Log in

Scalar fields and three-point functions in D = 3 higher spin gravity

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We compute boundary three-point functions involving two scalars and a gauge field of arbitrary spin in the AdS vacuum of Vasiliev’s higher spin gravity, for any deformation parameter λ. In the process, we develop tools for extracting scalar field equations in arbitrary higher spin backgrounds. We work in the context of hs[λ] ⊕ hs[λ] Chern-Simons theory coupled to scalar fields, and make efficient use of the associative lone-star product underlying the hs[λ] algebra. Our results for the correlators precisely match expectations from CFT; in particular they match those of any CFT with W [λ] symmetry at large central charge, and with primary operators dual to the scalar fields. As this is expected to include the ‘t Hooft limit of the W N minimal model CFT, our results serve as further evidence of the conjectured AdS/CFT duality between these two theories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Haggi-Mani and B. Sundborg, Free large-N supersymmetric Yang-Mills theory as a string theory, JHEP 04 (2000) 031 [hep-th/0002189] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  2. B. Sundborg, Stringy gravity, interacting tensionless strings and massless higher spins, Nucl. Phys. Proc. Suppl. 102 (2001) 113 [hep-th/0103247] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. E. Sezgin and P. Sundell, Massless higher spins and holography, Nucl. Phys. B 644 (2002) 303 [Erratum ibid. B 660 (2003) 403] [hep-th/0205131] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  4. C. Fronsdal, Massless Fields with Integer Spin, Phys. Rev. D 18 (1978) 3624 [INSPIRE].

    ADS  Google Scholar 

  5. E. Fradkin and M.A. Vasiliev, On the Gravitational Interaction of Massless Higher Spin Fields, Phys. Lett. B 189 (1987) 89 [INSPIRE].

    ADS  Google Scholar 

  6. E. Fradkin and M.A. Vasiliev, Cubic Interaction in Extended Theories of Massless Higher Spin Fields, Nucl. Phys. B 291 (1987) 141 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. M.A. Vasiliev, Consistent equation for interacting gauge fields of all spins in (3 + 1)-dimensions, Phys. Lett. B 243 (1990) 378 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  8. M.A. Vasiliev, Closed equations for interacting gauge fields of all spins, JETP Lett. 51 (1990) 503 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  9. M.A. Vasiliev, More on equations of motion for interacting massless fields of all spins in (3 + 1)-dimensions, Phys. Lett. B 285 (1992) 225 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  10. I. Klebanov and A. Polyakov, AdS dual of the critical O(N) vector model, Phys. Lett. B 550 (2002) 213 [hep-th/0210114] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  11. A.C. Petkou, Evaluating the AdS dual of the critical O(N) vector model, JHEP 03 (2003) 049 [hep-th/0302063] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. R.G. Leigh and A.C. Petkou, Holography of the N = 1 higher spin theory on AdS 4, JHEP 06 (2003) 011 [hep-th/0304217] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. E. Sezgin and P. Sundell, Holography in 4D (super) higher spin theories and a test via cubic scalar couplings, JHEP 07 (2005) 044 [hep-th/0305040] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. S. Giombi and X. Yin, Higher Spin Gauge Theory and Holography: The Three-Point Functions, JHEP 09 (2010) 115 [ar**v:0912.3462] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. S. Giombi and X. Yin, Higher Spins in AdS and Twistorial Holography, JHEP 04 (2011) 086 [ar**v:1004.3736] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. S. Giombi and X. Yin, On Higher Spin Gauge Theory and the Critical O(N) Model, ar**v:1105.4011 [INSPIRE].

  17. R. de Mello Koch, A. Jevicki, K. ** and J.P. Rodrigues, AdS 4 /CF T 3 Construction from Collective Fields, Phys. Rev. D 83 (2011) 025006 [ar**v:1008.0633] [INSPIRE].

    ADS  Google Scholar 

  18. A. Jevicki, K. ** and Q. Ye, Collective Dipole Model of AdS/CFT and Higher Spin Gravity, J. Phys. A 44 (2011) 465402 [ar**v:1106.3983] [INSPIRE].

    ADS  Google Scholar 

  19. M.R. Gaberdiel and R. Gopakumar, An AdS 3 Dual for Minimal Model CFTs, Phys. Rev. D 83 (2011) 066007 [ar**v:1011.2986] [INSPIRE].

    ADS  Google Scholar 

  20. S. Prokushkin and M.A. Vasiliev, Higher spin gauge interactions for massive matter fields in 3 − D AdS space-time, Nucl. Phys. B 545(1999) 385 [hep-th/9806236] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. M.R. Gaberdiel and T. Hartman, Symmetries of Holographic Minimal Models, JHEP 05 (2011) 031 [ar**v:1101.2910] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. M.R. Gaberdiel, R. Gopakumar, T. Hartman and S. Raju, Partition Functions of Holographic Minimal Models, JHEP 08 (2011) 077 [ar**v:1106.1897] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. P. Kraus and E. Perlmutter, Partition functions of higher spin black holes and their CFT duals, JHEP 11 (2011) 061 [ar**v:1108.2567] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. C.-M. Chang and X. Yin, Higher Spin Gravity with Matter in AdS 3 and Its CFT Dual, ar**v:1106.2580 [INSPIRE].

  25. C. Ahn, The Coset Spin-4 Casimir Operator and Its Three-Point Functions with Scalars, JHEP 02 (2012) 027 [ar**v:1111.0091] [INSPIRE].

    Article  ADS  Google Scholar 

  26. C. Pope, L. Romans and X. Shen, W(infinity) and the Racah-Wigner Algebra, Nucl. Phys. B 339 (1990) 191 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. K. Papadodimas and S. Raju, Correlation Functions in Holographic Minimal Models, Nucl. Phys. B 856 (2012) 607 [ar**v:1108.3077] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. A. Castro, R. Gopakumar, M. Gutperle and J. Raeymaekers, Conical Defects in Higher Spin Theories, JHEP 02 (2012) 096 [ar**v:1111.3381] [INSPIRE].

    ADS  Google Scholar 

  29. M. Gutperle and P. Kraus, Higher Spin Black Holes, JHEP 05 (2011) 022 [ar**v:1103.4304] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  30. M. Ammon, M. Gutperle, P. Kraus and E. Perlmutter, Spacetime Geometry in Higher Spin Gravity, JHEP 10 (2011) 053 [ar**v:1106.4788] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. A. Castro, E. Hijano, A. Lepage-Jutier and A. Maloney, Black Holes and Singularity Resolution in Higher Spin Gravity, JHEP 01 (2012) 031 [ar**v:1110.4117] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  32. H.-S. Tan, Aspects of Three-dimensional Spin-4 Gravity, JHEP 02 (2012) 035 [ar**v:1111.2834] [INSPIRE].

    Article  ADS  Google Scholar 

  33. M. Blencowe, A consistent interacting massless higher spin field theory in D = (2 + 1), Class. Quant. Grav. 6 (1989) 443 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. A. Campoleoni, S. Fredenhagen, S. Pfenninger and S. Theisen, Asymptotic symmetries of three-dimensional gravity coupled to higher-spin fields, JHEP 11 (2010) 007 [ar**v:1008.4744] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. M. Bañados and R. Caro, Holographic ward identities: Examples from 2 + 1 gravity, JHEP 12 (2004) 036 [hep-th/0411060] [INSPIRE].

    Article  ADS  Google Scholar 

  36. J. Hansen and P. Kraus, Generating charge from diffeomorphisms, JHEP 12 (2006) 009 [hep-th/0606230] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  37. P. Kraus and F. Larsen, Partition functions and elliptic genera from supergravity, JHEP 01 (2007) 002 [hep-th/0607138] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. P. Kraus, Lectures on black holes and the AdS 3 /CF T 2 correspondence, Lect. Notes Phys. 755 (2008) 193 [hep-th/0609074] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  39. D.Z. Freedman, S.D. Mathur, A. Matusis and L. Rastelli, Correlation functions in the CFT(d)/AdS(d + 1) correspondence, Nucl. Phys. B 546 (1999) 96 [hep-th/9804058] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  40. I. Bakas and E. Kiritsis, Bosonic realization of a universal W algebra and Z(infinity) parafermions, Nucl. Phys. B 343 (1990) 185 [Erratum ibid. B 350 (1991) 512] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  41. E. Bergshoeff, C. Pope, L. Romans, E. Sezgin and X. Shen, The super W(infinity) algebra, Phys. Lett. B 245 (1990) 447 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  42. J.M. Figueroa-O’Farrill, J. Mas and E. Ramos, A One parameter family of Hamiltonian structures for the KP hierarchy and a continuous deformation of the nonlinear W(KP) algebra, Commun. Math. Phys. 158 (1993) 17 [hep-th/9207092] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. C. Pope, L. Romans and X. Shen, A new higher spin algebra and the lone star product, Phys. Lett. B 242 (1990) 401 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Perlmutter.

Additional information

ArXiv ePrint: 1111.3926

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ammon, M., Kraus, P. & Perlmutter, E. Scalar fields and three-point functions in D = 3 higher spin gravity. J. High Energ. Phys. 2012, 113 (2012). https://doi.org/10.1007/JHEP07(2012)113

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP07(2012)113

Keywords

Navigation