Log in

Rich-color visual genoty** of single-nucleotide polymorphisms based on platinum nanoparticle–induced etching of gold nanorods

  • Original Article
  • Published:
Emergent Materials Aims and scope Submit manuscript

Abstract

Major technological challenges in point-of-care diagnostics are in the development of simple, fast, and inexpensive methods for high-throughput and multiplexed genoty** of single-nucleotide polymorphisms (SNPs). Herein, we develop a facile SNP detection platform based on platinum nanoparticles–induced etching of gold nanorods (AuNRs) by H2O2. The IVS-II-1 (G>A) β-thalassemia mutation, as one of the most prevalent mutations in the Middle East, was used as a model disease. In the presence of H2O2, ferrous ion (Fe2+) triggers a Fenton reaction with the catalytic decomposition of H2O2 into highly reactive hydroxyl (HO·) and hydroperoxyl (HOO·) radicals. These species etch AuNRs along the longitudinal axes to short AuNRs or even Au nanoparticles. For signaling SNPs, monobase-modified platinum nanoparticles (M-PtNPs) are hybridized to mutated sites of the duplex DNA. PtNPs catalyze the decomposition of H2O2 to water and oxygen, thus reducing the amount of H2O2 available for oxidative etching of AuNRs, and generating a series of distinct colors depending on the frequency of SNP in the target DNA. The frequency of SNP can be detected with the naked-eye or with UV-vis spectroscopy. The naked-eye detection limits of G–T and A–C mismatches are 17 and 15 pM, whereas UV-vis method responds linearly to these mismatches in the ranges from 10 to 200 pM and 5 to 120 pM with detection limits of 4 and 2 pM (3σ/slope), respectively. The present genosensor demonstrates a straightforward and easy-to-interpret method for naked-eye discrimination between PCR products of normal, heterozygous, and homozygous β-thalassemia-related mutation of β-hemoglobin.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. H. Jónsson, P. Sulem, B. Kehr, S. Kristmundsdottir, F. Zink, E. Hjartarson, M.T. Hardarson, K.E. Hjorleifsson, H.P. Eggertsson, S.A. Gudjonsson, L.D. Ward, G.A. Arnadottir, E.A. Helgason, H. Helgason, A. Gylfason, A. Jonasdottir, A. Jonasdottir, T. Rafnar, M. Frigge, S.N. Stacey, O.T. Magnusson, U. Thorsteinsdottir, G. Masson, A. Kong, B.V. Halldorsson, A. Helgason, D.F. Gudbjartsson, K. Stefansson, Parental influence on human germline de novo mutations in 1,548 trios from Iceland. Nature 549(7673), 519–522 (2017)

    Article  CAS  Google Scholar 

  2. L. Zhang, Q. Cai, R.S. Wiederkehr, M. Fauvart, P. Fiorini, B. Majeed, M. Tsukuda, T. Matsuno, T. Stakenborg, Multiplex SNP genoty** in whole blood using an integrated microfluidic lab-on-a-chip. Lab Chip 16(20), 4012–4019 (2016)

    Article  CAS  Google Scholar 

  3. D. Paquet, D. Kwart, A. Chen, A. Sproul, S. Jacob, S. Teo, K.M. Olsen, A. Gregg, S. Noggle, M. Tessier-Lavigne, Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9. Nature 533(7601), 125–129 (2016)

    Article  CAS  Google Scholar 

  4. N. Moradi, A. Noori, M.A. Mehrgardi, M.F. Mousavi, Scanning electrochemical microscopy for electrochemical detection of single-base mismatches by tagging ferrocenecarboxylic acid as a redox probe to DNA. Electroanalysis 28(4), 823–832 (2016)

    Article  CAS  Google Scholar 

  5. K. Ghanbari, S.Z. Bathaie, M.F. Mousavi, Electrochemically fabricated polypyrrole nanofiber-modified electrode as a new electrochemical DNA biosensor. Biosens. Bioelectron. 23(12), 1825–1831 (2008)

    Article  CAS  Google Scholar 

  6. M. Yousef Elahi, S.Z. Bathaie, S.H. Kazemi, M.F. Mousavi, DNA immobilization on a polypyrrole nanofiber modified electrode and its interaction with salicylic acid/aspirin. Anal. Biochem. 411(2), 176–184 (2011)

    Article  CAS  Google Scholar 

  7. A.A. Gorodetsky, A. Ebrahim, J.K. Barton, Electrical detection of TATA binding protein at DNA-modified microelectrodes. J. Am. Chem. Soc. 130(10), 2924–2925 (2008)

    Article  CAS  Google Scholar 

  8. B. Wei, T. Zhang, X. Ou, X. Li, X. Lou, F. **a, Stereochemistry-guided DNA probe for single nucleotide polymorphisms analysis. ACS Appl. Mater. Interfaces 8(25), 15911–15916 (2016)

    Article  CAS  Google Scholar 

  9. A. Bonanni, C.K. Chua, G. Zhao, Z. Sofer, M. Pumera, Inherently electroactive graphene oxide nanoplatelets as labels for single nucleotide polymorphism detection. ACS Nano 6(10), 8546–8551 (2012)

    Article  CAS  Google Scholar 

  10. F. Patolsky, A. Lichtenstein, I. Willner, Detection of single-base DNA mutations by enzyme-amplified electronic transduction. Nat. Biotechnol. 19(3), 253–257 (2001)

    Article  CAS  Google Scholar 

  11. G. Liu, T.M. Lee, J. Wang, Nanocrystal-based bioelectronic coding of single nucleotide polymorphisms. J. Am. Chem. Soc. 127(1), 38–39 (2005)

    Article  CAS  Google Scholar 

  12. M. Ye, Y. Zhang, H. Li, Y. Zhang, P. Tan, H. Tang, S. Yao, A novel method for the detection of point mutation in DNA using single-base-coded CdS nanoprobes. Biosens. Bioelectron. 24(8), 2339–2345 (2009)

    Article  CAS  Google Scholar 

  13. K. Kerman, M. Saito, Y. Morita, Y. Takamura, M. Ozsoz, E. Tamiya, Electrochemical coding of single-nucleotide polymorphisms by monobase-modified gold nanoparticles. Anal. Chem. 76(7), 1877–1884 (2004)

    Article  CAS  Google Scholar 

  14. S.M. Khoshfetrat, M.A. Mehrgardi, Amplified electrochemical genoty** of single-nucleotide polymorphisms using a graphene–gold nanoparticles modified glassy carbon platform. RSC Adv. 5(37), 29285–29293 (2015)

    Article  CAS  Google Scholar 

  15. S.M. Khoshfetrat, M.A. Mehrgardi, Electrochemical genoty** of single-nucleotide polymorphisms by using monobase-conjugated modified nanoparticles. ChemElectroChem 1(4), 779–786 (2014)

    Article  CAS  Google Scholar 

  16. S.M. Khoshfetrat, M. Ranjbari, M. Shayan, M.A. Mehrgardi, A. Kiani, Wireless electrochemiluminescence bipolar electrode array for visualized genoty** of single nucleotide polymorphism. Anal. Chem. 87(16), 8123–8131 (2015)

    Article  CAS  Google Scholar 

  17. G. Liu, Y. Lin, Electrochemical quantification of single-nucleotide polymorphisms using nanoparticle probes. J. Am. Chem. Soc. 129(34), 10394–10401 (2007)

    Article  CAS  Google Scholar 

  18. A. Abbaspour, A. Noori, Electrochemical detection of individual single nucleotide polymorphisms using monobase-modified apoferritin-encapsulated nanoparticles. Biosens. Bioelectron. 37(1), 11–18 (2012)

    Article  CAS  Google Scholar 

  19. I. Willner, F. Patolsky, Y. Weizmann, B. Willner, Amplified detection of single-base mismatches in DNA using microgravimetric quartz-crystal-microbalance transduction. Talanta 56(5), 847–856 (2002)

    Article  CAS  Google Scholar 

  20. F. **a, X. Zuo, R. Yang, Y. **ao, D. Kang, A. Vallée-Bélisle, X. Gong, J.D. Yuen, B.B.Y. Hsu, A.J. Heeger, K.W. Plaxco, Colorimetric detection of DNA, small molecules, proteins, and ions using unmodified gold nanoparticles and conjugated polyelectrolytes. Proc. Natl. Acad. Sci. 107(24), 10837–10841 (2010)

    Article  CAS  Google Scholar 

  21. P. Teengam, W. Siangproh, A. Tuantranont, T. Vilaivan, O. Chailapakul, C.S. Henry, Multiplex paper-based colorimetric dna sensor using pyrrolidinyl peptide nucleic acid-induced AgNPs aggregation for detecting MERS-CoV, MTB, and HPV oligonucleotides. Anal. Chem. 89(10), 5428–5435 (2017)

    Article  CAS  Google Scholar 

  22. M. Sabela, S. Balme, M. Bechelany, J.-M. Janot, and K. Bisetty, Adv. Eng. Mater., 1700270

  23. Z. Li, M. Fang, M.K. LaGasse, J.R. Askim, K.S. Suslick, Colorimetric recognition of aldehydes and ketones. Angew. Chem. Int. Ed. 56(33), 9860–9863 (2017)

    Article  CAS  Google Scholar 

  24. P. Valentini, R. Fiammengo, S. Sabella, M. Gariboldi, G. Maiorano, R. Cingolani, P.P. Pompa, Gold-nanoparticle-based colorimetric discrimination of cancer-related point mutations with picomolar sensitivity. ACS Nano 7(6), 5530–5538 (2013)

    Article  CAS  Google Scholar 

  25. Z. Gao, Z. Qiu, M. Lu, J. Shu, D. Tang, Biosens. Bioelectron. 89(Part 2), 1006 (2017)

    Article  CAS  Google Scholar 

  26. X. Wei, Y. Wang, Y. Zhao, Z. Chen, Biosens. Bioelectron 97(Supplement C), 332 (2017)

    Article  CAS  Google Scholar 

  27. S. Lu, T. Hu, S. Wang, J. Sun, X. Yang, Ultra-sensitive colorimetric assay system based on the hybridization chain reaction-triggered enzyme cascade amplification. ACS Appl. Mater. Interfaces 9(1), 167–175 (2017)

    Article  CAS  Google Scholar 

  28. H. Wu, Y. Liu, H. Wang, J. Wu, F. Zhu, P. Zou, Biosens. Bioelectron 81, 303(Supplement C) (2016)

  29. Y. Song, W. Zhang, Y. An, L. Cui, C. Yu, Z. Zhu, C.J. Yang, Chem. Commun. 48(4), 576 (2012)

    Article  CAS  Google Scholar 

  30. N. Ding, N. Yan, C. Ren, X. Chen, Colorimetric determination of melamine in dairy products by Fe3O4 magnetic nanoparticles−H2O2−ABTS detection system. Anal. Chem. 82(13), 5897–5899 (2010)

    Article  CAS  Google Scholar 

  31. M. Liang, K. Fan, Y. Pan, H. Jiang, F. Wang, D. Yang, D. Lu, J. Feng, J. Zhao, L. Yang, Anal. Chem. 85(1), 308 (2012)

    Article  CAS  Google Scholar 

  32. L.Y. Chau, Q. He, A. Qin, S.P. Yip, T.M. Lee, Platinum nanoparticles on reduced graphene oxide as peroxidase mimetics for the colorimetric detection of specific DNA sequence. J. Mater. Chem. B 4(23), 4076–4083 (2016)

    Article  CAS  Google Scholar 

  33. P. Ni, Y. Sun, H. Dai, S. Jiang, W. Lu, Y. Wang, Z. Li, Z. Li, Sens. Actuators, B 226(Supplement C), 104 (2016)

    Article  CAS  Google Scholar 

  34. L. **, Z. Meng, Y. Zhang, S. Cai, Z. Zhang, C. Li, L. Shang, Y. Shen, Ultrasmall Pt nanoclusters as robust peroxidase mimics for colorimetric detection of glucose in human serum. ACS Appl. Mater. Interfaces 9(11), 10027–10033 (2017)

    Article  CAS  Google Scholar 

  35. Y. Zhou, Z. Ma, Sens. Actuators, B 249, 53 (2017)

    Article  CAS  Google Scholar 

  36. S. Singh, P. Tripathi, N. Kumar, S. Nara, Biosens. Bioelectron. 92(Supplement C), 280 (2017)

    Article  CAS  Google Scholar 

  37. X. Ma, Z. Chen, P. Kannan, Z. Lin, B. Qiu, L. Guo, Gold nanorods as colorful chromogenic substrates for semiquantitative detection of nucleic acids, proteins, and small molecules with the naked eye. Anal. Chem. 88(6), 3227–3234 (2016)

    Article  CAS  Google Scholar 

  38. J. Chen, A.A. Jackson, V.M. Rotello, S.R. Nugen, Colorimetric detection of Escherichia coli based on the enzyme-induced metallization of gold nanorods. Small 12(18), 2469–2475 (2016)

    Article  CAS  Google Scholar 

  39. R. de la Rica, M.M. Stevens, Plasmonic ELISA for the ultrasensitive detection of disease biomarkers with the naked eye. Nat Nano 7(12), 821–824 (2012)

    Article  CAS  Google Scholar 

  40. L. Tang, J. Li, Plasmon-based colorimetric nanosensors for ultrasensitive molecular diagnostics. ACS Sensors 2(7), 857–875 (2017)

    Article  CAS  Google Scholar 

  41. Z. Zhang, Z. Chen, F. Cheng, Y. Zhang, and L. Chen, Biosens. Bioelectron. 89 (Part 2), 932 (2017)

  42. X. Ma, Y. Lin, L. Guo, B. Qiu, G. Chen, H.-h. Yang, and Z. Lin, Biosens. Bioelectron. 87 (Supplement C), 122 (2017)

  43. Y. Lin, M. Zhao, Y. Guo, X. Ma, F. Luo, L. Guo, B. Qiu, G. Chen, Z. Lin, Multicolor colormetric biosensor for the determination of glucose based on the etching of gold nanorods. Sci. Rep. 6, 37879 (2016)

    Article  CAS  Google Scholar 

  44. Y. Li, X. Ma, Z. Xu, M. Liu, Z. Lin, B. Qiu, L. Guo, G. Chen, Multicolor ELISA based on alkaline phosphatase-triggered growth of Au nanorods. Analyst 141(10), 2970–2976 (2016)

    Article  CAS  Google Scholar 

  45. X. Huang, S. Neretina, M.A. El-Sayed, Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv. Mater. 21(48), 4880–4910 (2009)

    Article  CAS  Google Scholar 

  46. Y. Mao, J. Li, J. Yan, Y. Ma, Y. Song, T. Tian, X. Liu, Z. Zhu, L. Zhou, C. Yang, Chem. Commun. 53(47), 6375 (2017)

    Article  CAS  Google Scholar 

  47. L. Saa, M. Coronado-Puchau, V. Pavlov, L.M. Liz-Marzan, Enzymatic etching of gold nanorods by horseradish peroxidase and application to blood glucose detection. Nanoscale 6(13), 7405–7409 (2014)

    Article  CAS  Google Scholar 

  48. K. Saha, S.S. Agasti, C. Kim, X. Li, V.M. Rotello, Gold nanoparticles in chemical and biological sensing. Chem. Rev. 112(5), 2739–2779 (2012)

    Article  CAS  Google Scholar 

  49. J. Deng, P. Yu, Y. Wang, L. Yang, L. Mao, Visualization and quantification of neurochemicals with gold nanoparticles: opportunities and challenges. Adv. Mater. 26(40), 6933–6943 (2014)

    Article  CAS  Google Scholar 

  50. Y.-C. Yang, W.-L. Tseng, 1,4-Benzenediboronic-acid-induced aggregation of gold nanoparticles: application to hydrogen peroxide detection and biotin–avidin-mediated immunoassay with naked-eye detection. Anal. Chem. 88(10), 5355–5362 (2016)

    Article  CAS  Google Scholar 

  51. L. Saa, R. Grinyte, A. Sánchez-Iglesias, L.M. Liz-Marzán, V. Pavlov, Blocked enzymatic etching of gold nanorods: application to colorimetric detection of acetylcholinesterase activity and its inhibitors. ACS Appl. Mater. Interfaces 8(17), 11139–11146 (2016)

    Article  CAS  Google Scholar 

  52. R. Kahyesh-Esfandiary, Z.A. Sadigh, M. Esghaei, M.N. Bastani, T. Donyavi, A. Najafi, A. Fakhim, F. Bokharaei-Salim, Detection of HCV genome in peripheral blood mononuclear cells of Iranian seropositive and HCV RNA negative in plasma of patients with beta-thalassemia major: occult HCV infection. J. Med. Virol. 91(1), 107–114 (2019)

    Article  CAS  Google Scholar 

  53. P. Chaweephisal, A. Phusua, K. Fanhchaksai, S. Sirichotiyakul, and P. Charoenkwan, Blood Cells, Mol., Dis. 74, 13 (2019)

  54. A. Cao, R. Galanello, Beta-thalassemia. Genet Med 12(2), 61–76 (2010)

    Article  CAS  Google Scholar 

  55. S.H. Sharafdarkolaee, M. Motovali-Bashi, P. Gill, Gene 674, 98 (2018)

    Article  CAS  Google Scholar 

  56. M. Ercan, V.C. Ozalp, B.G. Tuna, Anal. Biochem. 537(Supplement C), 78 (2017)

    Article  CAS  Google Scholar 

  57. X. Jia, L. Yao, Y. Zhou, H. Han, N. Tang, L. Wang, Y. Li, Detection of three common mutations causing β-thalassemia by using a closed-tube multiplex PCR. Exp. Mol. Pathol. 105(2), 208–212 (2018)

    Article  CAS  Google Scholar 

  58. W. Jia, P. Chen, W. Chen, Y. Li, Raman characterizations of red blood cells with β-thalassemia using laser tweezers Raman spectroscopy. Medicine 97(39), e12611 (2018)

    Article  CAS  Google Scholar 

  59. M.D. Cappellini, J.B. Porter, V. Viprakasit, A.T. Taher, A paradigm shift on beta-thalassaemia treatment: how will we manage this old disease with new therapies? Blood Rev. 32(4), 300–311 (2018)

    Article  Google Scholar 

  60. J.M. Old, Screening and genetic diagnosis of haemoglobin disorders. Blood Rev. 17(1), 43–53 (2003)

    Article  CAS  Google Scholar 

  61. N. Kubikova, D. Babariya, J. Sarasa, K. Spath, S. Alfarawati, D. Wells, Clinical application of a protocol based on universal next-generation sequencing for the diagnosis of beta-thalassaemia and sickle cell anaemia in preimplantation embryos. Reprod. BioMed. Online 37(2), 136–144 (2018)

    Article  CAS  Google Scholar 

  62. L. Angnes, E.M. Richter, M.A. Augelli, G.H. Kume, Gold electrodes from recordable CDs. Anal. Chem. 72(21), 5503–5506 (2000)

    Article  CAS  Google Scholar 

  63. X. Ye, L. **, H. Caglayan, J. Chen, G. **ng, C. Zheng, V. Doan-Nguyen, Y. Kang, N. Engheta, C.R. Kagan, C.B. Murray, Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives. ACS Nano 6(3), 2804–2817 (2012)

    Article  CAS  Google Scholar 

  64. H.-R. Zhang, J.-J. Xu, H.-Y. Chen, Electrochemiluminescence ratiometry: a new approach to DNA biosensing. Anal. Chem. 85(11), 5321–5325 (2013)

    Article  CAS  Google Scholar 

  65. A. Abbaspour, A. Khajehzadeh, A. Noori, A simple and selective sensor for the determination of ascorbic acid in vitamin C tablets based on paptode. Anal. Sci. 24(6), 721–725 (2008)

    Article  CAS  Google Scholar 

  66. A. Abbaspour, M.A. Mehrgardi, A. Noori, M.A. Kamyabi, A. Khalafi-Nezhad, M.N. Soltani Rad, Speciation of iron(II), iron(III) and full-range pH monitoring using paptode: a simple colorimetric method as an appropriate alternative for optodes. Sensors Actuators B Chem. 113(2), 857–865 (2006)

    Article  CAS  Google Scholar 

  67. G. Wang, Y. Akiyama, T. Takarada, M. Maeda, Rapid non-crosslinking aggregation of DNA-functionalized gold nanorods and nanotriangles for colorimetric single-nucleotide discrimination. Chem. Eur. J. 22(1), 258–263 (2016)

    Article  CAS  Google Scholar 

  68. E. Brillas, I. Sirés, M.A. Oturan, Electro-fenton process and related electrochemical technologies based on fenton’s reaction chemistry. Chem. Rev. 109(12), 6570–6631 (2009)

    Article  CAS  Google Scholar 

  69. S.G. Rhee, T.-S. Chang, W. Jeong, D. Kang, Methods for detection and measurement of hydrogen peroxide inside and outside of cells. Mol. Cells 29(6), 539–549 (2010)

    Article  CAS  Google Scholar 

  70. Z. Zhu, Z. Guan, S. Jia, Z. Lei, S. Lin, H. Zhang, Y. Ma, Z.-Q. Tian, C.J. Yang, Au@Pt nanoparticle encapsulated target-responsive hydrogel with volumetric bar-chart chip readout for quantitative point-of-care testing. Angew. Chem. Int. Ed. 53(46), 12503–12507 (2014)

    CAS  Google Scholar 

  71. Y. Song, Y. Wang, L. Qin, A multistage volumetric bar chart chip for visualized quantification of DNA. J. Am. Chem. Soc. 135(45), 16785–16788 (2013)

    Article  CAS  Google Scholar 

  72. E.M. Boon, D.M. Ceres, T.G. Drummond, M.G. Hill, J.K. Barton, Mutation detection by electrocatalysis at DNA-modified electrodes. Nat. Biotechnol. 18(10), 1096–1100 (2000)

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Tarbiat Modares University Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mir F. Mousavi.

Electronic supplementary material

ESM 1

PCR amplification of the gene, synthesis of Au nanorods, fabrication of the gold CDtrode, and characterization of the metal nanoparticles are provided in the Supporting Information. Supplementary data related to this article can be found at https://... (DOCX 771 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bishkul, H., Khoshfetrat, S.M., Noori, A. et al. Rich-color visual genoty** of single-nucleotide polymorphisms based on platinum nanoparticle–induced etching of gold nanorods. emergent mater. 2, 351–361 (2019). https://doi.org/10.1007/s42247-019-00049-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42247-019-00049-1

Keywords

Navigation