T, Liu J, Feng Y, Perez AM, Cheeran MC, Wang JP. Detection of influenza a virus in swine nasal swab samples with a wash-free magnetic bioassay and a handheld giant magnetoresistance sensing system. Front Microbiol. 2019;10:1077. https://doi.org/10.3389/fmicb.2019.01077.

    Article  PubMed  PubMed Central  Google Scholar 

  192. Jarocka U, Sawicka R, Gora-Sochacka A, et al. Electrochemical immunosensor for detection of antibodies against influenza A virus H5N1 in hen serum. Biosens Bioelectron. 2013;55C:301–6. https://doi.org/10.1016/j.bios.2013.12.030.

    Article  CAS  Google Scholar 

  193. Nidzworski D, Siuzdak K, Niedziałkowski P, et al. A rapid-response ultrasensitive biosensor for influenza virus detection using antibody modified boron-doped diamond. Sci Rep. 2017;7:15707. https://doi.org/10.1038/s41598-017-15806-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Singh A, Gopinath K, Sharma P, et al. Comparative proteomic analysis of sequential isolates of Mycobacterium tuberculosis from a patient pulmonary tuberculosis turning from drug sensitive to multidrug resistant. Indian J Med Res. 2015;141:27–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Singh A, Gupta AK, Gopinath K, et al. Comparative proteomic analysis of sequential isolates of Mycobacterium tuberculosis sensitive and resistant Bei**g type from a patient with pulmonary tuberculosis. Int J Mycobacteriol. 2016;5(Suppl 1):S123–4. https://doi.org/10.1016/j.ijmyco.2016.10.028.

    Article  PubMed  Google Scholar 

  196. Díaz-González M, González-García MB, Costa-García A. Immunosensor for Mycobacterium tuberculosis on screen-printed carbon electrodes. Biosens Bioelectron. 2005;20:2035–43. https://doi.org/10.1016/j.bios.2004.09.035.

    Article  CAS  PubMed  Google Scholar 

  197. Mohd Azmi UZ, Yusof NA, Kusnin N, et al. Sandwich electrochemical immunosensor for early detection of tuberculosis based on graphene/polyaniline-modified screen-printed gold electrode. Sensors. 2018;18:3926. https://doi.org/10.3390/s18113926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Kim J-H, Yeo W-H, Shu Z, et al. Immunosensor towards low-cost, rapid diagnosis of tuberculosis. Lab Chip. 2012;12:1437–40. https://doi.org/10.1039/C2LC21131A.

    Article  CAS  PubMed  Google Scholar 

  199. Wang Y, Zhang Y, Wu D, et al. Ultrasensitive label-free electrochemical immunosensor based on multifunctionalized graphene nanocomposites for the detection of alpha fetoprotein. Sci Rep. 2017;7:42361. https://doi.org/10.1038/srep42361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Xu C, Chai X, Zhang S, Zhou J. Immunosensor for detecting pulmonary tuberculosis markers in human serum. In: 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology. IEEE, Shanghai, China; 2010. p. 1486–8.

    Google Scholar 

  201. Gopinath SCB, Perumal V, Kumaresan R, et al. Nanogapped impedimetric immunosensor for the detection of 16 kDa heat shock protein against Mycobacterium tuberculosis. Microchim Acta. 2016;183:2697–703. https://doi.org/10.1007/s00604-016-1911-7.

    Article  CAS  Google Scholar 

  202. Gupta AK, Singh A, Singh S. Diagnosis of tuberculosis: nanodiagnostics approaches. In: Saxena SK, Khurana SMP, editors. NanoBioMedicine. Singapore: Springer; 2020. p. 261–83.

    Chapter  Google Scholar 

  203. Singh A, Gupta AK, Singh S. Molecular mechanisms of drug resistance in Mycobacterium tuberculosis: role of nanoparticles against multi-drug-resistant tuberculosis (MDR-TB). In: Saxena SK, Khurana SMP, editors. NanoBioMedicine. Singapore: Springer; 2020. p. 285–314.

    Chapter  Google Scholar 

  204. Zhou L, He X, He D, et al. Biosensing technologies for Mycobacterium tuberculosis detection: status and new developments. Clin Dev Immunol. 2011. https://www.hindawi.com/journals/jir/2011/193963/. Accessed 27 Dec 2020.

  205. Thappa DM, Kaimal S. Sexually transmitted infections in India: current status (except human immunodeficiency virus/acquired immunodeficiency syndrome). Indian J Dermatol. 2007;52:78. https://doi.org/10.4103/0019-5154.33283.

    Article  Google Scholar 

  206. Liu D, Zhang Y, Zhu M, et al. Microfluidic-integrated multicolor immunosensor for visual detection of HIV-1 p24 antigen with the naked eye. Anal Chem. 2020;92:11826–33. https://doi.org/10.1021/acs.analchem.0c02091.

    Article  CAS  PubMed  Google Scholar 

  207. Singh R, Prasad R, Sumana G, et al. STD sensor based on nucleic acid functionalized nanostructured polyaniline. Biosens Bioelectron. 2009;24:2232–8. https://doi.org/10.1016/j.bios.2008.11.030.

    Article  CAS  PubMed  Google Scholar 

  208. Aizawa M, Suzuki S, Nagamura Y, et al. An immunosensor for syphilis. J Solid-Phase Biochem. 1979;4:25–31. https://doi.org/10.1007/BF02991805.

    Article  CAS  Google Scholar 

  209. Ben-Dov I, Willner I, Zisman E. Piezoelectric immunosensors for urine specimens of Chlamydia trachomatis employing quartz crystal microbalance microgravimetric analyses. Anal Chem. 1997;69:3506–12. https://doi.org/10.1021/ac970216s.

    Article  CAS  PubMed  Google Scholar 

  210. Teeparuksapun K, Hedström M, Wong E, et al. Ultrasensitive detection of HIV-1 p24 antigen using nanofunctionalized surfaces in a capacitive immunosensor. Anal Chem. 2010;82:8406–11. https://doi.org/10.1021/ac102144a.

    Article  CAS  PubMed  Google Scholar 

  211. Bhimji A, Zaragoza A, Live L, Kelley S. An electrochemical ELISA featuring proximal reagent generation: detection of HIV antibodies in clinical samples. Anal Chem. 2013;85:6813. https://doi.org/10.1021/ac4009429.

    Article  CAS  PubMed  Google Scholar 

  212. Thomas E, Yoneda M, Schiff ER. Viral hepatitis: past and future of HBV and HDV. Cold Spring Harb Perspect Med. 2015;5:a021345. https://doi.org/10.1101/cshperspect.a021345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Uliana CV, Riccardi CS, Yamanaka H. Diagnostic tests for hepatitis C: recent trends in electrochemical immunosensor and genosensor analysis. World J Gastroenterol. 2014;20:15476–91. https://doi.org/10.3748/wjg.v20.i42.15476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Xu X, Nie R, Huang J, Yang L. Chemiluminescent optical fiber immunosensor combining surface modification and signal amplification for ultrasensitive determination of hepatitis B antigen. Sensors. 2020;20:4912. https://doi.org/10.3390/s20174912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Kang J-S, Lee M-H. Overview of therapeutic drug monitoring. Korean J Intern Med. 2009;24:1–10. https://doi.org/10.3904/kjim.2009.24.1.1.

    Article  PubMed  PubMed Central  Google Scholar 

  216. Chen Y, Tu Y. An electrochemical impedimetric immunosensor for ultrasensitive determination of ketamine hydrochloride. Sens Actuators B Chem. 2013;183:150–6. https://doi.org/10.1016/j.snb.2013.03.119.

    Article  CAS  Google Scholar 

  217. Yang Y, Tu Y, Wang X, et al. A label-free immunosensor for ultrasensitive detection of ketamine based on quartz crystal microbalance. Sensors. 2015;15:8540–9. https://doi.org/10.3390/s150408540.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Crouch DJ, Walsh JM, Flegel R, et al. An evaluation of selected oral fluid point-of-collection drug-testing devices. J Anal Toxicol. 2005;29:244–8. https://doi.org/10.1093/jat/29.4.244.

    Article  PubMed  Google Scholar 

  219. Mehrotra P. Biosensors and their applications—a review. J Oral Biol Craniofac Res. 2016;6:153–9. https://doi.org/10.1016/j.jobcr.2015.12.002.

    Article  PubMed  PubMed Central  Google Scholar 

  220. Bart JC, Judd LL, Hoffman KE, et al. Application of a portable immunosensor to detect the explosives TNT and RDX in groundwater samples. 1997. https://pubs.acs.org/doi/pdf/10.1021/es960777l.

  221. Whelan JP, Kusterbeck AW, Wemhoff GA, et al. Continuous-flow immunosensor for detection of explosives. Anal Chem. 1993;65:3561–5. https://doi.org/10.1021/ac00072a005.

    Article  CAS  Google Scholar 

  222. Bielecki Z, Janucki J, Kawalec A, et al. Sensors and systems for the detection of explosive devices—an overview. Metrol Meas Syst. 2012;19:3. https://doi.org/10.2478/v10178-012-0001-3.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, A.K., Animesh, S., Singh, A. (2023). An Overview of Immunosensors and Their Application. In: Kumar, P., Dash, S.K., Ray, S., Parween, S. (eds) Biomaterials-Based Sensors. Springer, Singapore. https://doi.org/10.1007/978-981-19-8501-0_8

Download citation

Publish with us

Policies and ethics

Navigation