Multifaceted Plant-Associated Microbes and Their Mechanisms Diminish the Concept of Direct and Indirect PGPRs

  • Chapter
  • First Online:
Plant Microbe Symbiosis: Fundamentals and Advances

Abstract

It is an old saying that when we take from nature, we have to give back also; this give-and-take phenomenon leads to sustainability and is important for growth of a relationship. This is also applicable in plant–microbial world. The association of microbes with plants can be exploited and used to gain the benefits not only for the associated organisms but also for the ecosystem as a whole. When we view it in a holistic way, it is clear that multifaceted and diverse mechanisms of plant-associated microbes (PAMs) participate in promoting plant growth; protecting plant health; strengthening plant–microbe association under stress-, pollutant-, or contaminant-affected conditions; and protecting plants from the attack of phytopathogens through biological control. The multiple functions performed by microbes in the vicinity of plants (rhizosphere, phyllosphere, or other regions) are extremely interwoven and interlinked and are inseparable from each other. At present, the plant growth promoting rhizobacteria (PGPR) and mechanisms by which they function or help their respective host plant have been broadly classified into direct or indirect. However, the scenario is not as simple, plain, or should we say two-dimensional. Several PGPRs and the metabolites they produce can function in multiple ways in same or diverse conditions diminishing the concept of direct and indirect. Several examples discussed in this chapter dilute the boundary between direct and indirect and raise questions for the researchers to gather more knowledge on the intricately woven relationship and functions of the metabolites and mechanisms as a whole. A microbial metabolite in the rhizosphere cannot only perform a big role which is quite apparent but also several other functions which are less visible or obvious but are equally important. Several examples cited in the literature prove that the so-called direct mechanisms (like nutrient acquisition, phytohormone production, iron chelation, phosphate solubilization, and nitrogen fixation) also help the plant in other (indirect) ways and similarly the so-called indirect mechanisms (like antimicrobial metabolites for biocontrol and induced systemic resistance (ISR)) perform several different (direct) functions. Diverse mechanisms function simultaneously in the soil and do not work individually, strengthening the concept of universal and holistic approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abril A, Zurdo-Pineiro JL, Peis A, Rivas R, Velazquez E (2007) Solubilization of phosphate by a strain of Rhizobium leguminosarum bv. trifolii isolated from Phaseolus vulgaris in EI Chaco Arido soil (Argentina). In: Velazquez E, Rodriguez-Berrueco C (eds) Book series: developments in plant and soil sciences. Springer, Dordrecht, pp 135–138

    Google Scholar 

  • Acosta-Martinez V, Dowd S, Sun Y, Allen V (2008) Tag-encoded pyrosequencing analysis of bacterial diversity in a single soil type as affected by management and land use. Soil Biol Biochem 40:2762–2770

    Article  CAS  Google Scholar 

  • Afzal A, Ashraf A, Asad SA, Farooq M (2005) Effect of phosphate solubilizing microorganisms on phosphorus uptake, yield and yield traits of wheat (Triticum aestivum L.) in rainfed area. Int J Agric Biol 7:1560–8530

    Google Scholar 

  • Ali SKZ, Sandhya V, Minakshi G, Kishore N, Venkateswar Rao L, Venkateswarlu B (2009) Pseudomonas sp. strain AKM-P6 enhances tolerance of sorghum seedlings to elevated temperatures. Biol Fertil Soil 46:45–55

    Article  CAS  Google Scholar 

  • Alikhani HA, Saleh-Rastin N, Antoun H (2007) Phosphate solubilization activity of rhizobia native to Iranian soils. In: Velazquez E, Rodriguez-Berrueco C (eds) Developments in plant and soil sciences. Springer, Dordrecht, pp 135–138

    Google Scholar 

  • Allen MF (1982) Influence of vesicular-arbuscular mycorrhizae on water movement through Bouteloua gracilis Lag ex Steud. New Phytol 91:191–196

    Article  Google Scholar 

  • Allen MF (1991) The ecology of mycorrhizae. Cambridge University Press, Cambridge

    Google Scholar 

  • Andersen JB, Koch B, Nielsen TH, Sørensen D, Hansen M, Nybroe O, Christophersen C, Sørensen J, Molin S, Givskov M (2003) Surface motility in Pseudomonas sp. DSS73 is required for efficient biological containment of the root-pathogenic microfungi Rhizoctonia solani and Pythium ultimum. Microbiology 149:37–46

    Article  CAS  PubMed  Google Scholar 

  • Andrade G, De Leij F, Lynch JM (1998) Plant mediated interactions between Pseudomonas fluorescens, Rhizobium leguminosarum and arbuscular mycorrhizae on pea. Lett Appl Microbiol 26:311–316

    Article  Google Scholar 

  • Antoun H, Prévost D (2005) Ecology of plant growth promoting rhizobacteria. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 1–38

    Google Scholar 

  • Antoun H, Beauchamp CJ, Goussard N, Chabot R, Lalande R (1998) Potential of Rhizobium and Bradyrhizobium species as plant growth promoting rhizobacteria on non-legumes: effect on radishes (Raphanus sativus L.). Plant Soil 204:57–67

    Article  CAS  Google Scholar 

  • Arora NK, Kang SC, Maheshwari DK (2001) Isolation of siderophore producing strain of rhizobium meliloti and their biocontrol potential against Macrophomina phaseolina that causes charcoal rot of groundnut. Curr Sci 25:674–677

    Google Scholar 

  • Arora NK, Khare E, Oh JH, Kang SC, Maheshwari DK (2008) Diverse mechanisms adopted by fluorescent Pseudomonas PGC2 during the inhibition of Rhizoctonia solani and Phytophthora capsici. World J Microbiol Biotechnol 24:581–585

    Article  Google Scholar 

  • Arora NK, Tewari S, Singh S, Lal N, Maheshwari DK (2012) PGPR for protection of plant health under saline conditions. In: Maheshwari DK (ed) Bacteria in agrobiology: stress management. Springer, Berlin Heidelberg, pp 239–258

    Chapter  Google Scholar 

  • Askeland RA, Morrison SM (1983) Cyanide production by Pseudomonas fluorescens and Pseudomonas aeruginosa. Appl Environ Microbiol 45:1802–1807

    CAS  PubMed  Google Scholar 

  • Audenaert K, Pattery T, Cornelis P, Hofte M (2002) Induction of systemic resistance to Botrytis cinerea in tomato by Pseudomonas aeruginosa 7NSK2: role of salicylic acid, pyochelin and pyocyanin. Mol Plant Microbe Interact 15:1147–1156

    Article  CAS  PubMed  Google Scholar 

  • Avis TJ, Gravel V, Antoun H, Tweddell RJ (2008) Multifaceted beneficial effects of rhizosphere microorganisms on plant health and productivity. Soil Biol Biochem 40:1733–1740

    Article  CAS  Google Scholar 

  • Azćon-Aguilar C, Barea JM (1982) Production of plant growth regulating substances by the vesicular-arbuscular mycorrhizal fungus Glomus mosseae. Appl Environ Microbiol 43:810–813

    PubMed  Google Scholar 

  • Bacon CW (1993) Abiotic stress tolerances (moisture, nutrients) and photosynthesis in endophyte infected tall fescue. Agric Ecosyst Environ 44:123–141

    Article  Google Scholar 

  • Badri DV, Vivanco JM (2009) Regulation and function of root exudates. Plant Cell Environ 32:666–681

    Article  CAS  PubMed  Google Scholar 

  • Baldani JI, Caruso L, Baldani VLD, Goi SR, Döbereiner J (1997) Recent advances in BNF with non-legume plants. Soil Biol Biochem 29:911–922

    Article  CAS  Google Scholar 

  • Bano A, Fatima M (2009) Salt tolerance in Zea mays (L.) following inoculation with Rhizobium and Pseudomonas. Biol Fertil Soil 45:405–413

    Article  Google Scholar 

  • Barea JM (2000) Rhizosphere and mycorrhiza of field crops. In: Balázs E, Galante E, Lynch JM, Schepers JS, Toutant JP, Werner D, Werry P (eds) Biological resource management: connecting science and policy. Springer, Berlin/Heidelberg/New York, pp 110–125

    Google Scholar 

  • Barea JM, Pozo MJ, Azcón R, Azcón AC (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56(417):1761–1778

    Article  CAS  PubMed  Google Scholar 

  • Bargabus R, Zidack N, Sherwood J, Jacobsen B (2003) Oxidative burst elicited by Bacillus mycoides isolate Bac J, a biological control agent, occurs independently of hypersensitive cell death in sugar beet. Mol Plant Microbe Interact 16:1145–1153

    Article  CAS  PubMed  Google Scholar 

  • Bashan Y (1993) Potential use of Azospirillum as biofertilizer. Turrialba 43:286–291

    Google Scholar 

  • Becker A, Fraysse N, Sharypova L (2005) Recent advances in studies on structure and symbiosis-related function of rhizobial K-antigens and lipopolysaccharides. Mol Plant Microbe Interact 18:899–905

    Article  CAS  PubMed  Google Scholar 

  • Benitez T, Limon C, Delgado-Jarana J, Rey M (1998) Glucanolytic and other enzymes and their genes. In: Harman GF, Kubicek CP (eds) Trichoderma and gliocladium, Enzymes, biological control and commercial applications. Taylor & Francis, London, pp 101–127

    Google Scholar 

  • Benzing-Purdie LM, Nikiforuk JH (1989) Carbohydrate composition of hay and maize soils and their possible importance in soil structure. J Soil Sci 40:125–130

    Article  CAS  Google Scholar 

  • Berg G, Hallmann J (2006) Control of plant pathogenic fungi with bacterial endophytes. In: Schulz B, Boyle C, Sieber T (eds) Microbial root endophytes, 9th edn. Springer, Berlin, pp 53–69

    Chapter  Google Scholar 

  • Bhattacharya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    Article  CAS  Google Scholar 

  • Bianciotto V, Andreotti S, Balestrini R, Bonfante P, Perotto S (2004) Mucoid mutants of the biocontrol strain Pseudomonas fluorescens CHA0 show increased ability in biofilm formation. Curr Opin Microbiol 7:602–609

    Article  CAS  Google Scholar 

  • Blumera C, Haas D (2000) Iron regulation of the hcnABC genes encoding hydrogen cyanide synthase depends on the anaerobic regulator ANR rather than on the global activator GacA in Pseudomonas fluorescens CHA0. Microbiology 146(10):2417–2424

    Google Scholar 

  • Brewer D, Calder FW, Maclntyre TM, Taylor A (1971) Ovine ill-thrift in Nova Scotia: the possible regulation of the rumen flora in sheep by the fungal flora of permanent pasture. J Agric Sci 76:465–477

    Article  Google Scholar 

  • Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304

    Article  Google Scholar 

  • Brundrett MC (2009) Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and develo** reliable means of diagnosis. Plant Soil 320:37–77

    Article  CAS  Google Scholar 

  • Bunster L, Fokkema HJ, Schippers B (1989) Effect of surface activity of Pseudomonas spp. on leaf wettability. Appl Environ Microbiol 55:1340–1345

    CAS  PubMed  Google Scholar 

  • Caldwell BA, Jumpponen A, Trappe JM (2000) Utilization of major detrital substrates by dark-septate root endophytes. Mycologia 92:230–232

    Article  Google Scholar 

  • Carnejo P, Meier S, Borie G, Rillig MC, Borie F (2008) Glomalin-related soil protein in a Mediterranean ecosystem affected by a copper smelter and its contribution to Cu and Zn sequestration. Sci Total Environ 406:154–160

    Article  CAS  Google Scholar 

  • Castric PA (1975) Hydrogen cyanide, a secondary metabolite of Pseudomonas aeruginosa. Can J Microbiol 21:613–618

    Article  CAS  PubMed  Google Scholar 

  • Castro RO, Cornejo HAC, Rodriguez LM, Bucio JL (2009) The role of microbial signals in plant growth and development. Plant Signal Behav 4(8):701–712

    Article  Google Scholar 

  • Chelius MK, Triplett EW (2001) The diversity of archaea and bacteria in association with the roots of Zea mays L. Microb Ecol 41(3):252–263

    CAS  PubMed  Google Scholar 

  • Chen Q, Gao M, Hai-Yan HU et al (2011) A nitrogen-fixing bacterium Paenibacillus sp. GD812 antagonistic against plant pathogenic fungi [J]. China Agric Sci 44(16):3343–3350

    CAS  Google Scholar 

  • Cheng Q (2008) Perspectives in biological nitrogen fixation research. J Integr Plant Biol 50(7):784–796

    Article  CAS  Google Scholar 

  • Chern ECW, Tsai AI, Gunseitan OA (2007) Deposition of glomalin related soil protein and sequestered toxic metals into watersheds. Environ Sci Technol 41:3566–3572

    Article  CAS  PubMed  Google Scholar 

  • Chernin L, Chet I (2002) Microbial enzymes in biocontrol of plant pathogens and pests. In: Burns R, Dick R (eds) Enzymes in the environment: activity, ecology, and applications. Dekker, New York, pp 171–225

    Google Scholar 

  • Cheshire MV, Sparling GP, Mundie CM (1983) Effect of periodate treatment of soil on carbohydrate constituents and soil aggregation. J Soil Sci 34:105–112

    Article  CAS  Google Scholar 

  • Chet I, Inbar J, Hadar I (1997) Fungal antagonists and mycoparasites. In: Wicklow DT, Söderström B (eds) The mycota IV: environmental and microbial relationships. Springer, Berlin, pp 165–184

    Google Scholar 

  • Chow M, Radomski CC, McDermott JM, Davies J, Axelrood PE (2002) Molecular characterization of bacterial diversity in Lodgepole pine (Pinus contorta) rhizosphere soils from British Columbia forest soils differing in disturbance and geographic source. FEMS Microbiol Ecol 42:347–357

    Article  CAS  PubMed  Google Scholar 

  • Combes-Meynet E, Pothier JF, Moenne-Loccoz Y, Prigent-Combaret C (2011) The Pseudomonas secondary metabolite 2,4-diacetylphloroglucinol is a signal inducing rhizoplane expression of Azospirillum genes involved in plant-growth promotion. Mol Plant Microbe Interact 24:271–284

    Article  CAS  PubMed  Google Scholar 

  • Cook RJ (2002) Advances in plant health management in the twentieth century. Annu Rev Phytopathol 38:95–116

    Article  Google Scholar 

  • Cordier C, Pozo MJ, Barea JM, Gianinazzi S, Gianinazzi-Pearson V (1998) Cell defense responses associated with localized and systemic resistance to Phytophthora parasitica induced in tomato by an arbuscular mycorrhizal fungus. Mol Plant Microbe Interact 11:1017–1028

    Article  CAS  Google Scholar 

  • Danielson RM, Davey CB (1973) The abundance of Trichoderma propagules and the distribution of species in forest soils. Soil Biol Biochem 5:485–494

    Article  Google Scholar 

  • Datta M, Banik S, Gupta RK (1982) Studies on the efficacy of a phytohormone producing phosphate solubilizing Bacillus firmus in augmenting paddy yield in acid soils of Nagaland. Plant Soil 69(3):365–373

    Article  CAS  Google Scholar 

  • de Freitas JR, Banerjee MR, Germida JJ (1997) Phosphate solubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napus). Biol Fertil Soils 24:358–364

    Article  Google Scholar 

  • De Meyer G, Capieau K, Audenaert K, Buchala A, Métraux JP, Höfte M (1999) Nanogram amounts of salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 activate the systemic acquired resistance pathway in bean. Mol Plant Microbe Interact 12:450–458

    Article  PubMed  Google Scholar 

  • Dehne HW, Schoenbeck F (1979) The influence of endotrophic mycorrhiza on plant diseases colonization of tomato plants by Fusarium oxysporum F. sp. lycopersici. Phytopathology 95:105–110

    Article  Google Scholar 

  • Dietrich LE, Price-Whelan A, Petersen A, Whiteley M, Newman DK (2006) The phenazine pyocyanin is a terminal signalling factor in the quorum sensing network of Pseudomonas aeruginosa. Mol Microbiol 61(5):1308–1321

    Article  CAS  PubMed  Google Scholar 

  • Dowd SE, Callaway TR, Wolcott RD, Sun Y, McKeehan T, Hagevoort RG, Edrington TS (2008) Evaluation of the bacterial diversity in the feces of cattle using 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP). BMC Microbiol 8:125

    Article  PubMed  CAS  Google Scholar 

  • Dua S, Sindhu SS (2012) Effectiveness of rhizosphere bacteria for control of root rot disease and improving plant growth of wheat (Triticum aestivum L.). J Microbiol Res 2(2):26–35

    Article  Google Scholar 

  • Duan J, Miiller KM, Charles TC, Vesely S, Glick BR (2009) 1-Aminocyclopropane-l-carboxylate (ACC) deaminase genes in rhizobia from Southern Saskatchewan. Microb Ecol 57:423–436

    Article  CAS  PubMed  Google Scholar 

  • Duffy B, Keel C, Défago G (2004) Potential role of pathogen signaling in multitrophic plant-microbe interactions involved in disease protection. Appl Environ Microbiol 70(3):1836–1842

    Article  CAS  PubMed  Google Scholar 

  • Dusane D, Rahman P, Zinjarde S, Venugopalan V, McLean R, Weber M (2010) Quorum sensing; implication on rhamnolipid biosurfactant production. Biotech Genet Eng Rev 27:159–184

    Article  CAS  Google Scholar 

  • Eddouaouda K, Mnif S, Badis A, Younes SB, Cherif S, Ferhat S, Mhiri N, Chamkha M, Sayadi S (2012) Characterization of a novel biosurfactant produced by Staphylococcus sp. strain 1E with potential application on hydrocarbon bioremediation. J Basic Microbiol 52:408–418

    Article  CAS  PubMed  Google Scholar 

  • Elbadry M, Taha RM, Eldougdoug KA, Gamal Eldin H (2006) Induction of systemic resistance in faba bean (Vicia faba L.) to bean yellow mosaic potyvirus (BYMV) via seed bacterization with plant growth promoting rhizobacteria. J Plant Dis Prot 113:247–251

    Google Scholar 

  • El-Tarabily K, Hardy SJ, Krishnapillai S (2010) Performance of three endophytic actinomycetes in relation to plant growth promotion and biological control of Pythium aphanidermatum, a pathogen of cucumber under commercial field production conditions in the United Arab Emirates. Eur J Plant Pathol 128(4):527–539

    Article  CAS  Google Scholar 

  • Fajardo WM (1997) Biocontrol of aerial plant diseases in agriculture and horticulture: current approaches and future prospects. J Ind Microb Biotechnol 19:188–191

    Article  CAS  Google Scholar 

  • Fajardo A, Martinez JL (2008) Antibiotics as signals that trigger specific bacterial responses. Curr Opin Microbiol 11:161–167

    Article  CAS  PubMed  Google Scholar 

  • Fasim F, Ahmed N, Parson R, Gadd GM (2002) Solubilization of zinc salts by a bacterium isolated from air environment of a tannery. FEMS Microbiol Lett 213:1–6

    Article  CAS  PubMed  Google Scholar 

  • Fernando DWG, Nakkeeran S, Zhang Y (2005) Biosynthesis of antibiotics by PGPR and its relation in biocontrol of plant diseases. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 67–109

    Google Scholar 

  • Fraysse N, Courdec F, Poinsot V (2003) Surface polysaccharide involvement in establishing the Rhizobium-legume symbiosis. Eur J Biochem 270:1365–1380

    Article  CAS  PubMed  Google Scholar 

  • Gamalero E, Glick BR (2011) Mechanisms used by plant growth-promoting bacteria. In: Maheshwari DK (ed) Bacteria in agrobiology: plant nutrient management. Springer, Berlin/Heidelberg, pp 17–45

    Chapter  Google Scholar 

  • Gauri SS, Mandal SM, Pati BR (2012) Impact of Azotobacter exopolysaccharides on sustainable agriculture. Appl Microbiol Biotechnol 95(2):331–338

    Article  CAS  PubMed  Google Scholar 

  • Gay G, Debaud JC (1987) Genetic study on indole-3-acetic acid production by ectomycorrhizal Hebeloma species: inter- and interspecific variability in homo- and dikaryotic mycelia. Appl Microb Biotechnol 26:141–146

    Article  CAS  Google Scholar 

  • Gerhardt KE, Huang XD, Glick BR, Greenberg BM (2008) Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci 176(2009):20–30

    Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117

    Article  CAS  Google Scholar 

  • Goldstein AH, Braverman K, Osorio N (1999) Evidence for mutualism between a plant growing in a phosphate-limited desert environment and a mineral phosphate solubilizing (MPS) bacterium. FEMS Microbiol Eco 3:295–300

    Article  Google Scholar 

  • Graham JH, Linderman RG (1980) Ethylene production by ectomycorrhizal fungi, Fusarium oxysporum f.sp. pini, and by aseptically synthesized ectomycorrhizae and Fusarium infected Douglas fir roots. Can J Microbiol 26:1340–1347

    Article  CAS  PubMed  Google Scholar 

  • Gravel V, Antoun H, Tweddell RJ (2007) Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: possible role of indole acetic acid (IAA). Soil Biol Biochem 39:1968–1977

    Article  CAS  Google Scholar 

  • Green SJ, Inbar E, Michel FC, Hadar Y Jr, Minz D (2006) Succession of bacterial communities during early plant development: transition from seed to root and effect of compost amendment. Appl Environ Microbiol 72:3975–3983

    Article  CAS  PubMed  Google Scholar 

  • Gupta AM, Gopal KVB, Tilak R (2000) Mechanism of plant growth promotion by rhizobacteria. Ind J Exp Biol 38:856–862

    CAS  Google Scholar 

  • Gutierrez-Luna FM, López-Bucio J, Altamirano-Hernández J, Valencia-Cantero E, de la Cruz HR, Macías-Rodríguez L (2010) Plant growth-promoting rhizobacteria modulate rootsystem architecture in Arabidopsis thaliana through volatile organic compound emission. Symbiosis 51:75–83

    Article  CAS  Google Scholar 

  • Haas D, Defago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3(4):307–319

    Article  CAS  PubMed  Google Scholar 

  • Hamblin AP (1985) The influence of soil structure on water movement, crop root growth, and water uptake. Adv Agron 38:95–158

    Article  Google Scholar 

  • Hardie K (1985) The effect of removal of extra radical hyphae on water uptake by vesicular arbuscular mycorrhizal plants. New Phytol 101:677–684

    Article  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species-opportunistic, avirulent plant symbionts. Nat Rev 2:43–56

    Article  CAS  Google Scholar 

  • Harrison F, Buckling A (2009) Siderophore production and biofilm formation as linked social traits. ISME J 3(5):632–634

    Article  CAS  PubMed  Google Scholar 

  • Hassett DJ, Charniga L, Bean K, Ohman DE, Cohen MS (1992) Response of Pseudomonas aeruginosa to pyocyanin: mechanisms of resistance, antioxidant defenses, and demonstration of a manganese-cofactored superoxide dismutase. Infect Immun 60:328–336

    CAS  PubMed  Google Scholar 

  • Hassett DJ, Schweizer HP, Ohman DE (1995) Pseudomonas aeruginosa sodA and sodB mutants defective in manganese and iron cofactored superoxide dismutase activity demonstrate the importance of the iron-cofactored form in aerobic metabolism. J Bacteriol 177:6330–6337

    CAS  PubMed  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth and promotion: a review. Ann Microbiol 60:579–598

    Article  Google Scholar 

  • Hill NS, Stringer WC, Rottinghaus GE, Belesky DP, Parrot WA, Pope DD (1990) Growth, morphological and chemical component responses of tall fescue to Acremonium coenophialum. Crop Sci 30:156–161

    Article  Google Scholar 

  • Holguin G, Bashan Y (1996) Nitrogen-fixing by Azospirillum brasilense Cd is promoted when co-cultured with a mangrove rhizosphere bacterium (Staphylococcus sp.). Soil Biochem 28(12):1651–1660

    Article  CAS  Google Scholar 

  • Howell CR (1998) The role of antibiosis in biocontrol. In: Harman GE, Kubicek CP (eds) Trichoderma and Gliocladium. Taylor & Francis, Padstow, pp 173–184

    Google Scholar 

  • Huang HC, Erickson RS (2007) Effect of seed treatment with Rhizobium leguminosarum on Pythium dam**-off, seedling height, root nodulation, root biomass, shoot biomass, and seed yield of pea and lentil. J Phytopathol 155:31–37

    Article  Google Scholar 

  • Huang HC, Erickson RS, Hsieh TF (2007) Control of bacterial wilt of bean (Curtobacterium flaccum faciens pv. flaccumfaciens) by seed treatment with Rhizobium leguminosarum. Crop Prot 26:1055–1061

    Article  Google Scholar 

  • Hugenholtz P, Goebel BM, Pace NR (1998) Impact of culture independent studies on the emerging phylogenetic view of bacterial diversity. J Bacteriol 180:4765–4774

    CAS  PubMed  Google Scholar 

  • Iain LL, Paul AB, Urs O, Adriana,Michael LV (2002) Siderophore-mediated signaling regulates virulence factor production in Pseudomonas aeruginosa. PNAS 99(10):7072–7077

    Google Scholar 

  • Iavicoli A, Boutet E, Buchala A, Métraux JP (2003) Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mol Plant Microbe Interact 16:851–858

    Article  CAS  PubMed  Google Scholar 

  • Jha BK, Pragash MG, Cletus J, Raman G, Sakthivel N (2009) Simultaneous phosphate solubilization potential and antifungal activity of new fluorescent pseudomonad strains, Pseudomonas aeruginosa, P. plecoglossicida and P. mosselii. World J Microbiol Biotechnol 25:573–581

    Article  CAS  Google Scholar 

  • Joo GJ, Kang SM, Hamayun M, Kim SK, Na CI, Shin DH, Lee IJ (2009) Burkholderia sp. KCTC 11096BP as a newly isolated gibberellin producing bacterium. J Microbiol 47:167–171

    Article  CAS  PubMed  Google Scholar 

  • Jumpponen A, Trappe JM (1998) Dark septate endophytes: a review of facultative biotrophic root-colonising fungi. New Phytol 140:295–310

    Article  Google Scholar 

  • Jyothi N, Rao VU (2009) Protease and urease production during utilization of diesel by fluorescent Pseudomonas species isolated from local soil. Iran J Microbiol 1(3):23–30

    Google Scholar 

  • Kaiser O, Puhler A, Selbitschka W (2001) Phylogenetic analysis of microbial diversity in the rhizoplane of oilseed rape (Brassica napus cv Westar) employing cultivation dependent and cultivation-independent approaches. Microb Ecol 42:136–149

    CAS  PubMed  Google Scholar 

  • Kang BR, Yang KY, Cho BH, Han TH, Kim IS, Lee MC, Anderson AJ, Kim YC (2006) Production of indole-3-acetic acid in the plant-beneficial strain Pseudomonas chlororaphis O6 is negatively regulated by the global sensor kinase GacS. Curr Microbiol 52:473–476

    Article  CAS  PubMed  Google Scholar 

  • Kannapiran E, Ramkumar SV (2011) Inoculation effect of nitrogen-fixing and phosphate-solubilizing bacteria to promote growth of black gram (Phaseolus mungo Roxb; Eng). Ann Biol Res 2(5):615–621

    CAS  Google Scholar 

  • Kapoor R, Ruchi R, Kumar A, Kumar A, Patil S, Pratush A, Kaur M (2012) Indole acetic acid production by fluorescent Pseudomonas isolated from the rhizospheric soils of Malus and Pyrus. Recent Res Sci Technol 4(1):06–09

    CAS  Google Scholar 

  • Karagiannidis N, Bletsos F, Stavropoulos N (2002) Effect of Verticillium wilt (Verticillium dahliae Kleb.) and mycorrhiza (Glomus mosseae) on root colonization, growth and nutrient uptake in tomato and eggplant seedlings. Sci Hortic 94:145–156

    Article  CAS  Google Scholar 

  • Kearns DB, Losick R (2003) Swarming motility in undomesticated Bacillus subtilis. Mol Microbiol 49:581–590

    Article  CAS  PubMed  Google Scholar 

  • Keel C, Voisard C, Berling CH, Kahr G, Defago G (1989) Iron sufficiency, a prerequisite for suppression of tobacco blackroot rot in Pseudomonas fluorescens strain CHA0 under gnotobiotic conditions. Phytopathology 79:584–589

    Article  Google Scholar 

  • Keyeo F, Aìshah ON, Amir HG (2011) The effects of nitrogen fixation activity and phytohormone production of diazotroph in promoting growth of rice seedlings. Biotechnology 10:267–273

    Article  CAS  Google Scholar 

  • Khammas KM, Kaiser P (1992) Pectin decomposition and associated nitrogen fixation by mixed cultures of Azospirillum and Bacillus species. Can J Microbiol 38:794–797

    Article  CAS  PubMed  Google Scholar 

  • Khan MS, Zaidi A, Wani P (2007) Role of phosphate solubilizing microorganisms in sustainable agriculture – a review. Agron Sustain Dev 27:29–43

    Article  Google Scholar 

  • Khare E, Arora NK (2010) Effect of indole-3-acetic acid (IAA) produced by Pseudomonas aeruginosa in suppression of charcoal rot disease of chickpea. Curr Microbiol 61:64–68

    Article  CAS  PubMed  Google Scholar 

  • Khare E, Arora NK (2011) Dual activity of pyocyanin from Pseudomonas aeruginosa – antibiotic against phytopathogen and signal molecule for biofilm development by rhizobia. Can J Microbiol 57(9):708–713

    Article  CAS  PubMed  Google Scholar 

  • Khokhar Y, Rattanpal HS, Dhillon WS, Singh G, Gil PS (2012) Soil fertility and nutritional status of Kinnow orchards grown in aridisol of Punjab, India. Afr J Agric Res 7(33):4692–4697

    Article  Google Scholar 

  • Kim SD (2012) Colonizing ability of Pseudomonas fluorescens 2112, among collections of 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens spp. in pea rhizosphere. J Microbiol Biotechnol 22:763–770

    Article  CAS  PubMed  Google Scholar 

  • Kim PI, Ryu J, Kim YH, Chi YT (2010) Production of biosurfactant lipopeptides Iturin A, fengycin and surfactin A from Bacillus subtilis CMB32 for control of Colletotrichum gloeosporioides. J Microbiol Biotechnol 20:138–145

    CAS  PubMed  Google Scholar 

  • Kloepper J, Schroth M (1978) Plant growth-promoting rhizobacteria in radish. In: Proceedings of the 4th international conference on plant pathogenic bacteria, Angers, 1978, pp 879–882

    Google Scholar 

  • Kloepper JW, Ryu CM, Zhang SA (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266

    Article  CAS  PubMed  Google Scholar 

  • Kloepper JW, Leong J, Tientze M, Schroth MN (1980) Pseudomonas siderophores: a mechanism explaining disease-suppressive soils. Curr Microbiol 4:317–320

    Article  CAS  Google Scholar 

  • Knowles CJ, Bunch AW (1986) Microbial cyanide metabolism. Adv Microb Physiol 27:73–111

    Article  CAS  PubMed  Google Scholar 

  • Kokalis-Burelle N, Kloepper JW, Reddy MS (2006) Plant growth-promoting rhizobacteria as transplant amendments and their effects on indigenous rhizosphere microorganisms. Appl Soil Ecol 31:91–100

    Article  Google Scholar 

  • Kraepiel AML, Bellenger JP, Wichard T, Morel FMM (2009) Multiples roles of sidrophores in free-living nitrogen-fixing bacteria. Biometals 22:573–581

    Article  CAS  PubMed  Google Scholar 

  • Kukreja K, Suneja S, Goyal S, Narula N (2004) Phytohormone production by Azotobacter – a review. Agric Rev 25(1):70–75

    Google Scholar 

  • Kumar H, Arora NK, Kumar V, Maheshwari DK (1999) Isolation, characterization and selection of salt tolerant Rhizobia nodulating Acacia catechu and A. nilotica. Symbiosis 26:279–288

    Google Scholar 

  • Kyungseok P, Kloepper JW, Ryu CM (2008) Rhizobacterial exopolysaccharides elicit induced resistance on cucumber. J Microbiol Biotechnol 18:1095–1100

    Google Scholar 

  • Liba CM, Ferrara FIS, Manfio GP, Fantinatti-Garboggini F, Albuquerque RC, Pavan C, Ramos PL, Moreira-Filho CA, Barbosa HR (2006) Nitrogen-fixing chemo-organotrophic bacteria isolated from cyanobacteria-deprived lichens and their ability to solubilize phosphate and to release amino acids and phytohormones. J Appl Microbiol 101(5):1076–1086

    Article  CAS  PubMed  Google Scholar 

  • Lima TM, Procópio LC, Brandão FD, Leão BA, Tótola MR, Borges AC (2011) Evaluation of bacterial surfactant toxicity towards petroleum degrading microorganisms. Biores Technol 102:2957–2964

    Article  CAS  Google Scholar 

  • Liu L, Kloepper JW, Tuzun S (1995) Induction of systemic resistance in cucumber against bacterial angular leaf spot by plant growth-promoting rhizobacteria. Phytopathology 85:843–847

    Article  Google Scholar 

  • Liu Y, Zou S, Zou Y, Wang J, Song W (2012) Investigation on diversity and population succession dynamics of indigenous bacteria of the maize spermosphere. World J Microbiol Biotechnol 28(1):391–396

    Article  CAS  PubMed  Google Scholar 

  • Livingston WH (1991) Effect of methionine and 1-aminocyclopropane-1-carboxylic acid on ethylene production by Laccaria bicolor and Laccaria laccata. Mycologia 83:237–241

    Article  Google Scholar 

  • Loper JE (1988) Role of fluorescent siderophores production in biological control of Pythium ultimum by Pseudomonas fluorescens strain. Phytopathology 78:166–172

    Article  CAS  Google Scholar 

  • Loper JE, Henkels MD (1999) Utilization of heterologus siderophores enhances levels of iron available to P. putida in the rhizosphere. Appl Environ Microbiol 65(12):5357–5536

    CAS  PubMed  Google Scholar 

  • Lopez-Bucio J, Campos-Cuevas JC, Hernandez-Calderon E, Velasquez-Becerra C, Farias-Rodriguez R, Macias-Rodriguez LI, Valencia-Cantero E (2007) Bacillus megaterium rhizobacteria promote growth and alter root-system architecture through an auxin- and ethylene-independent signaling mechanism in Arabidopsis thaliana. Mol Plant Microbe Interact 20:207–217

    Article  CAS  PubMed  Google Scholar 

  • Ma W, Guinel FC, Glick BR (2003) The Rhizobium leguminosarum bv. viciae ACC deaminase protein promotes the nodulation of pea plants. Appl Environ Microbiol 69:4396–4402

    Article  CAS  PubMed  Google Scholar 

  • Maddula VSRK, Pierson EA, Pierson LS (2008) Altering the ratio of phenazines in Pseudomonas chlororaphis (aureofaciens) strain 30–84: effects on biofilm formation and pathogen inhibition. J Bacteriol 190(8):2759–2766

    Article  CAS  PubMed  Google Scholar 

  • Mahmod ALE, Allah MH (2001) Siderophore production by some microorganisms and their effect on Bradyrhizobium mung bean symbiosis. Int J Agric Microbiol 3(2):158–162

    Google Scholar 

  • Malhotra M, Srivastava S (2009) Stress-responsive indole-3-acetic acid biosynthesis by Azospirillum brasilense SM and its ability to modulate plant growth. Eur J Soil Biol 45:73–80

    Article  CAS  Google Scholar 

  • Malinowski DP, Brauer DK, Belesky DP (1999) The endophyte Neotyphodium coenophialum affects root morphology of tall fescue grown under phosphorus deficiency. J Agron Crop Sci 183:53–60

    Article  CAS  Google Scholar 

  • Mandal SM, Ray B, Dey S, Pati BR (2007) Production and composition of extracellular polysaccharide synthesized by a Rhizobium isolate of Vigna mungo (L.). Hepper Biotechnol Lett 29:1271–1275

    Article  CAS  Google Scholar 

  • Mankau R (1962) Soil fungistasis and nematophagous fungi. Phytopathology 52:611–615

    Google Scholar 

  • Marilley L, Aragno M (1999) Phytogenetic diversity of bacterial communities differing in degree of proximity of Lolium perenne and Trifolium repens roots. Appl Soil Ecol 13:127–136

    Article  Google Scholar 

  • Maurhofer M, Reimmann C, Schmidli-Sacherer P, Heeb S, Haas D, Défago G (1998) Salicylic acid biosynthetic genes expressed in Pseudomonas fluorescens strain P3 improve the induction of systemic resistance in tobacco against tobacco necrosis virus. Phytopathology 88:678–684

    Article  CAS  PubMed  Google Scholar 

  • Mayak S, Tirosh T, Glick BR (2004) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572

    Article  CAS  PubMed  Google Scholar 

  • Mercado-Blanco J, Van der Drift KMGM, Olsson PE, Thomas-Oates JE, Van Loon LC, Bakker PAHM (2001) Analysis of the pms CEABgene cluster involved in biosynthesis of salicylic acid and the siderophore pseudomonine in the biocontrol strain Pseudomonas fluorescens WCS374. J Bacteriol 183:1909–1920

    Article  CAS  PubMed  Google Scholar 

  • Meziane H, Van der Sluis I, Van Loon LC, Höfte M, Bakker PAHM (2005) Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants. Mol Plant Pathol 6:177–185

    Article  PubMed  Google Scholar 

  • Miller RM, Jastrow JD (2000) Mycorrhizal fungi influence soil structure. In: Kapulnik Y, Douds DD Jr (eds) Arbuscular mycorrhizas: physiology and functions. Kluwer Academic Publishers, Dordrecht, pp 3–18

    Chapter  Google Scholar 

  • Miller JD, Mackenzie S, Foto M, Adams GW, Findlay JA (2002) Needles of white spruce inoculated with rugulosin-producing endophytes contains rugulosin reducing spruce budworm growth rate. Mycol Res 106:471–479

    Article  Google Scholar 

  • Mirza MS, Mehnaz S, Normand P, Prigent-Combaret C, Moénne-Loccoz Y, Bally R, Malik KA (2006) Molecular characterization and PCR detection of a nitrogen-fixing Pseudomonas strain promoting rice growth. Biol Fertil Soils 43:163–170

    Article  CAS  Google Scholar 

  • Misra N, Gupta G, Jha PN (2012) Assessment of mineral phosphate solubilizing properties and molecular characterization of zinc tolerant bacteria. J Basic Microbiol 52:1–10

    Article  CAS  Google Scholar 

  • Miter N, Srivastava AC, Renu AS, Sarbhoy AK, Agarwal DK (2002) Characterization of gibberellin producing strains of Fusarium moniliforme based on DNA polymorphism. Mycopathologia 153:187–193

    Article  Google Scholar 

  • Morandi D (1996) Occurrence of phytoalexins and phenolic compounds on endomycorrhizal interactions, and their potential role in biological control. Plant Soil 185:241–251

    Article  CAS  Google Scholar 

  • Nakkeeran S, Dilantha Fernando WG, Zaki A (2005) Plant growth promoting rhizobacteria formulations and its scope in commercialization for the management of pests and diseases. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 257–296

    Google Scholar 

  • Nautiyal CS (1999) An efficient microbiological growth medium for screening phosphate solubilizing microorganism. FEMS Microbiol Lett 29:221–229

    Google Scholar 

  • Naznin HA, Kimura M, Miyazawa M, Hyakumachi M (2012) Analysis of volatile organic compounds emitted by plant growth promoting fungus phoma sp. GS8-3 for growth promotion effects on tobacco. Microbe Environ 28(1):42–49

    Article  Google Scholar 

  • Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726

    CAS  PubMed  Google Scholar 

  • Nelson DR, Mele PM (2007) Subtle changes in rhizosphere microbial community structure in response to increased boron and sodium chloride concentrations. Soil Biol Biochem 39:340–351

    Article  CAS  Google Scholar 

  • Nihorimbere V, Marc Ongena M, Smargiassi M, Thonart P (2011) Beneficial effect of the rhizosphere microbial community for plant growth and health. Biotechnol Agron Soc Environ 15:327–337

    Google Scholar 

  • Noel MGMA, Madrid EA, Botín R, Lamattina L (2001) Indole acetic acid attenuates disease severity in potato-Phytophthora infestans interaction and inhibits the pathogen growth in vitro. Plant Physiol Biochem 39:815–823

    Article  Google Scholar 

  • Oades JM, Waters AG (1991) Aggregate hierarchy in soils. Aust J Soil Res 29:815–828

    Article  Google Scholar 

  • Oehl F, Sieverding E, Palenzuela J, Ineichen K, Silva GA (2011) Advances in Glomeromycota taxonomy and classification. IMA Fungus 2:191–199

    Article  PubMed  Google Scholar 

  • Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16(3):115–125

    Article  CAS  PubMed  Google Scholar 

  • Ongena M, Jourdan E, Schäfer M, Kech C, Budzikiewicz H, Luxen A, Thonart P (2005) Isolation of an N-alkylated benzylamine derivative from Pseudomonas putida BTP1 as elicitor of induced systemic resistance in bean. Mol Plant Microbe Interact 18:562–569

    Article  CAS  PubMed  Google Scholar 

  • Pal KK, Gardener BM (2006) Biological control of plant pathogens. Plant Health Instr. pp 1–25

    Google Scholar 

  • Pamp SJ, Nielsen TT (2007) Multiple roles of biosurfactants in structural biofilm development by Pseudomonas aeruginosa. J Bacteriol 189(6):2531–2539

    Article  CAS  PubMed  Google Scholar 

  • Panhwar QA, Othman R, Rahman ZA, Meon S, Ismail MR (2012) Isolation and characterization of phosphate-solubilizing bacteria from aerobic rice. Afr J Biotechnol 11(11):2711–2719

    CAS  Google Scholar 

  • Parada M, Vinardell JM, Ollero FJ, Hidalgo A, Guitiérrez R, Buendía-Clavería AM, Lei W, Margaret I, López-Baena FJ (2006) Sinorhizobium fredii HH103 mutants affected in capsular polysaccaride (KPS) are impaired for nodulation with soybean and Cajanus cajan. Mol Plant Microbe Interact 19:43–52

    Article  CAS  PubMed  Google Scholar 

  • Park Y, Kim DY, Lee JW, Huh DG, Park KP, Lee J, Lee H (2006) Sequestering carbon dioxide into complex structures of naturally occurring gas hydrates. PNAS 103:12690–12694

    Article  CAS  PubMed  Google Scholar 

  • Pearson JN, Jakobsen I (1993) The relative contribution of hyphae and roots tip phosphorus uptake by arbuscular mycorrhizal plants, measured by dual labeling with P-32 and P-33. New Phytol 124:489–494

    Article  CAS  Google Scholar 

  • Poonthrigpun SK, Pattaragulwanit S, Paengthai T, Kriangkripipat K, Juntong** S, Thaniyavarn A, Petsom A, Pinphanichakarn P (2006) Novel intermediates of acenaphthylene degradation by Rhizobium sp. Strain CU-A1: evidence for naphthalene-1,8-dicarboxylic acid metabolism. Appl Environ Microbiol 72:6034–6039

    Article  CAS  PubMed  Google Scholar 

  • Pozo MJ, Cordier C, Dumas-Gaudot E, Gianinazzi S, Barea JM, Azcón-Aguilar C (2002) Localized vs systemic effect of arbuscular mycorrhizal fungi on defense responses to Phytophthora infection in tomato plants. J Exp Bot 53:525–534

    Article  CAS  PubMed  Google Scholar 

  • Press CM, Wilson M, Tuzun S, Kloepper JW (1997) Salicylic acid produced by Serratia marcescens 90-166 is not the primary determinant of induced systemic resistance in cucumber or tobacco. Mol Plant Microbe Interact 10:761–768

    Article  CAS  Google Scholar 

  • Qurashi AW, Sabri AN (2012) Biofilm formation in moderately halophilic bacteria is influenced by varying salinity levels. Basic Microbiol 52(5):566–572

    Article  CAS  Google Scholar 

  • Raaijmakers JM, de Bruijn I, de Kock MJD (2006) Cyclic lipopeptide production by plant-associated Pseudomonas species: diversity, activity, biosynthesis and regulation. Mol Plant Microbe Interact 19:699–710

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar M, Noriharu A, Prasad MNV, Helena F (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trend Biotechnol 28(3):142–149

    Article  CAS  Google Scholar 

  • Raju PN, Evans HJ, Seidler RJ (1972) An asymbiotic nitrogen-fixing bacterium from the root environment of corn. PNAS 69(11):3474–3478

    Article  CAS  PubMed  Google Scholar 

  • Ramamoorthy V, Viswanathan R, Raguchandar J, Prakasham T, Samiyappan R (2001) Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pest and diseases. Crop Prot 20:1–11

    Article  CAS  Google Scholar 

  • Ran LX, Li ZN, Wu GJ, Van Loon LC, Bakker PAHM (2005) Induction of systemic resistance against bacterial wilt in Eucalyptus urophylla by fluorescent Pseudomonas spp. Eur J Plant Pathol 113:59–70

    Article  CAS  Google Scholar 

  • Ravikumar S, Williams P, Shanthy S, Anitha N, Gracelin A, Babu S, Parimala PS (2007) Effect of heavy metals (Hg and Zn) on the growth and phosphate solubilising activity in halophilic phosphobacteria isolated from Manakudi mangrove. J Environ Biol 28:109–114

    CAS  PubMed  Google Scholar 

  • Ray TB, Peters GB, Toia RE, Mayne BC (1978) Azolla Anabaena relationship: distribution of ammonia assimilating enzymes, proteins and chlorophyll between host and symbionts. Plant Physiol 62:463–467

    Article  CAS  PubMed  Google Scholar 

  • Richardson MD, Chapman GW, Hoveland CS, Bacon CW (1992) Sugar alcohols in endophyte infected tall fescue under drought. Crop Sci 32:1060–1061

    Article  CAS  Google Scholar 

  • Rigou L, Mignard E (1994) Factors of acidification of the rhizosphere of mycorrhizal plants, measurement of pCO2 in the rhizosphere. Acta Bot Gall 141:533–539

    Article  Google Scholar 

  • Rillig MC (2004) Arbuscular mycorrhizae, glomalin and soil aggregation. Can J Soil Sci 84:355–363

    Article  Google Scholar 

  • Rodriguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    Article  CAS  PubMed  Google Scholar 

  • Ron EZ, Rosenberg E (2011) Natural roles in biosurfactants. Environ Microbiol 3:229–236

    Article  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Kloepper JW, Pare PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Phys 134:1017–1026

    Article  CAS  Google Scholar 

  • Sachdev DP, Cameotra SS (2013) Biosurfactants in agriculture. Appl Microbiol Biotechnol 97:1005–1016

    Article  CAS  PubMed  Google Scholar 

  • Sadaf S, Nuzhat A, Khan NS (2009) Indole acetic acid production and enhanced plant growth promotion by indigenous PSBs. Afr J Agric Res 4(11):1312–1316

    Google Scholar 

  • Saha R, Saha N, Donofrio RS, Besterbelt LL (2012) Microbial siderophores: a mini review. J Basic Microbiol 52:1–15

    Article  Google Scholar 

  • Salisbury BF, Ross CW (1992) Plant physiology, 4th edn. Wadsworth Publishing Company, Belmont. ISBN 10:0-534-15162-0

    Google Scholar 

  • Schulz S, Dickschat JS (2007) Bacterial volatiles: the smell of small organisms. Nat Prod Rep 24:814–842

    Article  CAS  PubMed  Google Scholar 

  • Schulz B, Sucker J, Aust HJ, Krohn K, Ludewig K, Jones PG, Döring D (1995) Biologically active secondary metabolites of endophytic Pezicula species. Mycol Res 99:1007–1015

    Article  CAS  Google Scholar 

  • Scott MJ, Jones MN (2000) The biodegradation of surfactants in the environment. Biochem Biophys Acta 1508:235–251

    Article  CAS  PubMed  Google Scholar 

  • Seneviratne G, Jayasinghearachchi HS (2003) Mycelial colonization by bradyrhizobia and azorhizobia. J Biosci 28:243–247

    Article  PubMed  Google Scholar 

  • Seneviratne G, Zavahir JS, Bandara WMMS, Weerasekara MLMAW (2007) Fungal-bacterial biofilms: their development for novel biotechnological applications. World J Microbiol Biotechnol 24(6):739–743

    Article  CAS  Google Scholar 

  • Siddiqui ZA, Baghel G, Akhtar MS (2007) Biocontrol of Meloidogyne javanica by Rhizobium and plant growth-promoting rhizobacteria on lentil. World J Microbiol Biotechnol 23:435–441

    Article  CAS  Google Scholar 

  • Smirnoff N (1993) The role of active oxygen in the response of plants to water deficit and desiccation. New Phytol 125:27–58

    Article  CAS  Google Scholar 

  • Son HJ, Park GT, Cha MS, Heo MS (2006) Solubilization of insoluble inorganic phosphates by a novel salt- and pH-tolerant Pantoea agglomerans R-42 isolated from soybean rhizosphere. Biores Technol 97:204–210

    Article  CAS  Google Scholar 

  • Spaepen S, Vanderleyden J, Remans R (2007) Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol Rev 31:425–448

    Article  CAS  PubMed  Google Scholar 

  • Sridevi M, Mallaiah KV (2007) Production of indole-3-acetic acid by Rhizobium isolates from Sesbania species. Afr J Microbiol 1(7):125–128

    Google Scholar 

  • Sridevi M, Mallaiah KV, Yadav NCS (2007) Phosphate solubilization by Rhizobium isolates from Crotalaria species. J Plant Sci 2:635–639

    Article  CAS  Google Scholar 

  • Staley JT, Konopka A (1985) Measurement of in situ activities of non-photosynthetic microorganisms in aquatic and terrestrial habitats. Annu Rev Microbiol 39:321–346

    Article  CAS  PubMed  Google Scholar 

  • Subba Rao NS, Tilak KVBR, Singh CS (1985) Synergistic effect of vesicular-arbuscular mycorrhizae and Azospirillum brasilense on the growth of barley in pots. Soil Biol Biochem 17:119121

    Article  Google Scholar 

  • Subramanian KS, Charest C (1999) Acquisition of N by external hyphae of an arbuscular mycorrhizal fungus and its impact on physiological responses in maize under drought-stressed and well-watered conditions. Mycorrhiza 9:69–75

    CAS  Google Scholar 

  • Takenaka S, Tonoki T, Taira K, Murakami S, Aoki K (2007) Adaptation of Pseudomonas sp. strain 7-6 to quaternary ammonium compounds and their degradation via dual pathways. Appl Environ Microbiol 73:1797–1802

    Article  CAS  PubMed  Google Scholar 

  • Tan ZY, Kan FL, Peng GX, Wang ET, Reinhold-Hurek B, Chen WX (2001) Rhizobium yanglingense sp. nov isolated from arid and semi-arid regions in China. Int J Syst Evol Microbiol 51:909–914

    Article  CAS  PubMed  Google Scholar 

  • Tarafdar JC, Marschner H (1994) Efficiency of VAM hyphae in utilization of organic phosphorus by wheat plants. Soil Sci Plant Nutr 40:593–600

    Article  CAS  Google Scholar 

  • Tenuta M, Beauchamp EG (2003) Nitrous oxide production from nitrogen fertilizers in soil. Can J Soil Sci 83:521–553

    Article  CAS  Google Scholar 

  • Thakuria D, Talukdar NC, Goswami C, Hazarika S, Boro RC, Khan MR (2004) Characterization and screening of bacteria from rhizosphere of rice grown in acidic soils of Assam. Curr Sci 86:978–985

    Google Scholar 

  • Thomashow LS, Weller DM (1990) Role of antibiotics and siderophores in biocontrol of take-all disease of wheat. Plant Soil 129(1):93–99

    Article  CAS  Google Scholar 

  • Toal ME, Yeomans C, Killlham K, Meharg AA (2000) A review of rhizosphere carbon flow modeling. Plant Soil 222:263–281

    Article  CAS  Google Scholar 

  • Tsakelova EA, Klimova SY, Cherdyntseva TA, Netrusov AI (2006) Microbial producers of plant growth stimulators and their practical use: a review. Appl Biochem Microbiol 42:117–126

    Article  CAS  Google Scholar 

  • Tsuneda S, Aikawa H, Hayashi H, Yuasa A, Hirata A (2003) Extracellular polymeric substances responsible for bacterial adhesion onto solid surface. FEMS Microbiol Lett 223(2):287–292

    Article  CAS  PubMed  Google Scholar 

  • Tudzynski B, Sharon A (2002) Biosynthesis, biological role and application of fungal hormones. In: Osiewacz HD (ed) The mycota X industrial applications. Springer, Berlin/Heidelberg/New York, pp 183–211

    Chapter  Google Scholar 

  • Upadhyay DN, Vyas RK, Sharma ML, Soni Y, Rajnee (2011) Comparison in serum profile of peroxidants (MDA) and non enzymatic anti oxidants (vitamins e and c) among patients suffering from plasmodium falciparum and vivax malaria. J Postgrad Med Inst 25:96–100

    Google Scholar 

  • Van Aken B, Peres C, Doty S, Yoon J, Schnoor J (2004) Methylobacterium populi sp. nov., a novel aerobic, pink-pigmented, facultatively methylotrophic, methane-ultilising bacterium isolated from poplar trees (Populus deltoides × nigra DN34). Evol Microbiol 54:1191–1196

    Article  CAS  Google Scholar 

  • Van Hamme JD, Singh A, Ward OP (2006) Physiological aspects. Part 1 in a series of papers devoted to surfactants in microbiology and biotechnology. Biotechnol Adv 24:604–620

    Article  PubMed  CAS  Google Scholar 

  • Van Loon LC (2007) Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119(3):243–254

    Article  CAS  Google Scholar 

  • Van Loon LC, Bakker PAHM, Pieterse CMJ (1998) Systemic resistance induced by rhizosphere bacteria. Annu Rev Phytopathol 36:453–483

    Article  PubMed  Google Scholar 

  • Van Peer R, Schippers B (1992) Lipopolysaccharides of plant-growth promoting Pseudomonas sp. strain WCS417r induce resistance in carnation to fusarium wilt. Neth J Plant Pathol 98:129–139

    Article  Google Scholar 

  • Van Wees SCM, De Swart EAM, Van Pelt JA, Van Loon LC, Pieterse CMJ (2000) Enhancement of induced disease resistance by simultaneous activation of salicylate- and jasmonate-dependent defense pathways in Arabidopsis thaliana. Proc Natl Acad Sci 97:8711–8871

    Article  PubMed  Google Scholar 

  • Vartoukian SR, Palmer RM, William GW (2010) Strategies for culture of unculturable bacteria. FEMS Microbiol Lett 309:1–7

    CAS  PubMed  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Vey A, Hoagland RE, Butt TM (2001) Toxic metabolites of fungal biocontrol agents. In: Butt TM, Jackson C, Magan N (eds) Fungi as biocontrol agents: progress, problems and potential. CAB International, Bristol, pp 311–346

    Chapter  Google Scholar 

  • Voisard C, Keel C, Haas D, Defago G (1989) Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. Eur Mol Biol Org J 8:351–358

    CAS  Google Scholar 

  • Walsh UF, Morrissey JP, O’Gara F (2001) Pseudomonas for biocontrol of phytopathogens: from functional genomics to commercial exploitation. Curr Opin Biotechnol 12(3):289–295

    Article  CAS  PubMed  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007a) Effect of metal tolerant plant growth promoting Rhizobium on the performance of pea grown in metal amended soil. Arch Environ Contam Toxicol 55:33–42

    Article  CAS  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2007b) Co-inoculation of nitrogen fixing and phosphate solubilizing bacteria to promote growth, yield and nutrient uptake in chickpea. Acta Agron Hung 55:315–323

    Article  CAS  Google Scholar 

  • Wehner J, Antunes PM, Powell JR, Mazukatow J, Rillig MC (2010) Plant pathogen protection by arbuscular mycorrhizas: a role for fungal diversity? Pedobiology 53:197–201

    Article  Google Scholar 

  • Wei G, Kloepper JW, Tuzun S (1991) Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phytopathology 81:1508–1512

    Article  Google Scholar 

  • Weller DM (2007) Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology 97(2):250–256

    Article  PubMed  Google Scholar 

  • Weller DM, Van Pelt JA, Mavrodi DV, Pieterse CMJ, Bakker PAHM, Van Loon LC (2004) Induced systemic resistance (ISR) in Arabidopsis against Pseudomonas syringae pv. Tomato by 2,4-diacetylphloroglucinol (DAPG)-producing Pseudomonas fluorescens. Phytopathology 94:108

    Google Scholar 

  • West SA, Buckling A (2002) Cooperation, virulence and siderophore production in bacterial parasites. Proc R Soc Lond 270:37–44

    Article  Google Scholar 

  • Whipps JM, Hand P, Pink D, Bending GD (2008) Phyllosphere microbiology with special reference to diversity and plant genotype. J Appl Microbiol 105:1744–1755

    Article  CAS  PubMed  Google Scholar 

  • **ao CQ, Chi RA, He H, Qiu GZ, Wang DZ, Zhang WX (2009) Isolation of phosphate solubilizing fungi from phosphate mines and their effect on wheat seedling growth. Appl Biochem Biotechnol 159:330–342

    Article  CAS  PubMed  Google Scholar 

  • **ao CQ, Chi RA, Li XH, **a M, **a ZW (2011) Biosolubilization of rock phosphate by three stress-tolerant fungal strains. Appl Biochem Biotechnol 165:719–727

    Article  CAS  PubMed  Google Scholar 

  • Young CC, Shen FT, Lai WA, Hung MH, Huang WS, Arun AB, Lu HL (2003). Biochemical and molecular characterization of phosphate solubilizing bacteria from Taiwan soil. In: Proceeding of 2nd international symposium on phosphorus dynamics in the soil-plant continuum, Perth, 2003, pp 44–45

    Google Scholar 

  • Zahir ZA, Arshad M, Frankenberger WT (2004) Plant growth promoting rhizobacteria: applications and perspectives in agriculture. Adv Agron 81:97–168

    Article  CAS  Google Scholar 

  • Zahran HH, Rasanen LA, Karsisto M, Lindström K (1994) Alteration of lipopolysaccharide and protein profiles in SDS-PAGE of rhizobia by osmotic and heat stress. World J Microbiol Biotechnol 10:100–105

    Article  CAS  Google Scholar 

  • Zhang H, Hanada S, Shigematsu T, Shibuya K, Kamagata Y, Kanagawa T, Kurane R (2000) Burkholderia kururiensis sp. nov., a trichloroethylene (TCE)-degrading bacterium isolated from an aquifer polluted with TCE. Int J Syst Evol Microbiol 50:743–749

    Article  CAS  PubMed  Google Scholar 

  • Zhang N, Liu Z, Christensen MJ, Richardson K, Harding D, Schmid J (2004) Proteomic analysis of ryegrass-endophyte interactions. In: Proceedings of the 5th international symposium on neotyphodium/grass interactions, Fayetteville, 2004, pp 68–70

    Google Scholar 

  • Zhang Z, Li Q, Li Z, Staswick PE, Wang M, Zhu Y, He Z (2007) Dual regulation role of GH3.5 in salicylic acid and auxin signaling during Arabidopsis-Pseudomonas syringae interaction. Plant Physiol 145(2):450–464

    Article  CAS  PubMed  Google Scholar 

  • Zhang F, Gu W, Xu P, Tang S, **e K, Huang X, Huang Q (2011) Effects of alkyl polyglycoside (APG) on composting of agricultural wastes. Waste Manag 31:1333–1338

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Vice Chancellor Babasaheb Bhimrao Ambedkar University, Lucknow, India, for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveen Kumar Arora .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer India

About this chapter

Cite this chapter

Arora, N.K., Tewari, S., Singh, R. (2013). Multifaceted Plant-Associated Microbes and Their Mechanisms Diminish the Concept of Direct and Indirect PGPRs. In: Arora, N. (eds) Plant Microbe Symbiosis: Fundamentals and Advances. Springer, New Delhi. https://doi.org/10.1007/978-81-322-1287-4_16

Download citation

Publish with us

Policies and ethics

Navigation