Log in

Inverse scattering transform for the Gerdjikov–Ivanov equation with nonzero boundary conditions

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this article, we focus on the inverse scattering transform for the Gerdjikov–Ivanov equation with nonzero boundary at infinity. An appropriate two-sheeted Riemann surface is introduced to map the original spectral parameter k into a single-valued parameter z. Based on the Lax pair of the Gerdjikov–Ivanov equation, we derive its Jost solutions with nonzero boundary. Further asymptotic behaviors, analyticity and the symmetries of the Jost solutions and the spectral matrix are in detail derived. The formula of N-soliton solutions is obtained via transforming the problem of nonzero boundary into the corresponding matrix Riemann–Hilbert problem. As examples of N-soliton formula, for \(N=1\) and \(N=2\), respectively, different kinds of soliton solutions and breather solutions are explicitly presented according to different distributions of the spectrum. The dynamical features of those solutions are characterized in the particular case with a quartet of discrete eigenvalues. It is shown that distribution of the spectrum and non-vanishing boundary also affect feature of soliton solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zakharov, V.E., Shabat, A.B.: Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media. Sov. Phys. JETP 34, 62–69 (1972)

    MathSciNet  Google Scholar 

  2. Demontis, F., Prinari, B., van der Mee, C., Vitale, F.: The inverse scattering transform for the defocusing nonlinear schrödinger equations with nonzero boundary conditions. Stud. Appl. Math. 131, 1–40 (2013)

    Article  MathSciNet  Google Scholar 

  3. Kakei, S., Sasa, N., Satsuma, J.: Bilinearization of a generialized derivative nonlinear Schrödinger equation. J. Phys. Soc. Jpn. 64, 1519–1523 (1995)

    Article  Google Scholar 

  4. Kundu, A.: Exact solutions to higher-order nonlinear equations through gauge transformation. Physica D 25, 399–406 (1987)

    Article  MathSciNet  Google Scholar 

  5. Fan, E.G.: A family of completely integrable multi-Hamiltonian systems explicitly related to some celebrated equations. J. Math. Phys. 42, 4327–4344 (2001)

    Article  MathSciNet  Google Scholar 

  6. Kaup, D.J., Newell, A.C.: An exact solution for a derivative nonlinear Schrödinger equation. J. Math. Phys. 19, 798–801 (1978)

    Article  Google Scholar 

  7. Chen, H.H., Lee, Y.C., Liu, C.S.: Integrability of nonlinear Hamiltonian systems by inverse scattering method. Phys. Scr. 20, 490–492 (1979)

    Article  MathSciNet  Google Scholar 

  8. Gerdjikov, V.S., Ivanov, I.: A quadratic pencil of general type and nonlinear evolution equations. II. Hierarchies of Hamiltonian structures. Bulg. J. Phys. 10, 130–143 (1983)

    MathSciNet  Google Scholar 

  9. Tzoar, N., Jain, M.: Self-phase modulation in long-geometry optical waveguides. Phys. Rev. A 23, 1266–1270 (1981)

    Article  Google Scholar 

  10. Kodama, Y.: Optical solitons in a monomode fiber. J. Stat. Phys. 39, 597–614 (1985)

    Article  MathSciNet  Google Scholar 

  11. Rogister, A.: Parallel propagation of nonlinear low-frequency waves in high-\(\beta \) plasma. Phys. Fluids 14, 2733–2739 (1971)

    Article  Google Scholar 

  12. Nakatsuka, H., Grischkowsky, D., Balant, A.C.: Nonlinear picosecond-pulse propagation through optical fibers with positive group velocity dispersion. Phys. Rev. Lett. 47, 910–913 (1981)

    Article  Google Scholar 

  13. Einar, M.: Nonlinear alfv\(\acute{e}\)n waves and the dnls equation: oblique aspects. Phys. Scr. 40, 227–237 (1989)

    Article  Google Scholar 

  14. Agrawal, G.P.: Nonlinear Fiber Optics. Academic Press, Boston (2007)

    MATH  Google Scholar 

  15. Fan, E.G.: Darboux transformation and solion-like solutions for the Gerdjikov–Ivanov equation. J. Phys. A 33, 6925–6933 (2000)

    Article  MathSciNet  Google Scholar 

  16. Dai, H.H., Fan, E.G.: Variable separation and algebro-geometric solutions of the Gerdjikov–Ivanov equation. Chaos Solitons Fractals 22, 93–101 (2004)

    Article  MathSciNet  Google Scholar 

  17. Hou, Y., Fan, E.G., Zhao, P.: Algebro-geometric solutions for the Gerdjikov–Ivanov hierarchy. J. Math. Phys. 54, 1–30 (2013)

    Article  MathSciNet  Google Scholar 

  18. He, B., Meng, Q.: Bifurcations and new exact travelling wave solutions for the Gerdjikov–Ivanov equation. Commun. Nonlinear Sci. Numer. Simul. 15, 1783–1790 (2010)

    Article  MathSciNet  Google Scholar 

  19. Kakei, S., Kikuchi, T.: Solutions of a derivative nonlinear Schrödinger hierarchy and its similarity reduction. Glasgow Math. J. 47, 99–107 (2005)

    Article  MathSciNet  Google Scholar 

  20. Nie, H., Zhu, J.Y., Geng, X.G.: Trace formula and new form of N-soliton to the Gerdjikov–Ivanov equation. Anal. Math. Phys. 8, 415–426 (2018)

    Article  MathSciNet  Google Scholar 

  21. Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Method for solving the Korteweg–deVries equation. Phys. Rev. Lett. 19, 1095–1097 (1967)

    Article  Google Scholar 

  22. Ablowitz, M.J., Clarkson, P.A.: Soliton, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991)

    Book  Google Scholar 

  23. Yang, J.K.: Nonlinear Waves in Integrable and Nonintegrable Systems. Soc Indus Appl Math, Philadelphia (2010)

    Book  Google Scholar 

  24. Deift, P., Zhou, X.: A steepest descent method for oscillatory Riemann–Hilbert problems. Ann. Math. 137, 295–368 (1993)

    Article  MathSciNet  Google Scholar 

  25. Biondini, G., Kova\(\breve{\rm {c}}\)i\(\breve{\rm {c}}\), G.: Inverse scattering transform for the focusing nonlinear Schrödinger equation with nonzero boundary conditions. J. Math. Phys. 55, 1–22 (2014)

  26. Pichler, M., Biondini, G.: On the focusing non-linear Schrödinger equation with non-zero boundary conditions and double poles. IMA J. Appl. Math. 82, 131–151 (2017)

    Article  MathSciNet  Google Scholar 

  27. Biondini, G., Kraus, D.: Inverse scattering transform for the defocusing Manakov system with nonzero boundary conditions. SIAM J. Math. Anal. 47, 706–757 (2015)

    Article  MathSciNet  Google Scholar 

  28. Prinari, B., Ablowitz, M.J., Biondini, G.: Inverse scattering transform for the vector nonlinear Schrödinger equation with nonvanishing boundary conditions. J. Math. Phys. 47, 1–32 (2006)

    Article  Google Scholar 

  29. Biondini, G., Kraus, D.K., Prinari, B.: The three-component defocusing nonlinear Schrödinger equation with nonzero boundary conditions. Commun. Math. Phys. 348, 475–533 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Science Foundation of China (Grant Nos. 11671095, 51879045).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Engui Fan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Fan, E. Inverse scattering transform for the Gerdjikov–Ivanov equation with nonzero boundary conditions. Z. Angew. Math. Phys. 71, 149 (2020). https://doi.org/10.1007/s00033-020-01371-z

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-020-01371-z

Mathematics Subject Classification

Keywords

Navigation