Log in

Black holes and singularity resolution in higher spin gravity

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We investigate higher spin theories of gravity in three dimensions based on the gauge group SL(N, \( \mathbb{R} \)) × SL(N, \( \mathbb{R} \)). In these theories the usual diffeomorphism symmetry is enhanced to include higher spin gauge transformations under which traditional geometric notions of curvature and causality are no longer invariant. This implies, for example, that apparently singular geometries can be rendered smooth by a gauge transformation, much like the resolution of orbifold singularities in string theory. The classical solutions, including the recently constructed higher spin black hole, are characterized by their holonomies around the non-contractible cycles of space-time. The black hole solutions are shown to be gauge equivalent to a BTZ black hole which is charged under a set of U(1) Chern- Simons fields. Nevertheless, depending on the choice of embedding of the gravitational gauge group, the space-time geometry may be non-trivial. We study in detail the N = 3 example, where this observation allows us to find a gauge where the black hole geometry takes a simple form and the thermodynamic properties can be studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Vasiliev, Progress in higher spin gauge theories, hep-th/0104246 [INSPIRE].

  2. X. Bekaert, S. Cnockaert, C. Iazeolla and M. Vasiliev, Nonlinear higher spin theories in various dimensions, hep-th/0503128 [INSPIRE].

  3. S.R. Coleman and J. Mandula, All possible symmetries of the S matrix, Phys. Rev. 159 (1967) 1251 [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  4. E. Witten, Three-dimensional gravity revisited, ar**v:0706.3359 [INSPIRE].

  5. C. Chamon, R. Jackiw, S.-Y. Pi and L. Santos, Conformal quantum mechanics as the CFT 1 dual to AdS 2 , Phys. Lett. B 701 (2011) 503 [ar**v:1106.0726] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  6. M.R. Gaberdiel and R. Gopakumar, An AdS 3 dual for minimal model CFTs, Phys. Rev. D 83 (2011) 066007 [ar**v:1011.2986] [INSPIRE].

    ADS  Google Scholar 

  7. I. Klebanov and A. Polyakov, AdS dual of the critical O(N ) vector model, Phys. Lett. B 550 (2002) 213 [hep-th/0210114] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  8. E. Sezgin and P. Sundell, Massless higher spins and holography, Nucl. Phys. B 644 (2002) 303 [Erratum ibid. B 660 (2003) 403] [hep-th/0205131] [INSPIRE].

  9. S. Giombi and X. Yin, Higher spin gauge theory and holography: the three-point functions, JHEP 09 (2010) 115 [ar**v:0912.3462] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. S. Giombi and X. Yin, Higher spins in AdS and twistorial holography, JHEP 04 (2011) 086 [ar**v:1004.3736] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  11. L.J. Dixon, J.A. Harvey, C. Vafa and E. Witten, Strings on orbifolds, Nucl. Phys. B 261 (1985) 678 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. L.J. Dixon, J.A. Harvey, C. Vafa and E. Witten, Strings on orbifolds. 2., Nucl. Phys. B 274 (1986) 285 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. E. Witten, On string theory and black holes, Phys. Rev. D 44 (1991) 314 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  14. V. Didenko, A. Matveev and M. Vasiliev, BTZ black hole as solution of 3D higher spin gauge theory, Theor. Math. Phys. 153 (2007) 1487 [hep-th/0612161] [INSPIRE].

    Article  MATH  Google Scholar 

  15. M. Gutperle and P. Kraus, Higher spin black holes, JHEP 05 (2011) 022 [ar**v:1103.4304] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  16. M. Ammon, M. Gutperle, P. Kraus and E. Perlmutter, Spacetime geometry in higher spin gravity, JHEP 10 (2011) 053 [ar**v:1106.4788] [INSPIRE].

    Article  ADS  Google Scholar 

  17. P. Kraus and E. Perlmutter, Partition functions of higher spin black holes and their CFT duals, JHEP 11 (2011) 061 [ar**v:1108.2567] [INSPIRE].

    Article  ADS  Google Scholar 

  18. V. Didenko and M. Vasiliev, Static BPS black hole in 4 d higher-spin gauge theory, Phys. Lett. B 682 (2009) 305 [ar**v:0906.3898] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  19. C. Iazeolla and P. Sundell, Families of exact solutions to Vasiliev’s 4 d equations with spherical, cylindrical and biaxial symmetry, ar**v:1107.1217 [INSPIRE].

  20. C. Aragone and S. Deser, Hypersymmetry in D = 3 of coupled gravity massless spin 5/2 system, Class. Quant. Grav. 1 (1984) L9 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. M. Blencowe, A consistent interacting massless higher spin field theory in D = (2 + 1), Class. Quant. Grav. 6 (1989) 443 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. E. Bergshoeff, M. Blencowe and K. Stelle, Area preserving diffeomorphisms and higher spin algebra, Commun. Math. Phys. 128 (1990) 213 [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. A. Campoleoni, S. Fredenhagen, S. Pfenninger and S. Theisen, Asymptotic symmetries of three-dimensional gravity coupled to higher-spin fields, JHEP 11 (2010) 007 [ar**v:1008.4744] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. A. Achucarro and P. Townsend, A Chern-Simons action for three-dimensional Anti-de Sitter supergravity theories, Phys. Lett. B 180 (1986) 89 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  25. E. Witten, (2 + 1)-Dimensional gravity as an exactly soluble system, Nucl. Phys. B 311 (1988) 46 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. A. Achucarro and P. Townsend, Extended supergravities in D = (2 + 1) as Chern-Simons theories, Phys. Lett. B 229 (1989) 383 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  27. C. Fronsdal, Massless fields with integer spin, Phys. Rev. D 18 (1978) 3624 [INSPIRE].

    ADS  Google Scholar 

  28. B. Binegar, Relativistic field theories in three-dimensions, J. Math. Phys. 23 (1982) 1511 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. S. Deser and R. Jackiw, Statistics without spin: massless D = 3 systems, Phys. Lett. B 263 (1991) 431 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  30. J.M. Maldacena and A. Strominger, AdS 3 black holes and a stringy exclusion principle, JHEP 12 (1998) 005 [hep-th/9804085] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. E.J. Martinec, Conformal field theory, geometry and entropy, hep-th/9809021 [INSPIRE].

  32. S.H. Shenker and X. Yin, Vector models in the singlet sector at finite temperature, ar**v:1109.3519 [INSPIRE].

  33. A. Campoleoni, S. Fredenhagen and S. Pfenninger, Asymptotic W-symmetries in three-dimensional higher-spin gauge theories, JHEP 09 (2011) 113 [ar**v:1107.0290] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. M. Bañados, Global charges in Chern-Simons field theory and the (2 + 1) black hole, Phys. Rev. D 52 (1996) 5816 [hep-th/9405171] [INSPIRE].

    Google Scholar 

  35. M. Bañados, Three-dimensional quantum geometry and black holes, hep-th/9901148 [INSPIRE].

  36. M. Bañados, T. Brotz and M.E. Ortiz, Boundary dynamics and the statistical mechanics of the (2 + 1)-dimensional black hole, Nucl. Phys. B 545 (1999) 340 [hep-th/9802076] [INSPIRE].

    Article  ADS  Google Scholar 

  37. M. Henneaux and S.-J. Rey, Nonlinear W as asymptotic symmetry of three-dimensional higher spin Anti-de Sitter gravity, JHEP 12 (2010) 007 [ar**v:1008.4579] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. M.R. Gaberdiel and T. Hartman, Symmetries of holographic minimal models, JHEP 05 (2011) 031 [ar**v:1101.2910] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnaud Lepage-Jutier.

Additional information

ArXiv ePrint: 1110.4117

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castro, A., Hijano, E., Lepage-Jutier, A. et al. Black holes and singularity resolution in higher spin gravity. J. High Energ. Phys. 2012, 31 (2012). https://doi.org/10.1007/JHEP01(2012)031

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP01(2012)031

Keywords

Navigation