A Versatile Strategy for the Implementation of Adaptive Splines

  • Conference paper
  • First Online:
Mathematical Methods for Curves and Surfaces (MMCS 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10521))

Abstract

This paper presents an implementation framework for spline spaces over T-meshes (and their d-dimensional analogs). The aim is to share code between the implementations of several spline spaces. This is achieved by reducing evaluation to a generalized Bézier extraction.

The approach was tested by implementing hierarchical B-splines, truncated hierarchical B-splines, decoupled hierarchical B-splines (a novel variation presented here), truncated B-splines for partially nested refinement and hierarchical LR-splines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    (Or, more generally, generating sets).

References

  1. Ayachit, U.: The paraview guide: a parallel visualization application (2015)

    Google Scholar 

  2. Borden, M.J., Scott, M.A., Evans, J.A., Hughes, T.J.R.: Isogeometric finite element data structures based on Bézier extraction of NURBS. Int. J. Numer. Methods Eng. 87(1–5), 15–47 (2011)

    Article  MATH  Google Scholar 

  3. Bracco, C., Lyche, T., Manni, C., Roman, F., Speleers, H.: Generalized spline spaces over T-meshes: dimension formula and locally refined generalized B-splines. Appl. Math. Comput. 272(part 1), 187–198 (2016)

    MathSciNet  Google Scholar 

  4. Bressan, A.: Some properties of LR-splines. Comput. Aided. Geom. Des. 30(8), 778–794 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bressan, A., Jüttler, B.: A hierarchical construction of LR meshes in 2D. Comput. Aided Geom. Des. 37, 9–24 (2015)

    Article  MathSciNet  Google Scholar 

  6. Brovka, M., López, J., Escobar, J., Montenegro, R., Cascón, J.: A simple strategy for defining polynomial spline spaces over hierarchical T-meshes. Comput. Aided Des. 72, 140–156 (2016)

    Article  MathSciNet  Google Scholar 

  7. Buchegger, F., Jüttler, B., Mantzaflaris, A.: Adaptively refined multi-patch B-splines with enhanced smoothness. Appl. Math. Comput. 272(part 1), 159–172 (2016)

    MathSciNet  Google Scholar 

  8. Buffa, A., Garau, E.M.: Refinable spaces and local approximation estimates for hierarchical splines. IMA J. Numer. Anal. 37(3), 1125–1149 (2017)

    MathSciNet  Google Scholar 

  9. Buffa, A., Giannelli, C.: Adaptive isogeometric methods with hierarchical splines: error estimator and convergence. Math. Models Methods Appl. Sci. 26(1), 1–25 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Collin, A., Sangalli, G., Takacs, T.: Analysis-suitable \({G}^1\) multi-patch parametrizations for \({C}^1\) isogeometric spaces. Comput. Aided Geom. Des. 47, 93–113 (2016)

    Article  MathSciNet  Google Scholar 

  11. Da Veiga, L.B., Buffa, A., Sangalli, G., Vázquez, R.: Analysis-suitable T-splines of arbitrary degree: definition, linear independence and approximation properties. Math. Models Methods Appl. Sci. 23(11), 1979–2003 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Danial, A.: CLOC: Count Lines of Code (2006–2017). https://github.com/AlDanial/cloc

  13. Deng, J., Chen, F., Li, X., Hu, C., Tong, W., Yang, Z., Feng, Y.: Polynomial splines over hierarchical T-meshes. Graph. Models 70(4), 76–86 (2008)

    Article  Google Scholar 

  14. Dokken, T., Lyche, T., Pettersen, K.F.: Polynomial splines over locally refined box-partitions. Comput. Aided. Geom. Des. 30(3), 331–356 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Evans, E.J., Scott, M.A., Li, X., Thomas, D.C.: Hierarchical T-splines: analysis-suitability, Bézier extraction, and application as an adaptive basis for isogeometric analysis. Comput. Methods Appl. Mech. Eng. 284, 1–20 (2015)

    Article  Google Scholar 

  16. Forsey, D.R., Bartels, R.H.: Hierarchical B-spline refinement. In: SIGGRAPH Computer Graphics, vol. 22, no. 4, pp. 205–212 (1988)

    Google Scholar 

  17. Giannelli, C., Jüttler, B., Speleers, H.: THB-splines: the truncated basis for hierarchical splines. Comput. Aided Geom. Des. 29(7), 485–498 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  18. Giannelli, C., Jüttler, B., Speleers, H.: Strongly stable bases for adaptively refined multilevel spline spaces. Adv. Comput. Math. 40(2), 459–490 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Geometry + simulation modules (G+Smo): Open source C++ library for isogeometric analysis (2016). http://www.gs.jku.at/gismo

  20. GoTools: Collection of C++ libraries connected to geometry (2016). https://github.com/SINTEF-Geometry/GoTools

  21. Guennebaud, G., Jacob, B., et al.: Eigen v3 (2010). http://eigen.tuxfamily.org

  22. Hennig, P., Müller, S., Kästner, M.: Bézier extraction and adaptive refinement of truncated hierarchical NURBS. Comput. Methods Appl. Mech. Eng. 305, 316–339 (2016)

    Article  Google Scholar 

  23. Hennig, P., Kästner, M., Morgenstern, P., Peterseim, D.: Adaptive mesh refinement strategies in isogeometric analysis-a computational comparison. Comput. Methods Appl. Mech. Eng. 316, 424–448 (2016)

    Article  MathSciNet  Google Scholar 

  24. Hughes, T.J.R., Cottrell, J.A., Bazilevs, Y.: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194(39–41), 4135–4195 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Johannessen, K.A., Remonato, F., Kvamsdal, T.: On the similarities and differences between classical hierarchical, truncated hierarchical and LR B-splines. Comput. Methods Appl. Mech. Eng. 291, 64–101 (2015)

    Article  MathSciNet  Google Scholar 

  26. Jüttler, B., Langer, U., Mantzaflaris, A., Moore, S.E., Zulehner, W.: Geometry + simulation modules: Implementing isogeometric analysis. PAMM 14(1), 961–962 (2014)

    Article  Google Scholar 

  27. Kang, H., Xu, J., Chen, F., Deng, J.: A new basis for PHT-splines. Graph. Models 82, 149–159 (2015)

    Article  Google Scholar 

  28. Kapl, M., Vitrih, V., Jüttler, B., Birner, K.: Isogeometric analysis with geometrically continuous functions on two-patch geometries. Comput. Math. Appl. 70(7), 1518–1538 (2015)

    Article  MathSciNet  Google Scholar 

  29. Kiss, G., Giannelli, C., Jüttler, B.: Algorithms and data structures for truncated hierarchical B-splines. In: Floater, M., Lyche, T., Mazure, M.-L., Mørken, K., Schumaker, L.L. (eds.) MMCS 2012. LNCS, vol. 8177, pp. 304–323. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54382-1_18

    Chapter  Google Scholar 

  30. Kraft, R.: Adaptive and linearly independent multilevel B-splines. In: Le Méhauté, A., Rabut, C., Schumaker, L.L. (eds.) Surface Fitting and Multiresolution Methods, pp. 209–218. Vanderbilt University Press, Nashville (1997)

    Google Scholar 

  31. Li, X., Zheng, J., Sederberg, T.W., Hughes, T.J.R., Scott, M.A.: On linear independence of T-spline blending functions. Comput. Aided Geom. Des. 29(1), 63–76 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mokriš, D., Jüttler, B.: TDHB-splines: the truncated decoupled basis of hierarchical tensor-product splines. Comput. Aided Geom. Des. 31(7–8), 531–544 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Mokriš, D., Jüttler, B., Giannelli, C.: On the completeness of hierarchical tensor product B-splines. J. Comput. Appl. Math. 271, 53–70 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Morgenstern, P.: Globally structured three-dimensional analysis-suitable T-splines: definition, linear independence and \(m\)-graded local refinement. SIAM J. Numer. Anal. 54(4), 2163–2186 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. Morgenstern, P., Peterseim, D.: Analysis-suitable adaptive T-mesh refinement with linear complexity. Comput. Aided. Geom. Des. 34, 50–66 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Rabut, C.: Locally tensor product functions. Numer. Algorithms 39(1–3), 329–348 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  37. Scott, M.A., Borden, M.J., Verhoosel, C.V., Sederberg, T.W., Hughes, T.J.R.: Isogeometric finite element data structures based on Bézier extraction of T-splines. Int. J. Numer. Methods Eng. 88(2), 126–156 (2011)

    Article  MATH  Google Scholar 

  38. Sederberg, T.W., Cardon, D.L., Finnigan, G.T., North, N.S., Zheng, J., Lyche, T.: T-spline simplification and local refinement. ACM Trans. Graph. 23(3), 276–283 (2004)

    Article  Google Scholar 

  39. Sederberg, T.W., Zheng, J., Bakenov, A., Nasri, A.: T-splines and T-NURCCs. ACM Trans. Graph. 22(3), 477–484 (2003)

    Article  Google Scholar 

  40. Thibault, W.C., Naylor, B.F.: Set operations on polyhedra using binary space partitioning trees. In: Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1987, pp. 153–162. ACM, New York (1987)

    Google Scholar 

  41. Toth, C.D., O’Rourke, J., Goodman, J.E.: Handbook of Discrete and Computational Geometry. CRC Press, Boca Raton (2004)

    MATH  Google Scholar 

  42. Vázquez, R., Garau, E.: Algorithms for the implementation of adaptive isogeometric methods using hierarchical splines. Tech. report 16–08, IMATI-CNR, Pavia, July 2016

    Google Scholar 

  43. Zore, U.: Constructions and properties of adaptively refined multilevel spline spaces. Dissertation, Johannes Kepler University Linz (2016). http://epub.jku.at/obvulihs/download/pdf/1273941

Download references

Acknowledgments

The authors have been supported by the Austrian Science Fund (FWF, NFN S117 “Geometry + Simulation”) and by the Seventh Framework Programme of the EU (project EXAMPLE, GA No. 324340). This support is gratefully acknowledged. The authors would also like to thank Dr. Rafael Vázquez for commenting on an earlier version of this paper and to the reviewers for their valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Bressan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bressan, A., Mokriš, D. (2017). A Versatile Strategy for the Implementation of Adaptive Splines. In: Floater, M., Lyche, T., Mazure, ML., Mørken, K., Schumaker, L. (eds) Mathematical Methods for Curves and Surfaces. MMCS 2016. Lecture Notes in Computer Science(), vol 10521. Springer, Cham. https://doi.org/10.1007/978-3-319-67885-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-67885-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-67884-9

  • Online ISBN: 978-3-319-67885-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation