Log in

The AmpliChip™ CYP450 Genoty** Test

Integrating a New Clinical Tool

  • Current Opinion
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

The AmpliChip™ CYP450 Test, which analyzes patient genotypes for cytochrome P450 (CYP) genes CYP2D6 and CYP2C19, is a major step toward introducing personalized prescribing into the clinical environment. Interest in adverse drug reactions (ADRs), the genetic revolution, and pharmacogenetics have converged with the introduction of this tool, which is anticipated to be the first of a new wave of such tools to follow over the next 5–10 years. The AmpliChip™ CYP450 Test is based on microarray technology, which combines hybridization in precise locations on a glass microarray and a fluorescent labeling system. It classifies individuals into two CYP2C19 phenotypes (extensive metabolizers [EMs] and poor metabolizers [PMs]) by testing three alleles, and into four CYP2D6 phenotypes (ultrarapid metabolizers [UMs], EMs, intermediate metabolizers [IMs], and PMs) by testing 27 alleles, including seven duplications.

CYP2D6 is a metabolic enzyme with four activity levels (or phenotypes): UMs with unusually high activity; normal subjects, known as EMs; IMs with low activity; and PMs with no CYP2D6 activity (7% of Caucasians and 1–3% in other ethnic groups). Levels of evidence for the association between CYP2D6 PMs and ADRs are relatively reasonable and include systematic reviews of case-control studies of some typical antipsychotics and tricyclic antidepressants (TCAs). Evidence for other phenotypes is considerably more limited. The CYP2D6 PM phenotype may be associated with risperidone ADRs and discontinuation due to ADRs. Venlafaxine, aripiprazole, duloxetine, and atomoxetine are newer drugs metabolized by CYP2D6 but studies of the clinical relevance of CYP2D6 genotypes are needed. Non-psychiatric drugs metabolized by CYP2D6 include metoprolol, tamoxifen, and codeine-like drugs.

CYP2C19 PMs (3–4% of Caucasians and African Americans, and 14–21% of Asians) may require dose adjustment for some TCAs, moclobemide, and citalopram. Other drugs metabolized by CYP2C19 are diazepam and omeprazole.

The future of pharmacogenetics depends on the ability to overcome serious obstacles, including the difficulties of conducting and publishing studies in light of resistance from grant agencies, pharmaceutical companies, and some scientific reviewers. Assuming more studies are published, pharmacogenetic clinical applications may be compromised by economic factors and the lack of physician education. The combination of a US FDA-approved test, such as the AmpliChip™ CYP450 Test, and an FDA definition of CYP2D6 as a ‘valid biomarker’ makes CYP2D6 genoty** a prime candidate to be the first successful pharmacogenetic test in the clinical environment. One can use microarray technology to test for hundreds of single nucleotide polymorphisms (SNPs) but, taking into account the difficulties for single gene approaches such as CYP2D6, it is unlikely that very complex pharmacogenetic approaches will reach the clinical market in the next 5–10 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Table I
Table II
Fig. 1
Fig. 2
Table III
Table IV
Table V
Table VI

Similar content being viewed by others

References

  1. Lazarou J, Pomeranz BH, Corey PN. Incidence of adverse drug reactions in hospitalized patients. JAMA 1998; 279: 1200–5

    Article  PubMed  CAS  Google Scholar 

  2. Bordet R, Gautier S, Le Louet H, et al. Analysis of the direct cost of adverse drug reactions in hospitalized patients. Eur J Clin Pharmacol 2001; 56: 935–41

    Article  PubMed  CAS  Google Scholar 

  3. Lacoste-Roussillon C, Pouyanne P, Haramburu F, et al. Incidence of serious adverse drug reactions in general practice: a prospective study. Clin Pharmacol Ther 2001;69: 458–62

    Article  PubMed  CAS  Google Scholar 

  4. Lundkvist J, Jonsson B. Pharmacoeconomics of adverse drug reactions. Fundam Clin Pharmacol 2004; 18: 275–80

    Article  PubMed  CAS  Google Scholar 

  5. Edwards IR, Aronson JK. Adverse drug reactions: definitions, diagnosis, and management. Lancet 2000; 356: 1255–9

    Article  PubMed  CAS  Google Scholar 

  6. Pirmohamed M, Breckenridge AM, Kitteringham NR, et al. Adverse drug reactions. BMJ 1998; 316: 1295–8

    Article  PubMed  CAS  Google Scholar 

  7. Classen DC, Pestotnik SL, Evans RS, et al. Adverse drug events in hospitalized patients. JAMA 1997; 277: 301–6

    Article  PubMed  CAS  Google Scholar 

  8. Institute of Medicine: To err is human: building a safer health system. Washington, DC: National Academic Press, 2000

  9. Lasser KE, Allen PD, Woolhandler SJ, et al. Timing of new black box warnings and withdrawals for prescription medications. JAMA 2002 May 1; 287(17): 2215–20

    Article  PubMed  Google Scholar 

  10. Johnson JA, Bootman JL. Drug-related morbidity and mortality: a cost-of-illness model. Arch Intern Med 1995; 155: 1949–56

    Article  PubMed  CAS  Google Scholar 

  11. Ernst FR, Grizzle AJ. Drug-related morbidity and mortality: updating the cost-of-illness model. J Am Pharm Assoc 2001; 41: 192–9

    CAS  Google Scholar 

  12. Chou WH, Yan FX, de Leon J, et al. An extension of a pilot study: impact from the cytochrome P450-2D6 (CYP2D6) polymorphism on outcome and costs in severe mental illness. J Clin Psychopharmacol 2000; 20: 246–51

    Article  PubMed  CAS  Google Scholar 

  13. Collins FS, Green ED, Guttmacher AE, et al. A vision for the future of genomics research. Nature 2003; 422: 835–7

    Article  PubMed  CAS  Google Scholar 

  14. Gibbs N. The secret of life. Time 2003 Feb 17; 161(7): 42–5

    PubMed  Google Scholar 

  15. McKusick VA. The anatomy of the humane genome: a neo-vesalian basis for medicine in the 21st century. JAMA 2001; 286: 2289–95

    Article  PubMed  CAS  Google Scholar 

  16. Fodor SP. Massively parallel genomics. Science 1997; 277: 393–5

    Article  CAS  Google Scholar 

  17. Chaudhuri JD. Gene arrays out of you: the amazing world of microarrays. Med Sci Monit 2005; 11: RA52–62

    PubMed  CAS  Google Scholar 

  18. Emery J, Hayflick S. The challenge of integrating genetic medicine into primary care. BMJ 2001; 322: 1027–30

    Article  PubMed  CAS  Google Scholar 

  19. Hammer W, Sjoqvist F. Plasma levels of monomethylated tricyclic antidepressants during treatment with imipramine-like compounds. Life Sci 1967; 6: 1895–903

    Article  PubMed  CAS  Google Scholar 

  20. Phillips KA, Veenstra DL, Oren E, et al. Potential role of pharmacogenomics in reducing adverse drug reactions: a systematic review. JAMA 2001; 286: 2270–9

    Article  PubMed  CAS  Google Scholar 

  21. Vogel F. Moderne probleme der Humangenetik. Ergeb Inn Med Kinderheilkd 1959; 12: 52–125

    Article  Google Scholar 

  22. Pirmohamed M. Pharmacogenetics and pharmacogenomics. J Clin Pharmacol 2001; 52: 345–7

    CAS  Google Scholar 

  23. Editor: new research horizons. Science 1997; 278: 2039

  24. Lertola J. Deciphering the code and what might come from it. Time 1999 Nov 8; 68-9

  25. Collins FS, McKusick VA. Implications of the human genome project for medical science. JAMA 2001; 285: 540–4

    Article  PubMed  CAS  Google Scholar 

  26. Pirazzoli A, Recchia G. Pharmacogenetics and pharmacogenomics: are they still promising? Pharmacol Res 2004; 49: 357–61

    Article  PubMed  CAS  Google Scholar 

  27. Nebert DW, Jorge-Nebert L, Vesell ES. Pharmacogenomics and “individualized drug therapy”: high expectations and disappointing achievements. Am J Pharmacogenomics 2003; 3: 361–70

    Article  PubMed  Google Scholar 

  28. Ingelman-Sundberg M. Human drug metabolising cytochrome P450 enzymes: properties and polymorphisms. Naunyan Schmiedbergs Arch Pharmacol 2004; 369: 89–104

    Article  CAS  Google Scholar 

  29. Ingelman-Sundberg M. Genetic polymorphisms of cytochrome P450 2D6 (CYP2D6): clinical consequences, evolutionary aspects and functionary diversity. Pharmacogenomics J 2005; 5: 6–13

    Article  PubMed  CAS  Google Scholar 

  30. Mahgoub A, Idle JR, Dring LG, et al. Polymorphic hydroxylation of debrisoquine in man. Lancet 1977; II(8038): 584–6

    Article  Google Scholar 

  31. Eichelbaum M, Spannbrucker N, Dengler HJ. Influence on the defective metabolism of sparteine on its pharmacokinetics. Eur J Clin Pharmacol 1979; 16: 189–94

    Article  PubMed  CAS  Google Scholar 

  32. Skoda RC, Gonzalez FJ, Demierre A, et al. Two mutant alleles of the human cytochrome P-450db1 gene (P450C2D1) associated with genetically deficient metabolism of debrisoquine and other drugs. Proc Natl Acad Sci U S A 1988; 85: 5240–3

    Article  PubMed  CAS  Google Scholar 

  33. Heim M, Meyer UA. Genoty** of poor metabolisers of debrisoquine by allele-specific PCR amplification. Lancet 1990; 336: 529–32

    Article  PubMed  CAS  Google Scholar 

  34. Bertilsson L, Dahl ML, Sjoqvist F, et al. Molecular basis for rational megaprescribing in ultrarapid hydroxylators of debrisoquine. Lancet 1993; 341: 63

    Article  PubMed  CAS  Google Scholar 

  35. Johansson I, Oscarson M, Yue QY, et al. Genetic analysis of the Chinese cytochrome P4502D locus: characterization of variant CYP2D6 genes present in subjects with diminished capacity for debrisoquine hydroxylation. Mol Pharmacol 1994; 271: 1250–7

    Google Scholar 

  36. Chou WH, Yan FX, Robbins-Weilert DK, et al. Comparison of two CYP2D6 genoty** methods and assessments of genotype-phenotype relationships. Clin Chem 2003; 49: 542–51

    Article  PubMed  CAS  Google Scholar 

  37. Lovlie R, Daly AK, Matre GE, et al. Polymorphisms in CYP2D6 duplicationnegative individuals with the ultrarapid metabolizer phenotype: a role for the CYP2D6*35 allele in ultrarapid metabolism? Pharmacogenetics 2001; 11: 45–55

    Article  PubMed  CAS  Google Scholar 

  38. Kirchheiner J, Nickchen K, Bauer M, et al. Pharmacogenetics of antidepressants and antipsychotics: the contribution of allelic variations to the phenotype of drug response. Mol Psychiatry 2004; 9: 442–73

    Article  PubMed  CAS  Google Scholar 

  39. deLeon J, Armstrong SC, Cozza KL. Clinical guidelines for psychiatrists for the use of pharmacogenetic testing for CYP450 2D6 and CYP450 2C19. Psychoso-matics 2006; 47: 75–85

    Article  Google Scholar 

  40. Arthur H, Dahl ML, Siwers B, et al. Polymorphic drug metabolism in schizophrenic patients with tardive dyskinesia. J Clin Psychopharmacol 1995; 15: 211–6

    Article  PubMed  CAS  Google Scholar 

  41. Armstrong M, Daly AK, Blennerhassett R, et al. Antipsychotic drug-induced movement disorders in schizophrenics in relation to CYP2D6 genotype. Br J Psychiatry 1997; 170: 23–6

    Article  PubMed  CAS  Google Scholar 

  42. Pollock BG, Mulsant BH, Sweet RA, et al. Prospective cytochrome P450 phenoty** for neuroleptic treatment in dementia. Psychopharmacol Bull 1995; 31: 327–32

    PubMed  CAS  Google Scholar 

  43. Bork J, Rogers T, Wedlund P, et al. A pilot study of risperidone metabolism: the role of cytochrome P450 2D6 and 3A. J Clin Psychiatry 1999; 60: 469–76

    Article  PubMed  CAS  Google Scholar 

  44. Bertilsson L, Aberg-Wistedt A, Gustafsson LL, et al. Extremely rapid hydroxylation of debrisoquine: a case report with implication for treatment with nortriptyline and other tricyclic antidepressants. Ther Drug Monit 1985; 7: 478–80

    Article  PubMed  CAS  Google Scholar 

  45. Chen S, Chou W, Blouin R, et al. Clinical and practical aspects to screening for the cytochrome P450-2D6 (CYP2D6) enzyme polymorphism. Clin Pharmacol Ther 1996; 60: 522–34

    Article  PubMed  CAS  Google Scholar 

  46. Krau RP, Diaz P, McEachran A. Managing rapid metabolizers of antidepressants. Depress Anxiety 1996–1997; 4: 320–7

    Google Scholar 

  47. Spina E, Gitto C, Avenoso A, et al. Relationship between plasma desipramine levels, CYP2D6 phenotype and clinical response to desipramine: a prospective study. Eur J Clin Pharmacol 1997; 51: 395–8

    Article  PubMed  CAS  Google Scholar 

  48. Meyer JW, Woggon B, Küpfer A. Importance of oxidative polymorphism on clinical efficacy and side-effects of imipramine: a retrospective study. Pharmacopsychiatry 1988; 21: 365–6

    Article  PubMed  CAS  Google Scholar 

  49. Kirchheiner J, Brøsen K, Dahl ML, et al. CYP2D6 and CYP2C19 genotyped-based recommendations for antidepressants: a first step towards subpopulation-specific dosages. Acta Psychiatr Scand 2001; 104: 173–92

    Article  PubMed  CAS  Google Scholar 

  50. Kirchheiner J, Bertilsson L, Brass H, et al. Individualized medicine: implementation of pharmacogenetic diagnostics antidepressant drag treatment of major depressive disorders. Pharmacopsychiatry 2003; 36(3 Suppl.): S235–43

    PubMed  CAS  Google Scholar 

  51. deLeon J, Barnhill J, Rogers T, et al. A pilot study of the cytochrome P450-2D6 genotype in a psychiatric state hospital. Am J Psychiatry 1998; 155: 1278–80

    PubMed  Google Scholar 

  52. Huang M, VanPeer A, Woestenborghs R, et al. Pharmacokinetics of the novel antipsychotic agent risperidone and the prolactin response in healthy subjects. Clin Pharmacol Ther 1993; 54: 257–68

    Article  PubMed  CAS  Google Scholar 

  53. deLeon J, Bork JA. Risperidone and the cytochrome P450 3A [letter]. J Clin Psychiatry 1997; 58: 450

    Article  PubMed  Google Scholar 

  54. Fang J, Bourin M, Baker GB. Metabolism of risperidone to 9-hydroxyrisperidone by human cytochromes P450 2D6 and 3A4. Naunyn Schmiedebergs Arch Pharmacol 1999; 359: 147–51

    Article  PubMed  CAS  Google Scholar 

  55. Cappell K, Arndt M, Carey J. Drags get smart. Business Week 2005 Sep 5; 76-85

  56. Emens LA. Trastuzumab: targeted therapy for the management of HER-2/neuoverexpressing metastatic breast cancer. Am J Ther 2005; 12: 243–53

    PubMed  Google Scholar 

  57. Adams GP, Weiner LM. Monoclonal antibody therapy of cancer. Nat Biotechnol 2005; 23: 1147–57

    Article  PubMed  CAS  Google Scholar 

  58. Iyer L. Inherited variations in drug-metabolizing enzymes: significance in clinical oncology. Mol Diagn 1999; 4: 327–33

    Article  PubMed  CAS  Google Scholar 

  59. US Food and Drug Administration. FDA clears genetic test that advances personalized medicine: test helps determine safety of drug therapy [online]. Available from URL: http://www.fda.gov/bbs/topics/NEWS/2005/NEW01220.html [Accessed 2005 Oct 17]

  60. MacArthur RD. An updated guide to genotype interpretation. AIDS Read 2004; 14: 256–8, 261-4, 266

    PubMed  Google Scholar 

  61. Sturmer M, Doerr HW, Preiser W. Variety of interpretation systems for human immunodeficiency virus type 1 genoty**: confirmatory information or additional confusion? Curr Drug Targets Infect Disord 2003; 3: 373–82

    Article  PubMed  CAS  Google Scholar 

  62. deLeon J, Susce MT, Pan RM. The CYP2D6 poor metabolizer phenotype may be associated with risperidone adverse drug reactions and discontinuation. J Clin Psychiatry 2005; 66: 15–27

    Article  PubMed  Google Scholar 

  63. Barnhill J, Susce MT, Diaz FJ, et al. Risperidone half-life in a patient taking paroxetine: a case report [letter]. Pharmacopsychiatry 2005; 38(5): 223–5

    Article  PubMed  CAS  Google Scholar 

  64. Wang JS, Ruan Y, Taylor RM, et al. The brain entry of risperidone and 9-hydroxyrisperidone is greatly limited by p-glycoprotein. Int J Neurop-sychopharmacol 2004; 7: 415–9

    Article  CAS  Google Scholar 

  65. Tyndale RF, Droll KP, Sellers EM. Genetically deficient CYP2D6 metabolism provides protection against oral opiate dependence. Pharmacogenetics 1997; 7: 375–9

    Article  PubMed  CAS  Google Scholar 

  66. deLeon J, Dinsomore L, Wedlund PJ. Adverse drug reactions to oxycodone and hydrocodone in CYP2D6 ultrarapid metabolizers [letter]. J Clin Psychopharmacol 2003; 23: 420–1

    Article  PubMed  Google Scholar 

  67. Wuttke H, Rau T, Heide R, et al. Increased frequency of cytochrome P450 2D6 poor metabolizers among patients with metoprolol-associated adverse effects. Clin Pharmacol Ther 2002; 72: 429–37

    Article  PubMed  CAS  Google Scholar 

  68. ** Y, Desta Z, Stearns V, et al. CYP2D6 genotype, antidepressant use, and tamoxifen metabolism during adjuvant breast cancer treatment. J Natl Cancer Inst 2005; 97: 30–9

    Article  PubMed  CAS  Google Scholar 

  69. Wedlund PJ. The CYP2C19 enzyme polymorphism. Pharmacology 2000; 6: 174–85

    Article  Google Scholar 

  70. Furuta T, Ohashi K, Kamata T, et al. Effect of genetic differences in omeprazole metabolism on cure rates for Helicobacter pylori infection and peptic ulcer. Ann Intern Med 1998; 129: 1027–30

    PubMed  CAS  Google Scholar 

  71. Steimer W, Zoph K, Von Amelunxen S, et al. Amitriptyline or not, that is the question: pharmacogenetic testing of CYP2D6 and CYP2C19 identifies patients with low or high risk for side effects in amitriptyline therapy. Clin Chem 2005; 51: 376–85

    Article  PubMed  CAS  Google Scholar 

  72. Daly AK. Development of analytical technology in pharmacogenetic research. Naunyn Schmiedebergs Arch Pharmacol 2004; 369: 133–40

    Article  PubMed  CAS  Google Scholar 

  73. Roche Molecular Systems Inc. AmpliChip CYP450 Test for in vitro diagnostic use [equivalent to the package insert]. Branchburg (NJ): Roche Molecular Systems Inc., 2005

    Google Scholar 

  74. Ensom MH, Chang TK, Patel P. Pharmacogenetics: the therapeutic drug monitoring of the future? Clin Pharmacokinet 2001; 40: 783–802

    Article  PubMed  CAS  Google Scholar 

  75. Touw DJ, Neef C, Thomson AH, et al. Cost-effectiveness of therapeutic drug monitoring: a systematic review. Ther Drug Monit 2005; 27: 10–7

    Article  PubMed  CAS  Google Scholar 

  76. Greenhalgh T. How to read a paper: papers that report diagnostic or screening test. BMJ 1997; 315: 540–3

    Article  PubMed  CAS  Google Scholar 

  77. Blue Cross and Blue Shield Association. Special report: genoty** for cyto-chrome P450 polymorphisms to determine drug-metabolizer status [online]. Technical Assessment Program 2004 Dec; 19 (9). Available from URL: http://www.bcbs.com/tec/voll9/19._09.pdf [Accessed 2005 Sep 13]

  78. Bortolin S, Black M, Modi H, et al. Analytical validation of the Tag-It high throughput microsphere-based universals array genoty** platform: application to the multiplex detection of a panel of thrombophilia-associated single-nucleotide polymorphisms. Clin Chem 2004; 50: 2028–36

    Article  PubMed  CAS  Google Scholar 

  79. Wolf CR, Smith G, Smith RL. Science, medicine, and the future: pharmacogenetics. BMJ 2000; 320: 987–90

    Article  PubMed  CAS  Google Scholar 

  80. Weinshilboum R, Wang L. Pharmacogenomics: bench to bedside. Nat Rev 2004; 3: 739–48

    Article  CAS  Google Scholar 

  81. Pharmacogenomics to come [editorial]. Nature 2003; 425: 749

  82. Inouye SK, Fiellin D. An evidence-based guide to writing grant proposals for clinical research. Ann Intern Med 2005; 142: 274–82

    PubMed  Google Scholar 

  83. deLeon J, Armstrong SC, Cozza KL. Med-psych drug-drug interaction update: the dosing of atypical antipsychotics. Psychosomatics 2005; 46: 262–73

    Article  PubMed  Google Scholar 

  84. Sadee W. Pharmacogenomics: the implementation phase. AAPS PharmSci 2002; 4(2): E5.

    Article  PubMed  Google Scholar 

  85. Kerwin RW. A perspective on progress in pharmacogenomics. Am J Pharmacogenomics 2003; 3: 371–3

    Article  PubMed  Google Scholar 

  86. Danzon P, Towse A. The economics of gene therapy and of pharmacogenetics. Value Health 2002; 5: 5–13

    Article  PubMed  Google Scholar 

  87. US Department of Health and Human Services, Food and Drug Administration. Drug-diagnostic co-development: concept paper [online]. Available from URL: http://www.fda.gov/cder/genomics/pharmacoconceptfn.pdf [Accessed 2005 Jun 10]

  88. Gill CJ, Sabin L, Schmid CH. Why clinicians are natural Bayesians. BMJ 2005; 330: 1080–3

    Article  PubMed  Google Scholar 

  89. Botts S, Littrell R, de Leon J. Variables associated with high olanzapine dosing in a state hospital. J Clin Psychiatry 2004; 65: 1138–43

    Article  PubMed  Google Scholar 

  90. Choudry NT, Fletcher RH, Soumerai SB. Systematic review: the relationship between clinical experience and quality of health care. Ann Intern Med 2005; 142: 260–73

    Google Scholar 

  91. Gurtwitz D, Weizman A, Rehavi M. Education: teaching pharmacogenomics to prepare future physicians and researchers for personalized medicine. Trends Pharmacol Sci 2003; 24: 122–5

    Article  Google Scholar 

  92. Alfaro CL, Lam YW, Simpson J, et al. CYP2D6 status of extensive metabolizers after multiple-dose fluoxetine, fluvoxamine, paroxetine, or sertraline. J Clin Psychopharmacol 1999; 19: 155–63

    Article  PubMed  CAS  Google Scholar 

  93. Susce MT, Murray-Carmichael E, de Leon J. Response to hydrocodone, codeine and oxycodone in a CYP2D6 poor metabolizer. Prog NeuroPsychopharmacol Biol Psychiatry 2006 Apr 20; [Epub ahead of print].

  94. Kirchheiner J, Brockmoller J. Clinical consequences of cytochrome P450 2C9 polymorphisms. Clin Pharmacol Ther 2005; 77: 1–16

    Article  PubMed  CAS  Google Scholar 

  95. Veenstra DL, Higashi MK. Assessing the cost-effectiveness of pharmacogenomics. AAPS Pharmsci 2000; 2: 1–11

    Article  Google Scholar 

  96. Corominas H, Baiget M. Clinical utility of thiopurine S-methyltransferase genoty**. Am J Pharmacogenomics 2004; 4: 1–8

    Article  PubMed  CAS  Google Scholar 

  97. Ruano G. Quo vadis personalized medicine. Personalized Med 2004; 1: 1–7

    Article  Google Scholar 

  98. Wedlund PJ, deLeon J. Pharmacogenetic testing: the cost factor. Pharmacogenomics J 2001; 1: 171–4

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The genoty** studies of psychiatric patients included in this article were conducted at the University of Kentucky Mental Health Research Center at Eastern State Hospital, Lexington, Kentucky, USA.

Jose de Leon, M.D., has received support for his laboratory and research-initiated grants and honoraria from Roche-Molecular Systems, Inc., but has not received any consultant payments and has no other financial arrangements with Roche Molecular Systems, Inc. He has no stocks from Roche or Affymetrix. Dr de Leon has also served on an advisory board for Bristol-Myers Squibb, and has received researcher-initiated grants and honoraria from Eli Lilly. Many of the ideas presented in this article are the distillation of years of discussion and collaboration of Jose de Leon with Dr Walter Koch. The authors thank Lorraine Maw, Tita Forrest and Michele Nikoloff for editorial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose de Leon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Leon, J., Susce, M.T. & Murray-Carmichael, E. The AmpliChip™ CYP450 Genoty** Test. Mol Diag Ther 10, 135–151 (2006). https://doi.org/10.1007/BF03256453

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03256453

Keywords

Navigation