Log in

The insight of mixtures theory for growth and remodeling

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

The emergence of residual stress as due to growth and remodeling of soft biological tissues is considered in the framework of the mixture theory. The focus is on mixtures composed by one elastic solid component and several fluid ones. It is shown that the standard theory is unable to predict residual stresses unless enriched by a suitable descriptor of growth. Both the introduction of a dependence of the free energy on the density of the solid component and the Kroner–Lee multiplicative decomposition of the gradient of deformation are effective in this respect, with different levels of generality. When adopting a multiplicative decomposition of the tensor gradient of deformation, thermodynamical arguments suggest constitutive laws for the evolution of the growth tensor that point out the role of the concentration of fluid species in driving the emergence of residual stress thanks to inhomogeneous growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosi D., Guana F.: Stress modulated growth. Math. Mech. Solids 12, 319–343 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ateshian G.A.: On the theory of reactive mixtures for modeling biological growth. Biomech. Model. Mechanobiol. 6, 423–445 (2007)

    Article  Google Scholar 

  3. Bowen R.M.: Incompressible porous media models by the use of the theory of mixtures. Int. J. Eng. Sci. 18, 1129–1148 (1980)

    Article  MATH  Google Scholar 

  4. Bowen R.M.: Compressible porous media models by the use of the theory of mixtures. Int. J. Eng. Sci. 20, 697–735 (1982)

    Article  MATH  Google Scholar 

  5. Bowen R.M.: Theory of mixtures. In: Eringen, A.C. (eds) Continuum Physics, III, pp. 1–127. Academic Press, New York (1976)

    Google Scholar 

  6. Bowen R.M.: The thermochemistry of a reacting mixture of elastic materials with diffusion. Arch. Ration. Mech. Anal. 34, 97–127 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  7. Di Carlo A., Quiligotti S.: Growth and balance. Mech. Res. Commun. 29, 449–456 (2002)

    Article  MathSciNet  Google Scholar 

  8. Fusi L., Farina A., Ambrosi D.: Mathematical modelling of a solid–liquid mixture with mass exchange between constituents. Math. Mech. Solids 11, 575–595 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Garikipati K., Arruda E.M., Grosh K., Narayanan H., Calve S.: A continuum treatment of growth in biological tissue: the coupling of mass transport and mechanics. J. Mech. Phys. Solids 52, 1595–1625 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gurtin M.E.: On the thermodynamics of chemically reacting fluid mixtures. Arch. Ration. Mech. Anal. 43, 198–212 (1971)

    MATH  MathSciNet  Google Scholar 

  11. Gurtin M.E., Vargas A.S.: On the classical theory of reacting fluid mixtures. Arch. Ration. Mech. Anal. 43, 179–197 (1971)

    MATH  MathSciNet  Google Scholar 

  12. Grillo A., Zingali G., Federico S., Herzog W., Giaquinta G.: The role of material inhomogeneities in biological growth. Theor. Appl. Mech. 32, 21–38 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Guillou, A., Ogden, R.W.: Growth in soft biological tissue and residual stress development, in Mechanics of Biological Tissue, Proceedings of the IUTAM Symposium Graz 2004, 47–62, Springer (2006)

  14. Lai W.M., Hou J.S., Mow V.C.: A triphasic theory for the swelling and deformation behaviors of articular cartilages. J. Biomech. Eng. 113, 245–258 (1991)

    Article  Google Scholar 

  15. Loret B., Simoes F.M.F.: A framework for deformation, generalized diffusion, mass transfer and growth in multi-species multi-phase biological tissues. Eur. J. Mech. Solids 24, 757–781 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Rajagopal K.R., Humphrey J.: A constrained mixture model for growth and remodeling of soft tissues. Math. Mod. Meth. Appl. Sci. 12, 407–430 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Rodriguez E.K., Hoger A., McCulloch A.D.: Stress-dependent finite growth in soft elastic tissues. J. Biomech. 27, 455–467 (1994)

    Article  Google Scholar 

  18. Taber L.A., Eggers D.W.: Theoretical study of stress-modulated growth in the aorta. J. Theor. Biol. 180, 343–357 (1996)

    Article  Google Scholar 

  19. Truesdell, C.: Sulle basi della Termomeccanica. Rend. Scient. Fis. Mat. Nat. Accademia dei Lincei 22:33–38,158–166 (1957)

  20. Volokh K.Y.: Stresses in growing soft tissues. Acta Biomater. 2, 493–504 (2006)

    Article  Google Scholar 

  21. Wilmanski K.: Lagrangean model of a two phases porous material. J. Non-Equil. Thermodyn. 20, 50–77 (1995)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Ambrosi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ambrosi, D., Preziosi, L. & Vitale, G. The insight of mixtures theory for growth and remodeling. Z. Angew. Math. Phys. 61, 177–191 (2010). https://doi.org/10.1007/s00033-009-0037-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-009-0037-8

Keywords

Navigation