Log in

The ultrastructure of the posterior gut and caecum inAlona affinis (Crustacea, Cladocera)

  • Published:
Zoomorphology Aims and scope Submit manuscript

Summary

The posterior midgut, the anterior hindgut and the caecum ofAlona affinis were studied by transmission electron microscopy. The caecum arises from the junction of the entodermal midgut and the ectodermal hindgut. It consists of gastrodermis and epidermis. Because of the ultrastructural similarity of the caecum with the posterior midgut and the anterior hindgut it is concluded that the caecum is a functional supplement of the latter gut parts. But the functional significance of these gut parts is poorly understood. Some ultrastructural features suggest that they contribute in excretion and salt regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Au :

autolysosome

Ba :

bacteria

Bl :

basal lamina

Ca :

canaliculi

Cae :

caecum

Crc :

crypt cell

Cu :

cuticle

Ec :

epicuticle

Ep :

epidermis

G :

Golgi complex

Hae :

hemolymph

Hc :

head cell

La :

basal labyrinth

Lu :

gut lumen

lMv :

long microvilli

Mg :

midgut

Mi :

mitochondria

mC :

mitochondria rich cell

nBc :

new border cell

Nc :

neck cell

Nu :

nucleus

oBc :

old border cell

Pc :

procuticle

pMe :

peritrophic membrane

pMg :

posterior midgut

Rm :

ring muscle

S :

secretion (? uncertain)

sMv :

short microvilli

vC :

vacuolated cell

References

  • Croghan PC (1958) The mechanism of osmotic regulation inArtemia salina (L.): The physiology of the gut. J Exp Biol 35:243–249

    Google Scholar 

  • Coruzzi L, Witkus R, Vernon GM (1982) Function-related structural characters and their modifications in the hindgut epithelium of two terrestrial isopods,Armadillidium vulgare andOniscus asellus. Exp Cell Biol 50:229–240

    Google Scholar 

  • Dall W (1967) The functional anatomy of the digestive tract of a shrimpMetapenaeus bennettae Racek and Dall (Crustacea, Decapoda, Penaeidae). Aust J Zool 15:699–714

    Google Scholar 

  • Diamond JM, Bossert WM (1967) Standing-gradient osmotic flow. A mechanism for coupling of water and solute transport in epithelia. J Gen Physiol 50:2061–2083

    Google Scholar 

  • Fox HM (1952) Anal and oral intake of water by Crustacea. J Exp Biol 29:583–599

    Google Scholar 

  • Fryer G (1969) Tubular and glandular organs in the Cladocera, Chydoridae. Zool J Linn Soc 48:1–8

    Google Scholar 

  • Fryer G (1970) Defaecation in some macrothricid and chydorid cladocerans, and some problems of water intake and digestion in the Anomopoda. Zool J Linn Soc 49:255–269

    Google Scholar 

  • Geddes MC (1975) Studies on an Australien brine shrimp,Parartemia zietziana Sayce (Crustacea: Anostraca) — III. The mechanisms of osmotic and ionic regulation. Comp Biochem Physiol 51A: 573–578

    Google Scholar 

  • Graf T, Michaut P (1980) Fine structure of the midgut posterior caecum in the crustaceanOrchestia in intermolt: Recognition of two distinct segments. J Morphol 165:261–284

    Google Scholar 

  • Ito S, Winchester RJ (1963) The fine structure of the gastric mucosa in the bat. J Cell Biol 16:541–577

    Google Scholar 

  • Mantel LH, Farmer LL (1983) Osmotic and ionic regulation. In: Bliss DE (ed) The biology of Crustacea, vol 5. Academic Press, New York, pp 53–161

    Google Scholar 

  • Muramato A (1978) Relationship between anal intake of water and anal rhythm in the crayfish. Comp Biochem Physiol 61a:685–688

    Google Scholar 

  • Musko IB (1986) Ultrastructure of epithelial cells in the alimentary canal ofCyclops vicinus vicinus Ulianine, 1875 (Crustacea, Copepoda). Zool Anz 217:374–383

    Google Scholar 

  • Musko IB (1988) Ultrastructural studies on the alimentary tract ofEudiaptomus gracilis (Copepoda, Calanoida). Zool Anz 220:152–162

    Google Scholar 

  • Mykles DL (1979) Ultrastructure of alimentary epithelia of Lobsters,Homarus americanus andH. gammarus, and crab,Cancer magister. Zoomorphologie 92:201–215

    Google Scholar 

  • Ong JE, Lake PS (1969) The ultrastructural morphology of the midgut diverticulum of the calanoid copepodCalanus helgolandicus (Claus) (Crustacea). Aust J Zool 18:9–20

    Google Scholar 

  • Oschman JL, Berridge MJ (1970) Structural and functional aspects of salivary fluid secretion inCalliphora. Tissue Cell 22:281–310

    Google Scholar 

  • Smirnow NN (1974) Fauna of the U.S.S.R Crustaceae. vol 1, number 2, Chydoridae. Keter Publishing House, Jerusalem

    Google Scholar 

  • Smith RI (1978) The midgut caeca and the limits of the hindgut of Brachyura: a clarification. Crustaceana 35:195–205

    Google Scholar 

  • Smith WJ, Witkus ER, Grillo RS (1969) Structural adaptation for ion and water transport in the hindgut of the woodlouseOniscus asellus. J Cell Biol 43:135a-136a

    Google Scholar 

  • Sullivan DS, Bisalputra T (1980) The morphology of a harpacticoid copepod gut: A review and synthesis. J Morphol 164:89–105

    Google Scholar 

  • Talbot P, Clark WH, Lawrence AL (1972) Fine structure of the midgut epithelium in the develo** brown shrimp,Penaeus aztecus. J Morphol 138:467–486

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Günzl, H. The ultrastructure of the posterior gut and caecum inAlona affinis (Crustacea, Cladocera). Zoomorphology 110, 139–144 (1991). https://doi.org/10.1007/BF01632870

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01632870

Keywords

Navigation