Log in

Holography for inflation using conformal perturbation theory

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We provide a precise and quantitative holographic description of a class of inflationary slow-roll models. The dual QFT is a deformation of a three-dimensional CFT by a nearly marginal operator, which, in the models we consider, generates an RG flow to a nearby IR fixed point. These models describe hilltop inflation, where the inflaton rolls from a local maximum of the potential in the infinite past (corresponding to the IR fixed point of the dual QFT) to reach a nearby local minimum in the infinite future (corresponding to the UV of the dual QFT). Through purely holographic means, we compute the spectra and bispectra of scalar and tensor cosmological perturbations. The QFT correlators to which these observables map holographically may be calculated using conformal perturbation theory, even when the dual QFT is strongly coupled. Both the spectra and the bispectra may be expressed this way in terms of CFT correlators that are fixed, up to a few constants, by conformal invariance. The form of slow-roll inflationary correlators is thus determined by the perturbative breaking of the de Sitter isometries away from the fixed point. Setting the constants to their values obtained by AdS/CFT at the fixed point, we find exact agreement with known expressions for the slow-roll power spectra and non-Gaussianities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Cheung, P. Creminelli, A.L. Fitzpatrick, J. Kaplan and L. Senatore, The effective field theory of inflation, JHEP 03 (2008) 014 [ar**v:0709.0293] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. I. Antoniadis, P.O. Mazur and E. Mottola, Conformal invariance, dark energy and CMB non-Gaussianity, JCAP 09 (2012) 024 [ar**v:1103.4164] [INSPIRE].

    Article  ADS  Google Scholar 

  3. J.M. Maldacena and G.L. Pimentel, On graviton non-Gaussianities during inflation, JHEP 09 (2011) 045 [ar**v:1104.2846] [INSPIRE].

    Article  ADS  Google Scholar 

  4. K. Hinterbichler and J. Khoury, The pseudo-conformal universe: scale invariance from spontaneous breaking of conformal symmetry, JCAP 04 (2012) 023 [ar**v:1106.1428] [INSPIRE].

    Article  ADS  Google Scholar 

  5. P. Creminelli, Conformal invariance of scalar perturbations in inflation, Phys. Rev. D 85 (2012) 041302 [ar**v:1108.0874] [INSPIRE].

    ADS  Google Scholar 

  6. K. Hinterbichler, A. Joyce and J. Khoury, Non-linear realizations of conformal symmetry and effective field theory for the pseudo-conformal universe, JCAP 06 (2012) 043 [ar**v:1202.6056] [INSPIRE].

    Article  ADS  Google Scholar 

  7. P. Creminelli, J. Norena and M. Simonovic, Conformal consistency relations for single-field inflation, JCAP 07 (2012) 052 [ar**v:1203.4595] [INSPIRE].

    Article  ADS  Google Scholar 

  8. K. Hinterbichler, L. Hui and J. Khoury, Conformal symmetries of adiabatic modes in cosmology, JCAP 08 (2012) 017 [ar**v:1203.6351] [INSPIRE].

    Article  ADS  Google Scholar 

  9. V. Assassi, D. Baumann and D. Green, On soft limits of inflationary correlation functions, JCAP 11 (2012) 047 [ar**v:1204.4207] [INSPIRE].

    Article  ADS  Google Scholar 

  10. A. Kehagias and A. Riotto, Operator product expansion of inflationary correlators and conformal symmetry of de Sitter, Nucl. Phys. B 864 (2012) 492 [ar**v:1205.1523] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. A. Kehagias and A. Riotto, The four-point correlator in multifield inflation, the operator product expansion and the symmetries of de Sitter, Nucl. Phys. B 868 (2013) 577 [ar**v:1210.1918] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. V. Assassi, D. Baumann and D. Green, Symmetries and loops in inflation, JHEP 02 (2013) 151 [ar**v:1210.7792] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. P. McFadden and K. Skenderis, Holography for cosmology, Phys. Rev. D 81 (2010) 021301 [ar**v:0907.5542] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  14. P. McFadden and K. Skenderis, The holographic universe, J. Phys. Conf. Ser. 222 (2010) 012007 [ar**v:1001.2007] [INSPIRE].

    Article  ADS  Google Scholar 

  15. P. McFadden and K. Skenderis, Observational signatures of holographic models of inflation, ar**v:1010.0244 [INSPIRE].

  16. P. McFadden and K. Skenderis, Holographic non-Gaussianity, JCAP 05 (2011) 013 [ar**v:1011.0452] [INSPIRE].

    Article  ADS  Google Scholar 

  17. P. McFadden and K. Skenderis, Cosmological 3-point correlators from holography, JCAP 06 (2011) 030 [ar**v:1104.3894] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  18. R. Easther, R. Flauger, P. McFadden and K. Skenderis, Constraining holographic inflation with WMAP, JCAP 09 (2011) 030 [ar**v:1104.2040] [INSPIRE].

    Article  ADS  Google Scholar 

  19. A. Bzowski, P. McFadden and K. Skenderis, Holographic predictions for cosmological 3-point functions, JHEP 03 (2012) 091 [ar**v:1112.1967] [INSPIRE].

    Article  ADS  Google Scholar 

  20. M. Dias, Cosmology at the boundary of de Sitter using the dS/QFT correspondence, Phys. Rev. D 84 (2011) 023512 [ar**v:1104.0625] [INSPIRE].

    ADS  Google Scholar 

  21. C. Corianò, L. Delle Rose and M. Serino, Three and four point functions of stress energy tensors in D = 3 for the analysis of cosmological non-Gaussianities, JHEP 12 (2012) 090 [ar**v:1210.0136] [INSPIRE].

    Article  ADS  Google Scholar 

  22. A. Strominger, Inflation and the dS/CFT correspondence, JHEP 11 (2001) 049 [hep-th/0110087] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. F. Larsen, J.P. van der Schaar and R.G. Leigh, de Sitter holography and the cosmic microwave background, JHEP 04 (2002) 047 [hep-th/0202127] [INSPIRE].

    Article  ADS  Google Scholar 

  24. E. Halyo, Holographic inflation, JHEP 02 (2004) 062 [hep-th/0203235] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. F. Larsen and R. McNees, Inflation and de Sitter holography, JHEP 07 (2003) 051 [hep-th/0307026] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. J.P. van der Schaar, Inflationary perturbations from deformed CFT, JHEP 01 (2004) 070 [hep-th/0307271] [INSPIRE].

    Article  Google Scholar 

  27. F. Larsen and R. McNees, Holography, diffeomorphisms and scaling violations in the CMB, JHEP 07 (2004) 062 [hep-th/0402050] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. D. Seery and J.E. Lidsey, Non-Gaussian inflationary perturbations from the dS/CFT correspondence, JCAP 06 (2006) 001 [astro-ph/0604209] [INSPIRE].

    Article  ADS  Google Scholar 

  29. A. Strominger, The dS/CFT correspondence, JHEP 10 (2001) 034 [hep-th/0106113] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. E. Witten, Quantum gravity in de Sitter space, hep-th/0106109 [INSPIRE].

  31. J.M. Maldacena, Non-Gaussian features of primordial fluctuations in single field inflationary models, JHEP 05 (2003) 013 [astro-ph/0210603] [INSPIRE].

    Article  ADS  Google Scholar 

  32. D. Harlow and D. Stanford, Operator dictionaries and wave functions in AdS/CFT and dS/CFT, ar**v:1104.2621 [INSPIRE].

  33. X. Dong, B. Horn, S. Matsuura, E. Silverstein and G. Torroba, FRW solutions and holography from uplifted AdS/CFT, Phys. Rev. D 85 (2012) 104035 [ar**v:1108.5732] [INSPIRE].

    ADS  Google Scholar 

  34. D. Anninos, T. Hartman and A. Strominger, Higher spin realization of the dS/CFT correspondence, ar**v:1108.5735 [INSPIRE].

  35. D. Anninos, S.A. Hartnoll and D.M. Hofman, Static patch solipsism: conformal symmetry of the de Sitter worldline, Class. Quant. Grav. 29 (2012) 075002 [ar**v:1109.4942] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  36. T. Hertog and J. Hartle, Holographic no-boundary measure, JHEP 05 (2012) 095 [ar**v:1111.6090] [INSPIRE].

    Article  ADS  Google Scholar 

  37. J.B. Hartle, S. Hawking and T. Hertog, Accelerated expansion from negative λ, ar**v:1205.3807 [INSPIRE].

  38. D. Anninos, F. Denef and D. Harlow, The wave function of Vasilievs universe - A few slices thereof, ar**v:1207.5517 [INSPIRE].

  39. J.B. Hartle, S. Hawking and T. Hertog, Inflation with negative λ, ar**v:1207.6653 [INSPIRE].

  40. A. Castro and A. Maloney, The wave function of quantum de Sitter, JHEP 11 (2012) 096 [ar**v:1209.5757] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  41. D. Marolf, I.A. Morrison and M. Srednicki, Perturbative S-matrix for massive scalar fields in global de Sitter space, ar**v:1209.6039 [INSPIRE].

  42. A. Ludwig and J.L. Cardy, Perturbative evaluation of the conformal anomaly at new critical points with applications to random systems, Nucl. Phys. B 285 (1987) 687 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  43. A. Zamolodchikov, Renormalization group and perturbation theory near fixed points in two-dimensional field theory, Sov. J. Nucl. Phys. 46 (1987) 1090 [INSPIRE].

    MathSciNet  Google Scholar 

  44. J. Cardy, Conformal invariance and statistical mechanics, Les Houches lectures (1988).

  45. A. Zamolodchikov, Exact solutions of conformal field theory in two-dimensions and critical phenomena, Rev. Math. Phys. 1 (1990) 197.

    Article  MathSciNet  Google Scholar 

  46. A. Zamolodchikov, Two point correlation function in scaling Lee-Yang model, Nucl. Phys. B 348 (1991) 619 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  47. R. Guida and N. Magnoli, All order IR finite expansion for short distance behavior of massless theories perturbed by a relevant operator, Nucl. Phys. B 471 (1996) 361 [hep-th/9511209] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  48. WMAP collaboration, E. Komatsu et al., Seven-year Wilkinson microwave anisotropy probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 192 (2011) 18 [ar**v:1001.4538] [INSPIRE].

    Article  ADS  Google Scholar 

  49. K. Schalm, G. Shiu and T. van der Aalst, Consistency condition for inflation from (broken) conformal symmetry, JCAP JCAP03 (2013) 005 [ar**v:1211.2157] [INSPIRE].

    Article  ADS  Google Scholar 

  50. A.M. Polyakov, Gauge fields and strings, Contemp. Concepts Phys. 3 (1987) 1.

    MathSciNet  ADS  Google Scholar 

  51. I.R. Klebanov, S.S. Pufu and B.R. Safdi, F-theorem without supersymmetry, JHEP 10 (2011) 038 [ar**v:1105.4598] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  52. H. Osborn and A. Petkou, Implications of conformal invariance in field theories for general dimensions, Annals Phys. 231 (1994) 311 [hep-th/9307010] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  53. J.L. Cardy, Anisotropic corrections to correlation functions in finite size systems, Nucl. Phys. B 290 (1987) 355 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  54. M. Cvetič and H.H. Soleng, Naked singularities in dilatonic domain wall space times, Phys. Rev. D 51 (1995) 5768 [hep-th/9411170] [INSPIRE].

    ADS  Google Scholar 

  55. K. Skenderis and P.K. Townsend, Hidden supersymmetry of domain walls and cosmologies, Phys. Rev. Lett. 96 (2006) 191301 [hep-th/0602260] [INSPIRE].

    Article  ADS  Google Scholar 

  56. D. Salopek and J. Bond, Nonlinear evolution of long wavelength metric fluctuations in inflationary models, Phys. Rev. D 42 (1990) 3936 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  57. D. Freedman, C. Núñez, M. Schnabl and K. Skenderis, Fake supergravity and domain wall stability, Phys. Rev. D 69 (2004) 104027 [hep-th/0312055] [INSPIRE].

    ADS  Google Scholar 

  58. K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav. 19 (2002) 5849 [hep-th/0209067] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  59. E.D. Stewart and D.H. Lyth, A more accurate analytic calculation of the spectrum of cosmological perturbations produced during inflation, Phys. Lett. B 302 (1993) 171 [gr-qc/9302019] [INSPIRE].

    Article  ADS  Google Scholar 

  60. J.-O. Gong and E.D. Stewart, The density perturbation power spectrum to second order corrections in the slow roll expansion, Phys. Lett. B 510 (2001) 1 [astro-ph/0101225] [INSPIRE].

    ADS  Google Scholar 

  61. D.Z. Freedman, K. Johnson and J.I. Latorre, Differential regularization and renormalization: a new method of calculation in quantum field theory, Nucl. Phys. B 371 (1992) 353 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  62. Y. Brychkov, A. Prudnikov, and O. Marichev, Tables of indefinite integrals, vol. 2, Gordon & Breach Science, New York U.S.A. (1989).

  63. E. Boos and A.I. Davydychev, A method of evaluation of vertex type Feynman integrals, Moscow Univ. Phys. Bull. 42N3 (1987) 6.

    MathSciNet  Google Scholar 

  64. C. Anastasiou, E.N. Glover and C. Oleari, Scalar one loop integrals using the negative dimension approach, Nucl. Phys. B 572 (2000) 307 [hep-ph/9907494] [INSPIRE].

    Article  ADS  Google Scholar 

  65. H. Exton, On the system of partial differential equations associated with Appells function F 4, J. Phys. A 28 (1995) 631.

    MathSciNet  ADS  Google Scholar 

  66. R. Alkofer, M.Q. Huber and K. Schwenzer, Infrared behavior of three-point functions in Landau gauge Yang-Mills theory, Eur. Phys. J. C 62 (2009) 761 [ar**v:0812.4045] [INSPIRE].

    Article  ADS  Google Scholar 

  67. A. Erdélyi, Bateman manuscript project, higher transcendental functions, McGraw-Hill, New York, U.S.A. (1953).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul McFadden.

Additional information

ArXiv ePrint: 1211.4550

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bzowski, A., McFadden, P. & Skenderis, K. Holography for inflation using conformal perturbation theory. J. High Energ. Phys. 2013, 47 (2013). https://doi.org/10.1007/JHEP04(2013)047

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP04(2013)047

Keywords

Navigation