Log in

Protective effect of cadmium-induced autophagy in rat renal mesangial cells

  • Inorganic Compounds
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Cadmium damages renal cells, and in particular may cause mesangial cell death by necrosis or apoptosis, depending on exposure conditions in cultured cells. However, there is an uncertainty as to whether Cd2+-induced autophagy can protect mesangial cells against these other mechanisms of cell death. We have used autophagy-incompetent mouse embryonic fibroblast (MEF) cells lacking the Atg16 gene, as well as cultured rat mesangial cells (RMC) in which Atg16 has been silenced, to examine this issue. Measuring the processing of LC3-I to LC3-II and expression of sequestosome-1 (p62), we define conditions under which RMC can be induced to undergo autophagy in response to 0–20 µM CdCl2. Similarly, Cd2+ can initiate autophagy in MEF cells. However, when autophagy is compromised, either by gene knockout in MEF cells or by RNA silencing in RMC, cell viability is decreased, and concomitantly a Cd2+ dose-dependent increase in pro-caspase-3 cleavage indicates the initiation of apoptotic cell death. In contrast to some previous reports, Cd2+-induced autophagy is not correlated with increased levels of cellular reactive oxygen species but, among a panel of kinases investigated, is suppressed by inhibition of the Jun kinase. We conclude that concentrations of Cd2+ that initiate autophagy may afford renal mesangial cells some degree of protection against other modes (apoptosis, necrosis) of cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Åkesson A, Lundh T, Vahter M et al (2005) Tubular and glomerular kidney effects in Swedish women with low environmental cadmium exposure. Environ Health Perspect 113:1627–1631

    Article  PubMed  PubMed Central  Google Scholar 

  • Barth S, Glick D, Macleod KF (2010) Autophagy: assays and artifacts. J Pathol 221:117–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bjørkøy G, Lamark T, Brech A, Outzen H, Perander M, Overvatn A, Stenmark H, Johansen T (2005) p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171:603–614

    Article  PubMed  PubMed Central  Google Scholar 

  • Chargui A, Zekri S, Jacquillet G et al (2011) Cadmium-induced autophagy in rat kidney: an early biomarker of subtoxic exposure. Toxicol Sci 121:31–42

    Article  CAS  PubMed  Google Scholar 

  • Chin TA, Templeton DM (1992) Effects of CdCl2 and Cd-metallothionein on cultured mesangial cells. Toxicol Appl Pharmacol 116:133–141

    Article  CAS  PubMed  Google Scholar 

  • Choong G, Liu Y, Templeton DM (2013a) Cadmium affects focal adhesion kinase (FAK) in mesangial cells: involvement of CaMK-II and the actin cytoskeleton. J Cell Biochem 114:1832–1842

    Article  CAS  PubMed  Google Scholar 

  • Choong G, Liu Y, Templeton DM (2013b) Cadmium-induced glutathionylation of actin occurs through a ROS-independent mechanism: implications for cytoskeletal integrity. Toxicol Appl Pharmacol 272:423–430

    Article  CAS  PubMed  Google Scholar 

  • Ding W, Templeton DM (2000) Activation of parallel mitogen-activated protein kinase cascades and induction of c-fos by cadmium. Toxicol Appl Pharmacol 162:93–99

    Article  CAS  PubMed  Google Scholar 

  • Dooley HC, Razi M, Polson HEJ, Girardin SE, Wilson MI, Tooze SA (2014) Autophagosome formation and pathogen clearance by recruiting Atg12–5-16L1. Mol Cell 55:238–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dorian C, Gattone VH II, Klaasen CD (1992) Renal cadmium deposition and injury as a result of accumulation of cadmium-metallothionein (CdMT) by the proximal convoluted tubules—a light microscopic autoradiography study with 109CdMT. Toxicol Appl Pharmacol 114:173–181

    Article  CAS  PubMed  Google Scholar 

  • Drenckhahn D, Schnittler H, Nobiling R, Kriz W (1990) Ultrastructural organization of contractile proteins in rat glomerular mesangial cells. Am J Pathol 137:1343–1351

    CAS  PubMed  PubMed Central  Google Scholar 

  • Friberg L (1984) Cadmium and the kidney. Environ Health Perspect 54:1–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuchs Y, Steller H (2015) Live to die another way: modes of programmed cell death and the signals emanating from dying cells. Nat Rev Mol Cell Biol 16:329–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita N, Saitoh T, Kageyama S, Akira S, Noda T, Yoshimori T (2009) Differential involvement of Atg16L1 in Crohn disease and canonical autophagy: analysis of the Atg16L1 complex in fibroblasts. J Biol Chem 284:32602–32609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gozuacik D, Bialik S, Raveh T et al (2008) DAP-kinase is a mediator of endoplasmic reticulum stress-induced caspase activation and autophagic cell death. Cell Death Differ 15:1875–1886

    Article  CAS  PubMed  Google Scholar 

  • Gunawardana CG, Martinez RE, **ao W, Templeton DM (2006) Cadmium inhibits both intrinsic and extrinsic apoptotic pathways in renal mesangial cells. Am J Physiol 290:F1074–F1082

    CAS  Google Scholar 

  • International Agency for Research on Cancer (1993) Beryllium, cadmium, mercury and exposures in the glass manufacturing industry, vol 58. IARC, Lyon

    Google Scholar 

  • Järup L, Åkesson A (2009) Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol 238:201–208

    Article  PubMed  Google Scholar 

  • Järup L, Persson B, Elinder CG (1995) Decreased glomerular filtration rate in solderers exposed to cadmium. Occup Environ Med 52:818–822

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson RJ (1994) The glomerular response to injury: progression or resolution? Kidney Int 45:1769–1782

    Article  CAS  PubMed  Google Scholar 

  • Kato H, Katoh R, Kitamura M (2013) Dual regulation of cadmium-induced apoptosis by mTORC1 through selective induction of IRE1 branches in unfolded protein response. PLoS One 8:e64344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawada T, Koyama H, Suzuki S (1989) Cadmium, NAG activity, and β2-microglobulin in the urine of cadmium pigment workers. Br J Ind Med 46:52–55

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura T, Takabatake Y, Takahashi A et al (2011) Autophagy protects the proximal tubule from degeneration and acute ischemic injury. J Am Soc Nephrol 22:902–913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kriz W, Elger M, Lemley K, Sakai T (1990) Structure of the glomerular mesangium: a biomechanical interpretation. Kidney Int 38:S2–S9

    Google Scholar 

  • Kroemer G, Martin SJ (2005) Caspase-independent cell death. Nat Med 11:725–730

    Article  PubMed  Google Scholar 

  • Lauwerys R, Bernard A, Roels H, Buchet J-P, Viau C (1984) Characterization of cadmium proteinuria in man and rat. Environ Health Perspect 54:147–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lauwerys R, Bernard A, Buchet J-P et al (1991) Does environmental exposure to cadmium represent a health risk? Conclusions from the Cadmibel study. Acta Clin Belg 46:219–225

    Article  CAS  PubMed  Google Scholar 

  • Lee WK, Probst S, Santoyo-Sánchez MP et al (2017) Initial autophagic protection switches to disruption of autophagic flux by lysosomal instability during cadmium stress accrual in renal NRK-52E cells. Arch Toxicol. https://doi.org/10.1007/s00204-017-1942-9

    PubMed Central  Google Scholar 

  • Leist M, Jäättelä M (2001) Four deaths and a funeral: from caspases to alternative mechansms. Nat Rev Mol Cell Biol 2:1–10

    Article  Google Scholar 

  • Li M, Pi H, Yang Z et al (2016) Melatonin antagonizes cadmium-induced neurotoxicity by activating the transcription factor EB-dependent autophagy-lysosome machinery in mouse neuroblastoma cells. J Pineal Res 61:353–369

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Templeton DM (2007) Cadmium activates CaMK-II and initiates CaMK-II-dependent apoptosis in mesangial cells. FEBS Lett 581:1481–1486

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Templeton DM (2008) Initiation of caspase-independent death in mouse mesangial cells by Cd2+: involvement of p38 kinase and CaMK-II. J Cell Physiol 217:307–318

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Song L, Templeton DM (2007) Heparin suppresses lipid raft-mediated signaling and ligand-independent EGF receptor activation. J Cell Physiol 211:205–212

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Hartleben B, Kretz O et al (2012) Autophagy plays a critical role in kidney tubule maintenance, aging and ischemia-reperfusion injury. Autophagy 8:826–837

    Article  CAS  PubMed  Google Scholar 

  • Mizushima N (2007) Autophagy: process and function. Genes Dev 21:2861–2873

    Article  CAS  PubMed  Google Scholar 

  • Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147:728–741

    Article  CAS  PubMed  Google Scholar 

  • Nordberg GF (2009) Historical perspectives on cadmium toxicology. Toxicol Appl Pharmacol 238:192–200

    Article  CAS  PubMed  Google Scholar 

  • Ogata M, S-i Hino, Saito A et al (2006) Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol 26:9220–9231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel K, Harding P, Haney LB, Glass WF II (2003) Regulation of the mesangial cell myofibroblast phenotype by actin polymerization. J Cell Physiol 195:435–445

    Article  CAS  PubMed  Google Scholar 

  • Prozialeck WC, Edwards JR (2010) Early biomarkers of cadmium exposure and nephrotoxicity. Biometals 23:793–809

    Article  CAS  PubMed  Google Scholar 

  • Roels H, Bernard AM, Cardenas A et al (1993) Markers of early renal changes induced by industrial pollutants. Application to workers exposed to cadmium. Br J Ind Med 50:37–48

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schöcklmann HO, Lang S, Sterzel RB (1999) Regulation of mesangial cell proliferation. Kidney Int 56:1199–1207

    Article  PubMed  Google Scholar 

  • Shimada H, Shiao YH, Shibata M-A, Waalkes MP (1998) Cadmium suppresses apoptosis induced by chromium. J Toxicol Environ Health 54:159–168

    Article  CAS  Google Scholar 

  • Shimizu S, Kanaseki T, Mizushima N et al (2004) Role of Bcl-2 family proteins in a non-apoptotic programmed cell death dependent on autophagy genes. Nat Cell Biol 6:1221–1228

    Article  CAS  PubMed  Google Scholar 

  • Shimizu S, Konishi A, Nishida Y et al (2010) Involvement of JNK in the regulation of autophagic cell death. Oncogene 29:2070–2082

    Article  CAS  PubMed  Google Scholar 

  • Suwazono Y, Sand S, Vahter M et al (2006) Benchmark dose for cadmium-induced renal effects in humans. Environ Health Perspect 114:1072–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suwazono Y, Uetani M, Åkesson A, Vahter M (2010) Recent applications of benchmark dose method for estimation of reference cadmium exposure for renal effects in man. Toxicol Lett 198:40–43

    Article  CAS  PubMed  Google Scholar 

  • Tait SW, Ichim G, Green DR (2014) Die another way–non-apoptotic mechanisms of cell death. J Cell Sci 127:2135–2144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Templeton DM, Chaitu N (1990) Effects of divalent metals on the isolated rat glomerulus. Toxicology 61:119–133

    Article  CAS  PubMed  Google Scholar 

  • Templeton DM, Liu Y (2010) Multiple roles of cadmium in cell death and survival. Chem Biol Interact 188:267–275

    Article  CAS  PubMed  Google Scholar 

  • Templeton DM, Liu Y (2013) Effects of cadmium on the actin cytoskeleton in renal mesangial cells. Can J Physiol Pharmacol 91:1–7

    Article  CAS  PubMed  Google Scholar 

  • Thévenod F, Lee W-K (2013) Cadmium and cellular signaling cascades: interactions between cell death and survival pathways. Arch Toxicol 87:1743–1786

    Article  PubMed  Google Scholar 

  • Thévenod F, Lee W-K (2015) Live and let die: roles of autophagy in cadmium nephrotoxicity. Toxics 3:130–151

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomas LDK, Elinder C-G, Wolk A, Åkesson A (2014) Dietary cadmium exposure and chronic kidney disease: a population-based prospective cohort study of men and women. Int J Hyg Environ Health 217:720–725

    Article  CAS  PubMed  Google Scholar 

  • Uriu K, Kaizu K, Komine N et al (1998) Renal hemodynamics in rats with cadmium-induced nephropathy. Toxicol Appl Pharmacol 150:76–85

    Article  CAS  PubMed  Google Scholar 

  • Wang A, Templeton DM (1996) Inhibition of mitogenesis and c-fos expression in mesangial cells by heparin and heparan sulfates. Kidney Int 69:437–448

    Article  Google Scholar 

  • Wang Z, Templeton DM (1998) Induction of c-fos proto-oncogene in mesangial cells by cadmium. J Biol Chem 273:73–79

    Article  CAS  PubMed  Google Scholar 

  • Wang SH, Shih YL, Ko WC, Wei YH, Shih CM (2008) Cadmium-induced autophagy and apoptosis are mediated by a calcium signaling pathway. Cell Mol Life Sci 65:3640–3652

    Article  CAS  PubMed  Google Scholar 

  • Wang S-H, Shih Y-L, Kuo T-C, Ko W-C, Shih C-M (2009) Cadmium toxicity toward autophagy through ROS-activated GSK-3® in mesangial cells. Tox Sci 108:124–131

    Article  CAS  Google Scholar 

  • Wang Q-W, Wang Y, Wang T et al (2015a) Cadmium-induced autophagy is mediated by oxidative signaling in PC-12 cells and is associated with cytoprotection. Mol Med Rep 12:4448–4454

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Wang Q, Song R et al (2015b) Autophagy plays a cytoprotective role during cadmium-induced oxidative damage in primary neuronal cultures. Biol Trace Elem Res 168:481–489

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Wang Q, Song R et al (2016) Cadmium induced inhibition of autophagy is associated with microtubule disruption and mitochondrial dysfunction in primary rat cerebral cortical neurons. Neurotoxicol Teratol 53:11–18

    Article  CAS  PubMed  Google Scholar 

  • **ao W, Liu Y, Templeton DM (2009) Pleiotropic effects of cadmium in mesangial cells. Toxicol Appl Pharmacol 238:315–326

    Article  CAS  PubMed  Google Scholar 

  • Xu B, Chen S, Luo Y et al (2011) Calcium signaling is involved in cadmium-induced neuronal apoptosis via induction of reactive oxygen species and activation of MAPK/mTOR network. PLoS One 6:e19052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu L, Alva A, Su H et al (2004) Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science 304:1500–1502

    Article  CAS  PubMed  Google Scholar 

  • Yuan J, Yankner BA (2000) Apoptosis in the nervous system. Nature 407:802–809

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by Grant #418208 to DMT from the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas M. Templeton.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fujishiro, H., Liu, Y., Ahmadi, B. et al. Protective effect of cadmium-induced autophagy in rat renal mesangial cells. Arch Toxicol 92, 619–631 (2018). https://doi.org/10.1007/s00204-017-2103-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-017-2103-x

Keywords

Navigation