Log in

Critical reactions in ripening of cheeses

A kinetic analysis

  • Session 1 Thermal, Chemical, and Biological Processing
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A mathematical model has been developed for the key reactions taking place during cheese ripening. It includes growth and lysis of cells in the cheese matrix, cell-wall bound proteinases and intracellular peptidases that are released into cheese upon cell lysis, and the production of peptides and amino acids from casein in cheese. The model parameters have been estimated using published experimental data for cheddar cheese, and model simulations have been conducted to suggest effective means of reducing ripening times of cheeses. The time required for ripening of cheeses can be significantly reduced by carefully controlling the cell numbers at the beginning of cheese ripening and their proteinase and peptidase activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A:

amount of casein/g of cheese, mg/g

b11 :

growth associated lactic acid formation, mg lactic acid/cfu

b12 :

nongrowth-associated lactic acid formation rate, mg lactic add/(cfu·day)

B:

amount of dipeptides/g of casein, mg/g

C:

amount of amino acids/g cheese, mg/g

e1 :

specific proteinase activity relative to that at the beginning of ripening

e1, o :

units of proteinase/cell at the beginning of ripening, U/cfu

E1 :

proteinase activity in the cheese matrix, U/g cheese

E2 :

dipeptidase activity in the cheese matrix, U/g cheese

k1 :

specific rate of degradation of proteinases, day−1

k2 :

specific rate of degradation of extracellular peptidases, day−1

kl :

specific rate of lysis of cells in cheese matrix, day−1

KA :

Michaelis-Menten constant for proteinase activity, mg/g

KB :

Michaelis-Menten constant for dipeptidase activity, mg/g

K1 :

Monod’s constant for cell growth on lactose, mg/g

L:

amount of lactose in cheese, mg lactose/g cheese

t:

ripening time, h

U:

amount of enzyme that gives rise to 1 Μmol product/min; also unit function

Vb :

maximum dipeptidase activity, mg amino acids/(U·day)

Vf :

maximum proteinase activity, mg casein/(U·day)

X:

number of cells in cheese, cfu/g cheese

Yx :

yield of cells on lactose, cfu/mg lactose

Yp :

yield of lactic acid on lactose, mg lactic acid/mg lactose

α1 :

proteinase activity in the cells, U/cfu

α2 :

dipeptidase activity/cell, U/cfu

Μm :

maximum specific growth rate of cells, day−1

intra:

intracellular amount/cell

total:

total amount/g cheese block

crit:

critical value

References

  1. Abu-Tarboush, H.M. (1987), Protease and peptidase activities of lactic streptococci as indicators of suitability in cheese ripening, Ph.D. thesis. University of Missouri, Columbia.

    Google Scholar 

  2. Law, B. A., Castanon, M. J., and Sharpe, M. E. (1976),J. Dairy Res. 43, 117, 301.

    CAS  Google Scholar 

  3. Law, B. A., Sharpe, M. E., and Reiter, B. (1974),J. Dairy Res. 41, 137.

    CAS  Google Scholar 

  4. Reiter, B. and Sharpe, M. E. (1971),J. Appl. Bacteriol. 34, 63.

    CAS  Google Scholar 

  5. Basch, J. J., Farrell, H. M., Walsh, Jr., R. A., Konstance, R. P., and Kumosinski, T. F. (1989),J. Dairy Sci. 72, 591.

    CAS  Google Scholar 

  6. Aston, J. W., Durward, I. G., and Dulley, J. R. (1983),Aust. J. Dairy Technol. 38, 59.

    CAS  Google Scholar 

  7. Aston, J. W., Giles, J. E., Durward, I. G., and Dulley, J. R. (1985),J. Dairy Res. 52, 565.

    Google Scholar 

  8. Aston, J. W., Grieve, P. A., Durward, I. G., and Dulley, J. R. (1983),Aust. J. Dairy Technol. 38, 59.

    CAS  Google Scholar 

  9. Broome, M. C., Krause, D. A., and Hickey, M. W. (1990),Aust. J. Dairy Technol. 45, 67.

    Google Scholar 

  10. Grieve, P. A. and Dulley, J. R. (1983),Aust. J. Dairy Technol. 38, 49.

    CAS  Google Scholar 

  11. Kristoffersen, T. and Gould, I. A. (1960),J. Dairy Sci. 43, 1202.

    CAS  Google Scholar 

  12. Marsili, R. (1985),J. Dairy Sci. 68, 3155.

    CAS  Google Scholar 

  13. Oberg, C.J., Davis, L. H., Richardson, G. H. and Ernstrom, C. A. (1985),J. Dairy Sci. 69, 2975.

    Google Scholar 

  14. Sood, V. K. and Kosikowski, F. V. (1979),J. Food Sci. 44, 1690.

    Article  CAS  Google Scholar 

  15. Sood, V. K. and Kosikowski, F. V. (1979),J. Dairy Sci. 62, 1865.

    CAS  Google Scholar 

  16. Weaver, J. C. and Kroger, M. (1978),J. Food Sci. 43, 579.

    Article  CAS  Google Scholar 

  17. Lawrence, R. C., Creamer, L. K., and Gills, J. (1987),J. Dairy Sci. 70, 1748.

    CAS  Google Scholar 

  18. Law, G. A. and Kolstad, J. (1983),Antonie van Leeuwenhoek. 49, 225.

    Article  CAS  Google Scholar 

  19. Thomas, T. D. and Mills, O. E. (1981),Neth. Milk Dairy J. 35, 255.

    CAS  Google Scholar 

  20. Exterkate, F. A. and De Veer, G. J. C. M. (1985),Appl. Env. Microbiol. 49, 328.

    CAS  Google Scholar 

  21. Geis, A., Bockelmann, E., and Teuber, M. (1985),Appl. Microbiol. Biotechnol. 23, 79.

    Article  CAS  Google Scholar 

  22. Hugenholtz, J., Exterkate, F., and Konings, W. N. (1984),Appl. Environ. Microbiol. 48, 1105.

    CAS  Google Scholar 

  23. Mills, O. E. and Thomas, T. D. (1978), N. Z.J. Dairy Sci. Technol. 13, 209.

    CAS  Google Scholar 

  24. Exterkate, F. A. (1984),Appl. Env. Microbiol. 47, 177.

    CAS  Google Scholar 

  25. Law, B. A. (1979),J. Appl. Bacteriol. 46, 455.

    CAS  Google Scholar 

  26. Ohmiya, K. and Sato, Y. (1970),Agri. Biol. Chem. 34, 457.

    CAS  Google Scholar 

  27. Ohmiya, K. and Sato, Y. (1970),Agri. Biol. Chem. 34, 1463.

    CAS  Google Scholar 

  28. Reiter, B., Fryer, T. F., Pickering, A., Chapman, H. R., Lawrence, R. C. and Sharpe, M. E. (1967),J. Dairy Res. 34, 257.

    CAS  Google Scholar 

  29. Schmit, R. H., Morris, H. A., Catberg, H. B., and McKay, L. L. (1976), J.Agri. Food Chem. 24, 1106.

    Article  Google Scholar 

  30. Vedamuthu, E. R. and Washam, C. (1980), inBiotechnology, Rehm, H. J. and Reed, G., eds., vol. 5, pp. 231–313.

  31. McGugan, W. A., Emmons, D. B., and Larmond, E. (1979),J. Dairy Sci. 62, 398.

    CAS  Google Scholar 

  32. Harper, W. J. (1959),J. Dairy Sci. 42, 207.

    Google Scholar 

  33. Harper, W. J. (1949), inProc. XIIth Intern. Dairy Congr. (II) (2), 147.

  34. Jarrett, W. D., Aston, J. W., and Dulley, J. R. (1982),Aust. J. Dairy Technol. 37, 55.

    CAS  Google Scholar 

  35. Kosikowski, F. V. (1951),J. Dairy Sci. 34, 235.

    Google Scholar 

  36. Kristoffersen, T. and Gould, I. A. (1960),J. Dairy Sci. 43, 1202.

    CAS  Google Scholar 

  37. Mulder, H. (1952),Neth. Milk Dairy J. 6, 157.

    CAS  Google Scholar 

  38. Keeney, M. and Day, E. A. (1957),J. Dairy Sci. 40, 874.

    Article  CAS  Google Scholar 

  39. Kristoffersen, T. (1967),J. Dairy Sci. 50, 279.

    CAS  Google Scholar 

  40. Kristoffersen, T. and Gould, I. A. (1958),J. Dairy Sci. 41, 717.

    Google Scholar 

  41. Law, B. A. and Wigmore, A. (1982),J. Dairy Res. 49, 137.

    CAS  Google Scholar 

  42. Manning, D. J. (1974),J. Dairy Res. 41, 81.

    CAS  Google Scholar 

  43. Manning, D. J. (1978),J. Dairy Res. 45, 479.

    CAS  Google Scholar 

  44. Manning, D. J. and Price, J. C. (1977),J. Dairy Res. 44, 357.

    Article  CAS  Google Scholar 

  45. Patton, S., Wong, N. P., and Forss, D. A. (1958),J. Dairy Sci. 41, 857.

    CAS  Google Scholar 

  46. Walker, J. R. L. (1961),J. Dairy Res. 28, 1.

    CAS  Google Scholar 

  47. Dawson, D. J. and Feagan, J. T. (1957),J. Dairy Res. 24, 210.

    Google Scholar 

  48. Ney, K. H. J. (1979), inFood Taste Chemistry, Boudreau, J. C., ed., ACS Symp.115, 149.

  49. Stadhouders, J., Hup, G., Exterkate, F. A., and Visser, S. (1983),Neth. Milk Dairy J. 37, 157.

    CAS  Google Scholar 

  50. Sullivan, J. J. and Jago, G. R. (1972),Aust. J. Dairy Technol. 27, 98.

    CAS  Google Scholar 

  51. Stadhousers, J. (1960),Neth. Milk Dairy J. 14, 106.

    Google Scholar 

  52. Kim, J. Marshall, R., and Bajpai, R. K. (1993),Appl. Biochem. Biotechnol. 39, 265.

    Article  Google Scholar 

  53. Kaminogawa, S., Ninomiya, T. and Yamauchi, K. (1984),J. Dairy Sci. 67, 2483.

    CAS  Google Scholar 

  54. O’Keeffe, R.B., Fox, P. F., and Daly, C. (1976),J. Dairy Res. 43, 97.

    Article  CAS  Google Scholar 

  55. Thomas T. D. and Pritchard, G. G. (1987),FEMS Microbio. Rev. 46, 245.

    Article  CAS  Google Scholar 

  56. Fox, P. F. (1981),Neth. Milk Dairy. J. 35, 233.

    CAS  Google Scholar 

  57. Law, B. A. and Sharpe, M. E. (1977),Dairy Ind. Int. 42, 10.

    CAS  Google Scholar 

  58. Stadhouders, J. and Veringa, H. A. (1973),Neth. Milk Dairy J. 27, 77.

    Google Scholar 

  59. Kinsella, J. E. and Flox, P. F. (1986),Critical Rev. Food Sci. Nutr. 24, 91.

    Article  CAS  Google Scholar 

  60. Kim, J. K. (1991), Kinetic studies of starter fermentations and modelling of critical reactions in cheese production, Ph.D. Thesis, Chemical Engineering Dept., University of Missouri, Columbia.

    Google Scholar 

  61. Hanson, T. P. and Tsao, G. T. (1972),Biotechnol. Bioeng. 14, 233.

    Article  CAS  Google Scholar 

  62. Jorgensen, N. H. and Nikolajsen, K. (1987),Appl. Microbiol. Biotechnol. 25, 313.

    Article  Google Scholar 

  63. Reiter, B., Fryer, T. F., Sharpe, M. E. and Lawrence, R. C. (1966),J. Appl. Bacteriol. 29, 231.

    CAS  Google Scholar 

  64. Nihtila, M. and Virkkunen, J. (1977),Biotech. Bioeng. 19, 1831.

    Article  CAS  Google Scholar 

  65. Castle, A. V. and Wheelock, J. V. (1972),J. Dairy Res. 39, 15.

    CAS  Google Scholar 

  66. Hwang, I. K., Kaminogawa, S., and Yamauchi, K. (1982),Agric. Biol. Chem. 46, 3049.

    CAS  Google Scholar 

  67. Mills, O.E. and Thomas, T. D. (1980),N.Z. J. Dairy Sci. Technol. 15, 131.

    CAS  Google Scholar 

  68. Petterson, H. E. and Sjostrom, G. (1975),J. Dairy Res. 42, 313.

    Google Scholar 

  69. Fox, P. F. (1987), inCheese: Chemistry, Physics, and Microbiology, vol. 2: Major Cheese Groups. Elsevier Applied Science, New York.

    Google Scholar 

  70. Lawrence, R. C. and Gilles, J. (1987), inCheese: Chemistry, Physics and Microbiology, vol. 2, Fox, P. F., ed., pp. 1–44.

  71. Rogers, P. L., Bramall, L., and McDonald, I. J. (1978),Can. J. Microbiol. 24, 372.

    Article  CAS  Google Scholar 

  72. Pirt, S. J. (1975),Principles of Microbe and Cell Cultivation, Wiley, New York.

    Google Scholar 

  73. Turner, K. W. and Thomas, T. D. (1980),N. Z. J. Dairy Sci. 15, 265.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J.K., Starzak, M., Preckshot, G.W. et al. Critical reactions in ripening of cheeses. Appl Biochem Biotechnol 45, 51–68 (1994). https://doi.org/10.1007/BF02941787

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02941787

Index Entries

Navigation