Log in

On the power spectrum of inflationary cosmologies dual to a deformed CFT

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We analyse slow-roll inflationary cosmologies that are holographically dual to a three-dimensional conformal field theory deformed by a nearly marginal scalar operator. We show the cosmological power spectrum is inversely proportional to the spectral density associated with the 2-point function of the trace of the stress tensor in the deformed CFT. Computing this quantity using second-order conformal perturbation theory, we obtain a holographic power spectrum in exact agreement with the expected inflationary power spectrum to second order in slow roll.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Bzowski, P. McFadden and K. Skenderis, Holography for inflation using conformal perturbation theory, JHEP 04 (2013) 047 [ar**v:1211.4550] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. K. Schalm, G. Shiu and T. van der Aalst, Consistency condition for inflation from (broken) conformal symmetry, JCAP 03 (2013) 005 [ar**v:1211.2157] [INSPIRE].

    Article  ADS  Google Scholar 

  3. I. Mata, S. Raju and S. Trivedi, CMB from CFT, JHEP 07 (2013) 015 [ar**v:1211.5482] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  4. J. Garriga and Y. Urakawa, Inflation and deformation of conformal field theory, JCAP 07 (2013) 033 [ar**v:1303.5997] [INSPIRE].

    Article  ADS  Google Scholar 

  5. A. Strominger, The dS/CFT correspondence, JHEP 10 (2001) 034 [hep-th/0106113] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  6. E. Witten, Quantum gravity in de Sitter space, hep-th/0106109 [INSPIRE].

  7. J.M. Maldacena, Non-gaussian features of primordial fluctuations in single field inflationary models, JHEP 05 (2003) 013 [astro-ph/0210603] [INSPIRE].

    Article  ADS  Google Scholar 

  8. A. Strominger, Inflation and the dS/CFT correspondence, JHEP 11 (2001) 049 [hep-th/0110087] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. F. Larsen, J.P. van der Schaar and R.G. Leigh, De Sitter holography and the cosmic microwave background, JHEP 04 (2002) 047 [hep-th/0202127] [INSPIRE].

    Article  ADS  Google Scholar 

  10. E. Halyo, Holographic inflation, JHEP 02 (2004) 062 [hep-th/0203235] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. F. Larsen and R. McNees, Inflation and de Sitter holography, JHEP 07 (2003) 051 [hep-th/0307026] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. J.P. van der Schaar, Inflationary perturbations from deformed CFT, JHEP 01 (2004) 070 [hep-th/0307271] [INSPIRE].

    Article  Google Scholar 

  13. F. Larsen and R. McNees, Holography, diffeomorphisms and scaling violations in the CMB, JHEP 07 (2004) 062 [hep-th/0402050] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. D. Seery and J.E. Lidsey, Non-gaussian inflationary perturbations from the dS/CFT correspondence, JCAP 06 (2006) 001 [astro-ph/0604209] [INSPIRE].

    Article  ADS  Google Scholar 

  15. J.M. Maldacena and G.L. Pimentel, On graviton non-gaussianities during inflation, JHEP 09 (2011) 045 [ar**v:1104.2846] [INSPIRE].

    Article  ADS  Google Scholar 

  16. A. Bzowski, P. McFadden and K. Skenderis, Holographic predictions for cosmological 3-point functions, JHEP 03 (2012) 091 [ar**v:1112.1967] [INSPIRE].

    Article  ADS  Google Scholar 

  17. I. Antoniadis, P.O. Mazur and E. Mottola, Conformal invariance, dark energy and CMB non-gaussianity, JCAP 09 (2012) 024 [ar**v:1103.4164] [INSPIRE].

    Article  ADS  Google Scholar 

  18. D. Harlow and D. Stanford, Operator dictionaries and wave functions in AdS/CFT and dS/CFT, ar**v:1104.2621 [INSPIRE].

  19. P. Creminelli, Conformal invariance of scalar perturbations in inflation, Phys. Rev. D 85 (2012) 041302 [ar**v:1108.0874] [INSPIRE].

    ADS  Google Scholar 

  20. X. Dong, B. Horn, S. Matsuura, E. Silverstein and G. Torroba, FRW solutions and holography from uplifted AdS/CFT, Phys. Rev. D 85 (2012) 104035 [ar**v:1108.5732] [INSPIRE].

    ADS  Google Scholar 

  21. D. Anninos, T. Hartman and A. Strominger, Higher spin realization of the dS/CFT correspondence, ar**v:1108.5735 [INSPIRE].

  22. T. Hertog and J. Hartle, Holographic no-boundary measure, JHEP 05 (2012) 095 [ar**v:1111.6090] [INSPIRE].

    Article  ADS  Google Scholar 

  23. A. Kehagias and A. Riotto, Operator product expansion of inflationary correlators and conformal symmetry of de Sitter, Nucl. Phys. B 864 (2012) 492 [ar**v:1205.1523] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. A. Castro and A. Maloney, The wave function of quantum de Sitter, JHEP 11 (2012) 096 [ar**v:1209.5757] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  25. M. Smolkin and N. Turok, Dual description of a 4D cosmology, ar**v:1211.1322 [INSPIRE].

  26. D. Anninos, F. Denef, G. Konstantinidis and E. Shaghoulian, Higher spin de Sitter holography from functional determinants, ar**v:1305.6321 [INSPIRE].

  27. J.B. Hartle, S. Hawking and T. Hertog, Vector fields in holographic cosmology, ar**v:1305.7190 [INSPIRE].

  28. T. Banks, W. Fischler, T. Torres and C.L. Wainwright, Holographic fluctuations from unitary de Sitter invariant field theory, ar**v:1306.3999 [INSPIRE].

  29. P. McFadden and K. Skenderis, Holography for cosmology, Phys. Rev. D 81 (2010) 021301 [ar**v:0907.5542] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  30. P. McFadden and K. Skenderis, The holographic universe, J. Phys. Conf. Ser. 222 (2010) 012007 [ar**v:1001.2007] [INSPIRE].

    Article  ADS  Google Scholar 

  31. P. McFadden and K. Skenderis, Holographic non-gaussianity, JCAP 05 (2011) 013 [ar**v:1011.0452] [INSPIRE].

    Article  ADS  Google Scholar 

  32. P. McFadden and K. Skenderis, Cosmological 3-point correlators from holography, JCAP 06 (2011) 030 [ar**v:1104.3894] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. A. Cappelli, D. Friedan and J.I. Latorre, C theorem and spectral representation, Nucl. Phys. B 352 (1991) 616 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. G. Shore, A new c-theorem in four-dimensions, Phys. Lett. B 253 (1991) 380 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. G. Shore, The C(F) theorem, Phys. Lett. B 256 (1991) 407 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. A. Cappelli, J.I. Latorre and X. Vilasis-Cardona, Renormalization group patterns and C theorem in more than two-dimensions, Nucl. Phys. B 376 (1992) 510 [hep-th/9109041] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. A. Cappelli and J.I. Latorre, Perturbation theory of higher spin conserved currents off criticality, Nucl. Phys. B 340 (1990) 659 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. A. Zamolodchikov, Renormalization group and perturbation theory near fixed points in two-dimensional field theory, Sov. J. Nucl. Phys. 46 (1987) 1090 [INSPIRE].

    MathSciNet  Google Scholar 

  39. A. Ludwig and J.L. Cardy, Perturbative evaluation of the conformal anomaly at new critical points with applications to random systems, Nucl. Phys. B 285 (1987) 687 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. D. Freedman, C. Núñez, M. Schnabl and K. Skenderis, Fake supergravity and domain wall stability, Phys. Rev. D 69 (2004) 104027 [hep-th/0312055] [INSPIRE].

    ADS  Google Scholar 

  41. M. Cvetič and H.H. Soleng, Naked singularities in dilatonic domain wall space times, Phys. Rev. D 51 (1995) 5768 [hep-th/9411170] [INSPIRE].

    ADS  Google Scholar 

  42. K. Skenderis and P.K. Townsend, Hidden supersymmetry of domain walls and cosmologies, Phys. Rev. Lett. 96 (2006) 191301 [hep-th/0602260] [INSPIRE].

    Article  ADS  Google Scholar 

  43. D. Salopek and J. Bond, Nonlinear evolution of long wavelength metric fluctuations in inflationary models, Phys. Rev. D 42 (1990) 3936 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  44. J.-O. Gong and E.D. Stewart, The density perturbation power spectrum to second order corrections in the slow roll expansion, Phys. Lett. B 510 (2001) 1 [astro-ph/0101225] [INSPIRE].

    ADS  Google Scholar 

  45. R. Easther, R. Flauger, P. McFadden and K. Skenderis, Constraining holographic inflation with WMAP, JCAP 09 (2011) 030 [ar**v:1104.2040] [INSPIRE].

    Article  ADS  Google Scholar 

  46. E. Kiritsis, Asymptotic freedom, asymptotic flatness and cosmology, ar**v:1307.5873 [INSPIRE].

  47. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].

  48. S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  49. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  50. O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  51. S. de Haro, S.N. Solodukhin and K. Skenderis, Holographic reconstruction of space-time and renormalization in the AdS/CFT correspondence, Commun. Math. Phys. 217 (2001) 595 [hep-th/0002230] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  52. K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav. 19 (2002) 5849 [hep-th/0209067] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul McFadden.

Additional information

ArXiv ePrint: 1308.0331

Rights and permissions

Reprints and permissions

About this article

Cite this article

McFadden, P. On the power spectrum of inflationary cosmologies dual to a deformed CFT. J. High Energ. Phys. 2013, 71 (2013). https://doi.org/10.1007/JHEP10(2013)071

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2013)071

Keywords

Navigation