Log in

Single nucleotide polymorphism analysis by chip-based hybridization and direct current electrical detection of gold-labeled DNA

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Single nucleotide polymorphism (SNP) analysis at the point of care requires a low cost detection technology that is capable of miniaturization, multiplexing, and high sensitivity. Direct current electrical detection (DCED) of DNA following nanoparticle labeling and silver enhancement is a promising candidate technology for point-of-care diagnostics. In this work we present, for the first time, SNP analysis in PCR products from patient samples using DCED, taking this platform technology a step closer to practical application. We developed a silane functionalized polymer for coating of biochip surfaces. This polymeric coating is stable under harsh conditions and has exceptionally high binding capacity. Allele-specific oligonucleotide probes were immobilized on chips coated with this polymer. Biotinylated PCR products of the human cholesteryl ester transfer protein gene from different patients were hybridized to the chips, labeled with gold nanoparticles, and autometallographically enhanced. The chips were scanned for DC electrical resistance by applying movable electrodes to the surface. Eighteen of nineteen patient samples were assigned the correct genotype. Our results demonstrate that SNP analysis of patient samples is feasible with DCED.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shi MM (2002) Am J Pharmacogenomics 2:197–205

    Article  CAS  PubMed  Google Scholar 

  2. Patolsky F, Lichtenstein A, Willner I (2001) Nature Biotechnol 19:253–257

    Article  CAS  Google Scholar 

  3. Drummond D, Hill MG, Barton JK (2003) Nature Biotechnol 21:1192–1192

    Article  CAS  Google Scholar 

  4. Ozsoz M et al (2003) Anal Chem 75:2181–2187

    Article  CAS  PubMed  Google Scholar 

  5. Mroczkowski SJ, Siegesmund KA, Yorde DE (1990) Patent WO 90/05300

  6. Brunelle S (2001) IVD Technology 7:55–66

    Google Scholar 

  7. Möller R, Csaki A, Köhler JM, Fritzsche W (2001) Langmuir 17:5426–5430

    Article  Google Scholar 

  8. Park S-J, Taton TA, Mirkin CA (2002) Science 295:1503–1506

    CAS  PubMed  Google Scholar 

  9. Li J, Xue M, Wang H, Chen L, Gao L, Lu Z, Chan M (2003) Analyst 128:917–923

    Article  CAS  PubMed  Google Scholar 

  10. Taton AT, Mirkin CA, Letsinger RL (2000) Science 289:1757–1760

    CAS  PubMed  Google Scholar 

  11. Wang Y-F, Pang D-W, Zhang Z-L, Zheng H-Z, Cao J-P, Shen J-T (2003) J Med Virol 70:205–211

    Article  CAS  PubMed  Google Scholar 

  12. Alexandre I, Hamels S, Dufour S, Collet J, Zammatteo N, De Longueville F, Gala J-L, Remacle J (2001) Anal Biochem 295:1–8

    Article  CAS  PubMed  Google Scholar 

  13. Agellon LB et al (1990) Biochemistry 29:1372–1376

    CAS  PubMed  Google Scholar 

  14. Corella D et al (2000) Atherosclerosis 152:367–376

    Article  CAS  PubMed  Google Scholar 

  15. Cuchel B, Wolfe ML, deLemos AS, Rader DJ (2002) Atherosclerosis 163:169–174

    Article  CAS  PubMed  Google Scholar 

  16. Möller R, Csaki A, Köhler JM, Fritzsche W (2000) Nucleic Acids Res 28:e91

    Article  PubMed  Google Scholar 

  17. Beaucage SL (2001) Curr Med 8:1213–1244

    CAS  Google Scholar 

  18. Benters R, Niemeyer CM, Drutschmann D, Blohm D, Wohrle D (2002) Nucleic Acids Res 30:e10

    Article  PubMed  Google Scholar 

  19. Beier M, Hoheisel J (1999) Nucleic Acids Res 27:1970–1977

    Article  CAS  PubMed  Google Scholar 

  20. Running JA, Urdea MS (1990) BioTechniques 8:276–277

    CAS  PubMed  Google Scholar 

  21. Guo Z, Guilfoyle RA, Thiel AJ, Wang R, Smith LM (1994) Nucleic Acids Res 22:5456–5465

    CAS  PubMed  Google Scholar 

  22. SantaLucia J (1998) Proc Natl Acad Sci USA 95:1460–1465

    Article  CAS  PubMed  Google Scholar 

  23. Casademont I, Bizet C, Chevrier D, Guesdon J-L (2000) Mol Cell Probes 14:233–240

    Article  CAS  PubMed  Google Scholar 

  24. Jensen KK, Orum H, Nielsen PE, Norden B (1997) Biochemistry 36:5072–5077

    Article  CAS  PubMed  Google Scholar 

  25. Santacroce R et al (2002) Clin Chem 48:2124–2130

    Google Scholar 

  26. Erali M, Schmidt B, Lyon E, Wittwer C (2003) Clin Chem 49:732–739

    Article  CAS  PubMed  Google Scholar 

  27. Evans JG, Lee-Tataseo C (2002) Clin Chem 48:1406–1411

    CAS  PubMed  Google Scholar 

  28. Kennedy GC et al (2003) Nature Biotechnol 21:1233–1237

    Article  CAS  Google Scholar 

  29. Diessel E, Grothe K, Siebert H-M, Warner B, Burmeister J (2003) Biosens Bioelectron, accepted for publication

Download references

Acknowledgements

We are grateful to S. Schwers and U. Stropp for preparation and genoty** of patient samples, to Jenny Booth and John Quinn for support and transfer of material and to K. Ide and M. Voetz for scanning electron microscopy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Burmeister.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burmeister, J., Bazilyanska, V., Grothe, K. et al. Single nucleotide polymorphism analysis by chip-based hybridization and direct current electrical detection of gold-labeled DNA. Anal Bioanal Chem 379, 391–398 (2004). https://doi.org/10.1007/s00216-004-2601-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-004-2601-6

Keywords

Navigation