Log in

Surgery of Spline-type and Molecular Frames

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

We prove a result about producing new frames for general spline-type spaces by piecing together portions of known frames. Using spline-type spaces as models for the range of certain integral transforms, we obtain results for time-frequency decompositions and sampling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A.: Sobolev Spaces. Pure Appl. Math., vol. 65. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Aldroubi, A., Cabrelli, C., Molter, U.M.: Wavelets on irregular grids with arbitrary dilation matrices, and frame atoms for L 2(R d). Appl. Comput. Harmon. Anal. 17, 119–140 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Balan, R.M., Casazza, P.G., Heil, C., Landau, Z.: Density, overcompleteness, and localization of frames I: Theory. J. Fourier Anal. Appl. 12(2), 105–143 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  4. Baskakov, A.G.: Wiener’s theorem and the asymptotic estimates of the elements of inverse matrices. Funct. Anal. Appl. 24(3), 222–224 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bownik, M.: The structure of shift-invariant subspaces of L 2(ℝn). J. Funct. Anal. 177(2), 282–309 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Casazza, P.G., Kutyniok, G.: Frames of subspaces. In: Wavelets, Frames and Operator Theory. Contemp. Math., vol. 345, pp. 87–113. Am. Math. Soc., Providence (2004)

    Google Scholar 

  7. Christensen, O., Eldar, Y.C.: Oblique dual frames and shift-invariant spaces. Appl. Comput. Harmon. Anal. 17(1), 48–68 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Christensen, O., Eldar, Y.C.: Generalized shift-invariant systems and frames for subspaces. J. Fourier Anal. Appl. 11(3), 299–313 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. de Boor, C., DeVore, R.A., Ron, A.: The structure of finitely generated shift-invariant spaces in L 2(ℝd). J. Funct. Anal. 119(1), 37–78 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  10. Dörfler, M.: Quilted frames—a new concept for adaptive representation, Preprint, ar**v:0912.2363 (2009)

  11. Feichtinger, H.G.: Gewichtsfunktionen auf lokalkompakten Gruppen. Sitz. Österr. Akad. Wiss. 188, 451–471 (1979)

    MATH  MathSciNet  Google Scholar 

  12. Feichtinger, H.G.: Banach convolution algebras of Wiener type. In: Sz.-Nagy, B., Szabados, J. (eds.) Proc. Conf. on Functions, Series, Operators, Budapest 1980. Colloq. Math. Soc. Janos Bolyai, vol. 35, pp. 509–524. North-Holland, Amsterdam (1983)

    Google Scholar 

  13. Feichtinger, H.G.: Banach spaces of distributions defined by decomposition methods, II. Math. Nachr. 132, 207–237 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  14. Feichtinger, H.G.: Wiener amalgams over Euclidean spaces and some of their applications. Lect. Notes Pure Appl. Math. 136, 123–137 (1992)

    MathSciNet  Google Scholar 

  15. Feichtinger, H.G.: Spline-type spaces in Gabor analysis. In: Zhou, D.X. (ed.) Wavelet Analysis: Twenty Years Developments Proceedings of the International Conference of Computational Harmonic Analysis, Hong Kong, China, June 4–8, 2001. Ser. Anal., vol. 1, pp. 100–122. World Scientific, River Edge (2002)

    Chapter  Google Scholar 

  16. Feichtinger, H.G., Gröbner, P.: Banach spaces of distributions defined by decomposition methods, I. Math. Nachr. 123, 97–120 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  17. Feichtinger, H.G., Gröchenig, K.: Banach spaces related to integrable group representations and their atomic decompositions, I. J. Funct. Anal. 86, 307–340 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  18. Feichtinger, H.G., Strohmer, T.: Advances in Gabor Analysis. Birkhäuser, Basel (2003)

    MATH  Google Scholar 

  19. Feichtinger, H.G., Zimmermann, G.: A Banach space of test functions for Gabor analysis. In: Feichtinger, H., Strohmer, T. (eds.) Gabor Analysis and Algorithms: Theory and Applications, Applied and Numerical Harmonic Analysis, pp. 123–170. Birkhäuser, Boston (1998)

    Google Scholar 

  20. Fornasier, M.: Quasi-orthogonal decompositions of structured frames. J. Math. Anal. Appl. 289(1), 180–199 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  21. Fornasier, M., Gröchenig, K.: Intrinsic localization of frames. Constr. Approx. 22(3), 395–415 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  22. Frazier, M.W., Jawerth, B.D., Weiss, G.: Littlewood-Paley Theory and the Study of Function Spaces. Am. Math. Soc., Providence (1991)

    MATH  Google Scholar 

  23. Grafakos, L.: Classical and Modern Fourier Analysis. Prentice Hall, New York (2004)

    MATH  Google Scholar 

  24. Gröchenig, K.: Foundations of Time-Frequency Analysis. Appl. Numer. Harmon. Anal. Birkhäuser, Boston (2001)

    Google Scholar 

  25. Gröchenig, K.: Localization of frames, Banach frames, and the invertibility of the frame operator. J. Fourier Anal. Appl. 10(2), 105–132 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  26. Gröchenig, K., Fendler, G., Leinert, M.: Convolution-dominated operators on discrete groups. Integr. Equ. Oper. Theory 61, 493–509 (2008)

    Article  MATH  Google Scholar 

  27. Gröchenig, K., Leinert, M.: Symmetry and inverse-closedness of matrix algebras and symbolic calculus for infinite matrices. Trans. Am. Math. Soc. 358, 2695–2711 (2006)

    Article  MATH  Google Scholar 

  28. Gröchenig, K., Piotrowski, M.: Molecules in coorbit spaces and boundedness of operators. Studia Math. 192(1), 61–77 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  29. Jaffard, S.: Propriétés des matrices “bien localisées” près de leur diagonale et quelques applications. (Properties of matrices “well localized” near the diagonal and some applications). Ann. Inst. Henri Poincaré Anal. Non Linéaire 7(5), 461–476 (1990)

    MATH  MathSciNet  Google Scholar 

  30. Oswald, P.: Frames and space splittings in Hilbert spaces. Technical Report (1997)

  31. Romero, J.L.: Explicit localization estimates for spline-type spaces. Sampl. Theory Signal Image Process. 8(3), 249–259 (2009)

    MATH  MathSciNet  Google Scholar 

  32. Ron, A., Shen, Z.: Frames and stable bases for shift-invariant subspaces of L 2(ℝd). Can. J. Math. 47(5), 1051–1094 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  33. Ron, A., Shen, Z.: Affine systems in L 2(ℝd): the analysis of the analysis operator. J. Funct. Anal. 148(2), 408–447 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  34. Sun, Q.: Wiener’s lemma for infinite matrices with polynomial off-diagonal decay. C. R. Math. Acad. Sci. Paris 340(8), 567–570 (2005)

    MATH  MathSciNet  Google Scholar 

  35. Sun, Q.: Wiener’s lemma for infinite matrices. Trans. Am. Math. Soc. 359(7), 3099 (2007)

    Article  MATH  Google Scholar 

  36. Sun, Q.: Frames in spaces with finite rate of innovation. Adv. Comput. Math. 28(4), 301–329 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Luis Romero.

Additional information

Communicated by Peter G. Casazza.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romero, J.L. Surgery of Spline-type and Molecular Frames. J Fourier Anal Appl 17, 135–174 (2011). https://doi.org/10.1007/s00041-010-9127-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-010-9127-4

Keywords

Mathematics Subject Classification (2000)

Navigation