The Beneficial Plant Microbial Association for Sustainable Agriculture

  • Chapter
  • First Online:
Plant Microbiome for Plant Productivity and Sustainable Agriculture

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 37))

Abstract

Microbes are ubiquitous and can associate to colonize plants and exhibits different modes of interactions. Plant beneficial microbes could colonize both the phyllosphere and rhizosphere to promote the various aspect of plant growth and other various compartments in plants. These beneficial microbes are generally called plant growth-promoting microbes (PGPMs), they can become an excellent alternative to remove or reduce the use of various toxic agrochemicals including synthetic chemical fertilizers and biocides. The association of PGPMs provides nutrients, protection against pathogens as well as various environmental stress responses either direct or indirect mechanisms. The soil and rhizosphere microbes beneficially associate either the root surface or phyllosphere region of the plant and influence the growth and health fitness of crops. Some microbes directly interact with the plant to develop a symbiotic relationship (e.g., Rhizobium, mycorrhizal fungi), and few can interact at the surface of the root with either associative symbiosis (Azospirillum) or nonsymbiotic beneficial interactions such as nutrient acquisition, solubilization, and translocation of minerals and water, vitamin and growth hormone synthesis, mineralization of soil organic residues, inhibits harmful pathogens and nematodes, production of iron siderophores to chelate ions, and provide induced resistance against various biotic and abiotic stresses. This chapter describes the basic beneficial microbial interactions on the rhizosphere, phyllosphere, and their beneficial effects on the host for sustainable agriculture, specifically, bacterial nodulation, mycorrhizal infection, microbial endophytes, development of bioinoculums, and their benefits to the plant. Further, the functions of beneficial microbes to the plants and the soil have been discussed. Besides, rhizosphere microbiome engineering and its role in sustainable agriculture have been also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 192.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 246.09
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 246.09
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abadi VAJM, Sepehri M, Rahmani HA, Dolatabad HK, Shamshiripour M, Khatabi B (2021) Diversity and abundance of culturable nitrogen fixing bacteria in the phyllosphere of maize. J Appl Microbiol 131(2):898–912. https://doi.org/10.1111/jam.14975

    Article  CAS  Google Scholar 

  • Abanda-Nkpwatt D, Musch M, Tschiersch J, Boettner M, Schwab W (2006) Molecular interaction between Methylobacterium extorquens and seedlings: growth promotion, methanol consumption, and localization of the methanol emission site. J Exper Botany 57(15):4025–4032. https://doi.org/10.1093/jxb/erl173

    Article  CAS  Google Scholar 

  • Abd El-Gawad HG, Ibrahim MFM, Abd El-Hafez AA, Abou El-Yazied A (2015) Contribution of pink pigmented facultative Methylotrophic bacteria in promoting antioxidant enzymes, growth and yield of Snap Bean. Synthesis 2:4. https://doi.org/10.5829/idosi.aejaes.2015.15.7.12709

    Article  Google Scholar 

  • Abdelhameed R, Metwally R (2019) Alleviation of cadmium stress by arbuscular mycorrhizal symbiosis. Int J Phytoremed 21(7):663–671. https://doi.org/10.1080/15226514.2018.1556584

    Article  CAS  Google Scholar 

  • Abdul Rahman N, Abdul Hamid N, Nadarajah K (2021) Effects of abiotic stress on soil microbiome. Int J Mol Sci 22(16):9036. https://doi.org/10.3390/ijms22169036

    Article  CAS  Google Scholar 

  • Abo-Amer AE, Abu-Gharbia MA, Soltan ESM, Abd El-Raheem WM (2014) Isolation and molecular characterization of heavy metal-resistant Azotobacter chroococcum from agricultural soil and their potential application in bioremediation. Geomicrobiol J 31(7):551–561. https://doi.org/10.1080/01490451.2013.850561

    Article  CAS  Google Scholar 

  • Abril G, Guérin F, Richard S, Delmas R, Galy-Lacaux C, Gosse P, Tremblay A, Varfalvy L, Dos Santos M, Matvienko B (2005) Carbon dioxide and methane emissions and the carbon budget of a 10-year old tropical reservoir (Petit Saut, French Guiana). Wiley, London. https://doi.org/10.1029/2005GB002457

    Book  Google Scholar 

  • Afzal I, Shinwari Z, Sikandar S, Shahzad S (2019) Plant beneficial endophytic bacteria: mechanisms, diversity, host range and genetic determinants. Microbiol Res 221:36–49. https://doi.org/10.1016/j.micres.2019.02.001

    Article  CAS  Google Scholar 

  • Agarwal S, Choure RG (2011) Use of indigenous Rhizobia as effective bioinoculants for Pisum sativum. Int J Biotech Biosci 1(1):89–96. https://doi.org/10.3389/fpls.2017.01961

    Article  Google Scholar 

  • Agerer R (2001) Exploration types of ectomycorrhizae. Mycorrhiza 11(2):107–114. https://doi.org/10.1007/s005720100108

    Article  Google Scholar 

  • Agler M, Ruhe J, Kroll S, Morhenn C, Kim S, Weigel D, Kemen E (2016) Microbial hub taxa link host and abiotic factors to plant microbiome variation. PLoS Biol 14(1):1002352. https://doi.org/10.1371/journal.pbio.1002352

    Article  CAS  Google Scholar 

  • Ahanger M, Agarwal R (2016) Potassium up-regulates antioxidant metabolism and alleviates growth inhibition under water and osmotic stress in wheat (Triticum aestivum L). Protoplasma 254(4):1471–1486. https://doi.org/10.1007/s00709-016-1037-0

    Article  CAS  Google Scholar 

  • Ahanger M, Hashem A, Abd-Allah E, Ahmad P (2014) Arbuscular mycorrhiza in crop improvement under environmental stress. Emer Technol Manag Crop Stress Tol 2:69–95. https://doi.org/10.1016/B978-0-12-800875-1.00003-X

    Article  Google Scholar 

  • Ahanger M, Tittal M, Mir R, Agarwal R (2017a) Alleviation of water and osmotic stress-induced changes in nitrogen metabolizing enzymes in Triticum aestivum L. cultivars by potassium. Protoplasma 254(5):1953–1963. https://doi.org/10.3389/fpls.2019.01068

    Article  CAS  Google Scholar 

  • Ahanger M, Tomar N, Argal S, Agarwal R (2017b) Plant growth under water/salt stress: ROS production; antioxidants and significance of added potassium under such conditions. Physiol Mol Biol Plants 23(4):731–744. https://doi.org/10.1007/s12298-017-0462-7

    Article  Google Scholar 

  • Ahanger M, Alyemeni M, Wijaya L, Alamri S, Alam P, Ahmad AM (2018) Potential of exogenously sourced kinetin in protecting Solanum lycopersicum from NaCl-induced oxidative stress through up-regulation of the antioxidant system, ascorbate-glutathione cycle and glyoxalase system. PLoS One 13(9):0202175. https://doi.org/10.1371/journal.pone.0202175

    Article  CAS  Google Scholar 

  • Ahmed R, Solaiman ARM, Halder NK, Siddiky MA, Islam MS (2007) Effect of inoculation methods of Rhizobium on yield attributes, yield and protein content in seed of pea. J Soil Nature 1(3):30–35

    Google Scholar 

  • Ait Lahmidi N, Courty P, Brulé D, Chatagnier O, Arnould C, Doidy J, Berta G, Lingua G, Wipf D, Bonneau L (2016) Sugar exchanges in arbuscular mycorrhiza: RiMST5 and RiMST6, two novel Rhizopha gusirregularis monosaccharide transporters, are involved in both sugar uptake from the soil and from the plant partner. Plant Physiol Biochem 107:354–363. https://doi.org/10.1016/j.plaphy.2016.06.023

    Article  CAS  Google Scholar 

  • Ait-El-Mokhtar M, Laouane R, Anli M, Boutasknit A, Wahbi S, Meddich A (2019) Use of mycorrhizal fungi in improving tolerance of the date palm (Phoenix dactylifera L.) seedlings to salt stress. Scia Hortic 253:429–438. https://doi.org/10.1016/j.scienta.2019.04.066

    Article  Google Scholar 

  • Akram M, Rizvi R, Sumbul A, Ansari RA, Mahmood I (2016) Potential role of bio-inoculants and organic matter for the management of root-knot nematode infesting chickpea. Cogent Food Agricul 2(1):1183457. https://doi.org/10.1080/23311932.2016.1183457

    Article  CAS  Google Scholar 

  • Akutse KS, Fiaboe KK, Van den Berg J, Ekesi S, Maniania NK (2014) Effects of endophyte colonization of Vicia faba (Fabaceae) plants on the life—history of leaf minerparasitoids Phaedroto mascabriventris (Hymenoptera: Braconidae) and Diglyphusisaea (Hymenoptera: Eulophidae). PLoS One 9(10):109965

    Article  Google Scholar 

  • Alamri SA, Mostafa YS (2009) Effect of nitrogen supply and Azospirillumbrasilense Sp-248 on the response of wheat to seawater irrigation. Saudi J Biol Sci 16(2):101–107. https://doi.org/10.1016/j.sjbs.2009.10.009

    Article  Google Scholar 

  • Al-Ani RA, Adhab MA, Mahdi MH, Abood HM (2012) Rhizobium japonicum as a biocontrol agent of soybean root rot disease caused by Fusarium solani and Macrophomina phaseolina. Plant Prot Sci 48(4):149–155. https://doi.org/10.17221/16/2012-PPS

    Article  Google Scholar 

  • Albright MB, Louca S, Winkler DE, Feeser KL, Haig SJ, Whiteson KL, Emerson JB, Dunbar J (2021) Solutions in microbiome engineering: prioritizing barriers to organism establishment. ISME J 16:1–8

    Google Scholar 

  • Ali N, Masood S, Mukhtar T, Kamran MA, Rafique M, Munis MFH, Chaudhary HJ (2015) Differential effects of cadmium and chromium on growth, photosynthetic activity, and metal uptake of Linumus itatissimum in association with Glomus intraradices. Environ Monit Asses 187(6):1–11. https://doi.org/10.1007/s10661-015-4557-8

    Article  CAS  Google Scholar 

  • Alivisatos AP, Blaser MJ, Brodie EL, Chun M, Dangl JL, Donohue TJ, Dorrestein PC, Gilbert JA, Green JL, Jansson JK, Knight R (2015) A unified initiative to harness Earth’s microbiomes. Science 350(6260):507–508. https://doi.org/10.1126/science.aac8480

    Article  CAS  Google Scholar 

  • Al-Karaki GN (2008) Rhizobium and phosphorus influence on lentil seed protein and lipid. J Plant Nutr 22:351–358. https://doi.org/10.1080/01904169909365632

    Article  Google Scholar 

  • Amat D, Thakur JK, Mandal A, Sahu A, Kiran Kumar Reddy K (2020) Production and utilization of legume inoculants (Rhizobium) in India. Harit Dhara 3(2):28–31

    Google Scholar 

  • Amiri R, Nikbakht A, Etemadi N (2015) Alleviation of drought stress on rose geranium [Pelargonium graveolens (L.) Herit.] in terms of antioxidant activity and secondary metabolites by mycorrhizal inoculation. Scia Hortic 197:373–380. https://doi.org/10.1016/j.scienta.2015.09.062

    Article  CAS  Google Scholar 

  • Amiri R, Nikbakht A, Etemadi N, Sabzalian MR (2017) Nutritional status, essential oil changes and water-use efficiency of rose geranium in response to arbuscular mycorrhizal fungi and water deficiency stress. Symbiosis 73(1):15–25. https://doi.org/10.1007/s13199-016-0466-z

    Article  CAS  Google Scholar 

  • Amor FMD, Cuadra-Crespo P (2012) Plant growth-promoting bacteria as a tool to improve salinity tolerance in sweet pepper. Funct Plant Biol 39(1):82–90. https://doi.org/10.1071/FP11173

    Article  CAS  Google Scholar 

  • Anandham R, Heo J, Krishnamoorthy R, Senthil Kumar M, Gopal NO, Kim SJ, Kwon SW (2019) Azospirillum ramasamyi sp. nov., a novel diazotrophic bacterium isolated from fermented bovine products. Int J Syst Evol Microbiol 69(5):1369–1375. https://doi.org/10.1099/ijsem.0.003320

    Article  CAS  Google Scholar 

  • Andjelković S, Vasića T, Radovića J, Babića S, Markovića J, Zornića V (2018) Abundance of azotobacter in the soil of natural and artificial grasslands. Solut Proj Sustain Soil Manag 172. https://orcid.org/0000-0003-2312-0251

    Google Scholar 

  • Andreote F, Gumiere T, Durrer A (2014) Exploring interactions of plant microbiomes. Scientia Agricola 71(6):528–539. https://doi.org/10.1590/0103-9016-2014-0195

    Article  Google Scholar 

  • Andrews M, Andrews M (2017) Specificity in legume-rhizobia symbioses. Int J Mol Sci 18(4):705. https://doi.org/10.3390/ijms18040705

    Article  CAS  Google Scholar 

  • Ansari RA, Mahmood I (eds) (2019a) Plant health under biotic stress: volume 1: organicstrategies. Springer, Singapore. https://doi.org/10.1007/978-981-13-6043-5_8

    Book  Google Scholar 

  • Ansari RA, Mahmood I (eds) (2019b) Plant health under biotic stress: volume 2: microbial interactions. Springer, Singapore

    Google Scholar 

  • Ansari MF, Tipre DR, Dave SR (2015) Efficiency evaluation of commercial liquid biofertilizers for growth of Cicer aeritinum (chickpea) in pot and field study. Biocat Agricult Biotechnol 4(1):17–24. https://doi.org/10.1016/j.bcab.2014.09.010

    Article  Google Scholar 

  • Ansari RA, Rizvi R, Sumbul A, Mahmood I (2017) PGPR: current vogue in sustainable crop production. In: Probiotics and plant health. Springer, Singapore, pp 455–472. https://doi.org/10.1016/j.sjbs.2020.08.004

    Chapter  Google Scholar 

  • Ardakani MR, Mafakheri S (2011) Designing a sustainable agroecosystem for wheat (Triticum aestivum L.) production. J Appl Environ Biol Sci 1(10):401–413

    Google Scholar 

  • Ardakani MR, Pietsch G, Moghaddam A, Raza A, Friedel JK (2009) Response of root properties to tripartite symbiosis between lucerne (Medicago sativa L.), rhizobia and mycorrhiza under dry organic farming conditions. Am J Agricul Biol Sci 4(4):266–277. https://doi.org/10.3844/ajabssp.2009.266.277

    Article  Google Scholar 

  • Arfaoui A, Sifi B, El Hassni M, El Hadrami I, Boudabbous A, Chérif M (2005) Biochemical analysis of chickpea protection against Fusarium wilt afforded by two Rhizobium isolates. Plant Pathol J 4(1):35–42. https://doi.org/10.3923/ppj.2005.35.42

    Article  Google Scholar 

  • Arora NK, Khare E, Maheshwari DK (2010) Plant growth promoting rhizobacteria: constraints in bioformulation, commercialization, and future strategies. In: Plant growth and health promoting bacteria. Springer, Berlin, pp 97–116. https://doi.org/10.1007/978-3-642-13612-2_5

    Chapter  Google Scholar 

  • Arora M, Saxena P, Abdin MZ, Varma A (2018) Interaction between Piriformospora indica and Azotobacter chroococcum governs better plant physiological and biochemical parameters in Artemisia annua L. plants grown under in vitro conditions. Symbiosis 75(2):103–112. https://doi.org/10.1007/s13199-017-0519-y

    Article  CAS  Google Scholar 

  • Aserse AA, Markos D, Getachew G, Yli-Halla M, Lindström K (2020) Rhizobial inoculation improves drought tolerance, biomass and grain yields of common bean (Phaseolus vulgaris L.) and soybean (Glycine max L.) at Halaba and Boricha in Southern Ethiopia. Arch Agron Soil Sci 66(4):488–501. https://doi.org/10.1080/03650340.2019.1624724

    Article  CAS  Google Scholar 

  • Asrar AA, Abdel-Fattah GM, Elhindi KM (2012) Improving growth, flower yield, and water relations of snapdragon (Antirhinum majus L.) plants grown under well-watered and water-stress conditions using arbuscular mycorrhizal fungi. Photosynthetica 50(2):305–316. https://doi.org/10.1007/s11099-012-0024-8

    Article  CAS  Google Scholar 

  • Assefa AH, Amsalu B, Tana T (2017) Response of common Bean (Pharsalus vulgaris L.) cultivars to combined application of rhizobium and NP fertilizer at Melkassa, central Ethiopia. Int J Plant Soil Sci 14(1):1–10. https://doi.org/10.9734/IJPSS/2017/30864

    Article  Google Scholar 

  • Audet P (2014) Arbuscular mycorrhizal fungi and metal phytoremediation: ecophysiological complementarity in relation to environmental stress. In: Emerging technologies and management of crop stress tolerance. Academic, Amsterdam, pp 133–160

    Chapter  Google Scholar 

  • Avio L, Sbrana C, Giovannetti M, Frassinetti S (2017) Arbuscular mycorrhizal fungi affect total phenolics content and antioxidant activity in leaves of oak leaf lettuce varieties. Scia Hortic 224:265–271. https://doi.org/10.1016/j.scienta.2017.06.022

    Article  CAS  Google Scholar 

  • Baars O, Zhang X, Morel FM, Seyedsayamdost MR (2016) The siderophore metabolome of Azotobacter vinelandii. App Env Microbiol 82(1):27–39. https://doi.org/10.1128/aem.03160-15

    Article  CAS  Google Scholar 

  • Backer R, Rokem JS, Ilangumaran G, Lamont J, Praslickova D, Ricci E, Subramanian S, Smith DL (2018) Plant growth-promoting rhizobacteria: context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front Plant Sci 9:1473. https://doi.org/10.3389/fpls.2018.01473

    Article  Google Scholar 

  • Bagyaraj DJ, Ashwin R (2017) Soil biodiversity: role in sustainable horticulture. Biodivers Hortic Crops 5:1–18

    Google Scholar 

  • Bakker MG, Manter DK, Sheflin AM, Weir TL, Vivanco JM (2012) Harnessing the rhizosphere microbiome through plant breeding and agricultural management. Plant Soil 360:1–13. https://doi.org/10.1146/annurev.arplant.57.032905.105159

    Article  CAS  Google Scholar 

  • Bakker PAHM, Pieterse CMJ, de Jonge R, Berendsen RL (2018) The soil-borne legacy. Cell 172:1178–1180. https://doi.org/10.1016/j.cell.2018.02.024

    Article  CAS  Google Scholar 

  • Balestrini R, Gómez-Ariza J, Lanfranco L, Bonfante P (2007) Laser microdissection reveals that transcripts for five plant and one fungal phosphate transporter genes are contemporaneously present in arbusculated cells. Mol Plant Microbe Interact 20(9):1055–1062. https://doi.org/10.1094/mpmi-20-9-1055

    Article  CAS  Google Scholar 

  • Bang C, Dagan T, Deines P, Dubilier N, Duschl WJ, Fraune S, Hentschel U, Hirt H, Hülter N, Lachnit T, Picazo D (2018) Metaorganisms in extreme environments: do microbes play a role in organismal adaptation? Zoology 127:1–19. https://doi.org/10.1016/j.zool.2018.02.004

    Article  Google Scholar 

  • Bano Q, Ilyas N, Bano A, Zafar N, Akram A, Hassan F (2013) Effect of Azospirillum inoculation on maize (Zea mays L.) under drought stress. Pak J Bot 45(S1):13–20

    CAS  Google Scholar 

  • Bano S, Wu X, Zhang X (2021) Towards sustainable agriculture: rhizosphere microbiome engineering. Appl Microbiol Biotechnol 105(19):7141–7160. https://doi.org/10.1016/j.jare.2020.04.014

    Article  CAS  Google Scholar 

  • Bansal R, Srivastava JP (2012) Antioxidative defense system in pigeonpea roots under waterlogging stress. Acta Physiol Plant 34(2):515–522. https://doi.org/10.1093/femsec/fiaa017

    Article  CAS  Google Scholar 

  • Bao L, Gu L, Sun B, Cai W, Zhang S, Zhuang G, Bai Z, Zhuang X (2020) Seasonal variation of epiphytic bacteria in the phyllosphere of Gingko biloba, Pinus bungeana and Sabina chinensis. FEMS Microbiol Ecol 96(3):17. https://doi.org/10.1093/femsec/fiaa017

    Article  CAS  Google Scholar 

  • Bärenstrauch M, Mann S, Jacquemin C, Bibi S, Sylla OK, Baudouin E, Buisson D, Prado S, Kunz C (2020) Molecular crosstalk between the endophyte Paraconiothyrium variabile and the phytopathogen Fusarium oxysporum—modulation of lipoxygenase activity and beauvericin production during the interaction. Fungal Genet Biol 139:103383. https://doi.org/10.1016/j.fgb.2020.103383

    Article  CAS  Google Scholar 

  • Barman M, Paul S, Choudhury AG, Roy P, Sen J (2017) Biofertilizer as prospective input for sustainable agriculture in India. Int J Curr Microbiol Appl Sci 6(11):1–177. https://doi.org/10.20546/ijcmas.2017.611.141

    Article  Google Scholar 

  • Barrera SE, Sarango-Flóres SW, Montenegro-Gómez SP (2019) The phyllosphere microbiome and its potential application in horticultural crops. A review. Rev Colomb Cienc Hortic 13(3):384–396. https://doi.org/10.17584/rcch.2019vl3i3.8405

    Article  Google Scholar 

  • Bashan Y, De-Bashan LE (2010) How the plant growth-promoting bacterium Azospirillum promotes plant growth—a critical assessment. Adv Agron 108:77–136. https://doi.org/10.1016/S0065-2113(10)08002-8

    Article  CAS  Google Scholar 

  • Bashir I, War AF, Rafiq I, Reshi ZA, Rashid I, Shouche YS (2022) Phyllosphere microbiome: diversity and functions. Microbioll Res 254:126888. https://doi.org/10.1016/j.micres.2021.126888

    Article  CAS  Google Scholar 

  • Basu S, Kumar G, Chhabra S, Prasad R (2021) Role of soil microbes in biogeochemical cycle for enhancing soil fertility. In: Verma JP, Macdonald C, Gupta VK, Podile AR (eds) New and future developments in microbial biotechnology and bioengineering: phytomicrobiome for sustainable agriculture. Elsevier, pp 149–157

    Chapter  Google Scholar 

  • Bati CB, Santilli E, Lombardo L (2015) Effect of arbuscular mycorrhizal fungi on growth and on micronutrient and macronutrient uptake and allocation in olive plantlets growing under high total Mn levels. Mycorrhiza 25:97–108. https://doi.org/10.1007/s00572-014-0589-0

    Article  CAS  Google Scholar 

  • Battini F, Bernardi R, Turrini A, Agnolucci M, Giovannetti M (2016) Rhizophagus intraradices or its associated bacteria affect gene expression of key enzymes involved in the rosmarinic acid biosynthetic pathway of basil. Mycorrhiza 26(7):699–707. https://doi.org/10.1007/s00572-016-0707-2

    Article  CAS  Google Scholar 

  • Battini F, Grønlund M, Agnolucci M, Giovannetti M, Jakobsen I (2017) Facilitation of phosphorus uptake in maize plants by mycorrhizosphere bacteria. Sci Rep 7(1):1–11. https://doi.org/10.1038/s41598-017-04959-0

    Article  CAS  Google Scholar 

  • Bayani R, Saateyi A, Faghani E (2015) Influence of arbuscular mycorrhiza in phosphorus acquisition efficiency and drought-tolerance mechanisms in barley. Int J Biosci 7(1):86–94. https://doi.org/10.12692/ijb/7.1.86-94

    Article  CAS  Google Scholar 

  • Beattie GA (2002) Leaf surface waxes and the process of leaf colonization by microorganisms. Phyllosphere Microbiol:3–26. https://doi.org/10.1094/MPMI.2002.15.12.1236

  • Begum AA, Leibovitch S, Migner P, Zhang F (2001a) Inoculation of pea (Pisum sativum L.) by Rhizobium leguminosarum bv. viceae preincubated with naringenin and hesperetin or application of naringenin and hesperetin directly into soil increased pea nodulation under short season conditions. Plant Soil 237(1):71–80

    Article  CAS  Google Scholar 

  • Begum AA, Leibovitch S, Migner P, Zhang F (2001b) Specific flavonoids induced nod gene expression and pre-activated nod genes of Rhizobium leguminosarum increased pea (Pisums ativum L.) and lentil (Lens culinaris L.) nodulation in controlled growth chamber environments. J Expl Bot 52(360):1537–1543. https://doi.org/10.1093/jexbot/52.360.1537

    Article  CAS  Google Scholar 

  • Begum N, Qin C, Ahanger MA, Raza S, Khan MI, Ashraf M, Ahmed N, Zhang L (2019) Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. Front Plant Sci 10:1068. https://doi.org/10.3389/fpls.2019.01068

    Article  Google Scholar 

  • Behie SW, Bidochka MJ (2014) Nutrient transfer in plant–fungal symbioses. Trends Plant Sci 19(11):734–740

    Article  CAS  Google Scholar 

  • Behie SW, Zelisko PM, Bidochka MJ (2012) Endophytic insect-parasitic fungi translocate nitrogen directly from insects to plants. Science 336(6088):1576–1577. https://doi.org/10.1126/science.1222289

    Article  CAS  Google Scholar 

  • Belmondo S, Fiorilli V, Pérez-Tienda J, Ferrol N, Marmeisse R, Lanfranco L (2014) A dipeptide transporter from the arbuscular mycorrhizal fungus Rhizophagus irregularis is upregulated in the intraradical phase. Front Plant Sci 5:436. https://doi.org/10.3389/fpls.2014.00436

    Article  Google Scholar 

  • Benedetto A, Magurno F, Bonfante P, Lanfranco L (2005) Expression profiles of a phosphate transporter gene (GmosPT) from the endomycorrhizal fungus Glomus mosseae. Mycorrhiza 15(8):620–627

    Article  CAS  Google Scholar 

  • Berendsen R, Pieterse C, Bakker P (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17(8):478–486

    Article  CAS  Google Scholar 

  • Berg RH (1994) Symbiotic vesicle ultrastructure in high pressure-frozen, freeze-substituted actinorhizae. Protoplasma 183(1-4):37–48

    Article  Google Scholar 

  • Berrada H, Fikri-Benbrahim K (2014) Taxonomy of the rhizobia: current perspectives. Microbiol Res J Int 4(6):616–639

    Google Scholar 

  • Berruti A, Lumini E, Balestrini R, Bianciotto V (2016) Arbuscular mycorrhizal fungi as natural biofertilizers: let’s benefit from past successes. Front Environ Sci 6:1559. https://doi.org/10.3389/fmicb.2015.01559

    Article  Google Scholar 

  • Bodenhausen N, Horton M, Bergelson J (2013) Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. PLoS One 8(2):e56329

    Article  CAS  Google Scholar 

  • Bona E, Lingua G, Manassero P, Cantamessa S, Marsano F, Todeschini V, Copetta A, D’Agostino G, Massa N, Avidano L, Gamalero E (2015) AM fungi and PGP pseudomonads increase flowering, fruit production, and vitamin content in strawberry grown at low nitrogen and phosphorus levels. Mycorrhiza 25(3):181–193

    Article  CAS  Google Scholar 

  • Borde M, Dudhane M, Jite PK (2010) AM fungi influences the photosynthetic activity, growth and antioxidant enzymes in Allium sativum L. under salinity condition. Notulae Sci Biol 2(4):64–71

    Article  CAS  Google Scholar 

  • Bottini R, Fulchieri M, Pearce D, Pharis RP (1989) Identification of gibberellins A1, A3, and iso-A3 in cultures of Azospirillum lipoferum. Plant Physiol 90(1):45–47

    Article  CAS  Google Scholar 

  • Boyer LR, Brain P, Xu XM, Jeffries P (2015) Inoculation of drought-stressed strawberry with a mixed inoculum of two arbuscular mycorrhizal fungi: effects on population dynamics of fungal species in roots and consequential plant tolerance to water deficiency. Mycorrhiza 25(3):215–227

    Article  CAS  Google Scholar 

  • Bram WGS, Eric AW, Colin RJ (2018) The role of the phyllosphere microbiome in plant health and function. Annual Plant Rev 1:1–24. https://doi.org/10.1002/9781119312994.apr0614

    Article  Google Scholar 

  • Breakspear A, Liu C, Roy S, Stacey N, Rogers C, Trick M, Morieri G, Mysore KS, Wen J, Oldroyd GE, Downie JA (2014) The root hair “infectome” of Medicago truncatula uncovers changes in cell cycle genes and reveals a requirement for auxin signaling in rhizobial infection. Plant Cell 26(12):4680–4701. https://doi.org/10.1105/tpc.114.133496

    Article  CAS  Google Scholar 

  • Bücking H, Shachar-Hill Y (2005) Phosphate uptake, transport and transfer by the arbuscular mycorrhizal fungus Glomus intraradices is stimulated by increased carbohydrate availability. New Phytol 165(3):899–912. https://doi.org/10.1111/j.1469-8137.2004.01274.x

    Article  CAS  Google Scholar 

  • Bulegon LG, Guimarães VF, Laureth JCU (2016) Azospirillum brasilense affects the antioxidant activity and leaf pigment content of Urochloaruziziensis under water stress. Pesqui Agro Pecu Bras 46:343–349. https://doi.org/10.1590/1983-40632016v4641489

    Article  Google Scholar 

  • Bunn R, Lekberg Y, Zabinski C (2009) Arbuscular mycorrhizal fungi ameliorate temperature stress in thermophilic plants. Ecology 90(5):1378–1388. https://doi.org/10.1890/07-2080.1

    Article  Google Scholar 

  • Bziuk N, Maccario L, Straube B, Wehner G, Sørensen SJ, Schikora A, Smalla K (2021) The treasure inside barley seeds: microbial diversity and plant beneficial bacteria. Environ Microbiome 16:20. https://doi.org/10.1186/s40793-021-00389-8

    Article  Google Scholar 

  • Cabral C, Ravnskov S, Tringovska I, Wollenweber B (2016) Arbuscular mycorrhizal fungi modify nutrient allocation and composition in wheat (Triticum aestivum L.) subjected to heat-stress. Plant Soil 408(1-2):385–399. https://doi.org/10.1007/S11104-016-2942-X

    Article  CAS  Google Scholar 

  • Calabrese S, Pérez-Tienda J, Ellerbeck M, Arnould C, Chatagnier O, Boller T, Schüßler A, Brachmann A, Wipf D, Ferrol N, Courty PE (2016) GintAMT3—a low-affinity ammonium transporter of the arbuscular mycorrhizal Rhizopha gusirregularis. Front Plant Sci 7:679. https://doi.org/10.3389/fpls.2016.00679

    Article  Google Scholar 

  • Calvo-Polanco M, Sánchez-Romera B, Aroca R, Asins M, Declerck S, Dodd I, Martínez-Andújar C, Albacete A, Ruiz-Lozano J (2016) Exploring the use of recombinant inbred lines in combination with beneficial microbial inoculants (AM fungus and PGPR) to improve drought stress tolerance in tomato. Environ Exp Bot 131:47–57. https://doi.org/10.1016/j.envexpbot.2016.06.015

    Article  CAS  Google Scholar 

  • Campanelli A, Ruta C, De Mastro G, Morone-Fortunato I (2013) The role of arbuscular mycorrhizal fungi in alleviating salt stress in Medicago sativa L. var. icon. Symbiosis 59(2):65–76. https://doi.org/10.1007/s13199-012-0191-1

    Article  Google Scholar 

  • Canarini A, Kaiser C, Merchant A, Richter A, Wanek W (2019) Root exudation of primary metabolites: mechanisms and their roles in plant responses to environmental stimuli. Front Plant Sci 10:157. https://doi.org/10.3389/fpls.2019.00157

    Article  Google Scholar 

  • Carrell AA, Frank AC (2014) Pinus flexilis and Picea engelmannii share a simple and consistent needle endophyte microbiota with a potential role in nitrogen fixation. Front Microbiol 5:333. https://doi.org/10.3389/fmicb.2014.00333

    Article  Google Scholar 

  • Carrozzi LE, Creus CM, Barassi CA, Monterubbianesi G, Di Benedetto A (2012) Reparation of aged lettuce (Lactuca sativa) seeds by osmotic priming and Azospirillum brasilense inoculation. Botany 90(12):1093–1102. https://doi.org/10.1139/b2012-087

    Article  CAS  Google Scholar 

  • Cartmill AD, Valdez-Aguilar LA, Bryan DL, Alarcón A (2008) Arbuscular mycorrhizal fungi enhance tolerance of vinca to high alkalinity in irrigation water. Scia Hortic 115(3):275–284. https://doi.org/10.1016/j.scienta.2007.08.019

    Article  CAS  Google Scholar 

  • Carvalho M, Ma Y, Oliveira R, Freitas H (2017) Endophytic actinobacteria for sustainable agricultural applications. In: Endophytes: crop productivity and protection. Springer, Cham, pp 163–189. https://doi.org/10.1007/978-3-319-66541-2_8

    Chapter  Google Scholar 

  • Casieri L, Gallardo K, Wipf D (2012) Transcriptional response of Medicago truncatula sulphate transporters to arbuscular mycorrhizal symbiosis with and without sulphur stress. Planta 235(6):1431–1447. https://doi.org/10.1007/s00425-012-1645-7

    Article  CAS  Google Scholar 

  • Cassman NA, Leite MF, Pan Y, de Hollander M, van Veen JA, Kuramae EE (2016) Plant and soil fungal but not soil bacterial communities are linked in long-term fertilized grassland. Sci Rep 6(1):1–11. https://doi.org/10.1038/srep23680

    Article  CAS  Google Scholar 

  • Ceballos I, Mosquera S, Angulo M, Mira JJ, Argel LE, Uribe-Velez D, Romero-Tabarez M, Orduz-Peralta S, Villegas V (2012) Cultivable bacteria populations associated with leaves of banana and plantain plants and their antagonistic activity against Mycosphaerella fijiensis. Microbial Ecol 64(3):641–653. https://doi.org/10.1007/s00248-012-0052-8

    Article  Google Scholar 

  • Çekiç FÖ, Ünyayar S, Ortaş İ (2012) Effects of arbuscular mycorrhizal inoculation on biochemical parameters in Capsicum annuum grown under long term salt stress. Turkish J Bot 36(1):63–72. https://doi.org/10.3906/Bot-1008-32

    Article  Google Scholar 

  • Cerezini P, Kuwano BH, dos Santos MB, Terassi F, Hungria M, Nogueira MA (2016) Strategies to promote early nodulation in soybean under drought. Field Crops Res 196:160–167. https://doi.org/10.1016/j.fcr.2016.06.017

    Article  Google Scholar 

  • Chang W, Sui X, Fan XX, Jia TT, Song FQ (2018) Arbuscular mycorrhizal symbiosis modulates antioxidant response and ion distribution in salt-stressed Elaeagnus angustifolia seedlings. Front Microbiol 9:652. https://doi.org/10.3389/fmicb.2018.00652

    Article  Google Scholar 

  • Charubin K, Papoutsakis ET (2019) Direct cell-to-cell exchange of matter in a synthetic Clostridium syntrophy enables CO2 fixation, superior metabolite yields, and an expanded metabolic space. Metab Eng 52:9–19. https://doi.org/10.1016/j.ymben.2018.10.006

    Article  CAS  Google Scholar 

  • Chaturvedi H, Singh V, Gupta G (2016) Potential of bacterial endophytes as plant growth promoting factors. J Plant Pathol Microbiol 7(9):1–6. https://doi.org/10.4172/2157-7471.1000376

    Article  CAS  Google Scholar 

  • Chen M, Zhang L, Zhang X (2011) Isolation and inoculation of endophytic actinomycetes in root nodules of Elaeagnus angustifolia. Mod Appl Sci 5(2):264. https://doi.org/10.5539/mas.v5n2p264

    Article  CAS  Google Scholar 

  • Chen S, ** W, Liu A, Zhang S, Liu D, Wang F, Lin X, He C (2013) Arbuscular mycorrhizal fungi (AMF) increase growth and secondary metabolism in cucumber subjected to low temperature stress. Scia Hortic 160:222–229. https://doi.org/10.1016/j.scienta.2013.05.039

    Article  CAS  Google Scholar 

  • Chhabra S (2019) Phosphorus management in agroecosytems and role and relevance of microbes in environmental sustainability. Sustain Green Technol Environ Manag:53–66. https://doi.org/10.1007/978-981-13-2772-8_3

  • Chhabra S, Dowling DN (2017) Endophyte-promoted nutrient acquisition: phosphorus and iron. In: Functional importance of the plant microbiome: implications for agriculture, forestry and bioenergy, vol 2017. Springer, Cham, pp 21–42. https://doi.org/10.1007/978-3-319-65897-1_3

    Chapter  Google Scholar 

  • Cid F, Inostroza N, Graether S, Bravo L, Jorquera M (2016) Bacterial community structures and ice recrystallization inhibition activity of bacteria isolated from the phyllosphere of the Antarctic vascular plant Deschampsia antarctica. Polar Biol 40(6):1319–1331. https://doi.org/10.1007/s00300-016-2036-5

    Article  Google Scholar 

  • Cohen AC, Travaglia CN, Bottini R, Piccoli PN (2009) Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botany 87(5):455–462. https://doi.org/10.1139/B09-023

    Article  CAS  Google Scholar 

  • Cohen AC, Bottini R, Pontin M, Berli FJ, Moreno D, Boccanlandro H, Travaglia CN, Piccoli PN (2015) Azospirillum brasilense ameliorates the response of Arabidopsis thaliana to drought mainly via enhancement of ABA levels. Physiol Plant 153(1):79–90. https://doi.org/10.1111/ppl.12221

    Article  CAS  Google Scholar 

  • Collins DP, Jacobsen BJ (2003) Optimizing a Bacillus subtilis isolate for biological control of sugar beet Cercospora leaf spot. Biol Cont 26(2):153–161. https://doi.org/10.1016/S1049-9644(02)00132-9

    Article  Google Scholar 

  • Colston TJ, Jackson CR (2016) Microbiome evolution along divergent branches of the vertebrate tree of life: what is known and unknown? Mol Ecol 25(16):3776–3800. https://doi.org/10.1111/mec.13730

    Article  Google Scholar 

  • Compant S, Samad A, Faist H, Sessitsch A (2019) A review on the plant microbiome: ecology, functions, and emerging trends in microbial application. J Adv Res 19:29–37. https://doi.org/10.1016/j.jare.2019.03.004

    Article  CAS  Google Scholar 

  • Cooper JE (2007) Early interactions between legumes and rhizobia: disclosing complexity in a molecular dialogue. J Appl Microbiol 103(5):1355–1365. https://doi.org/10.1111/j.1365-2672.2007.03366.x

    Article  CAS  Google Scholar 

  • Cruz-Martín M, Acosta-Suárez M, Mena E, Roque B, Pichardo T, Alvarado-Capó Y (2017) Antifungal activity of Musa phyllosphere Bacillus pumilus strain against Mycosphaerella fijiensis. Trop Plant Pathol 42(2):121–125. https://doi.org/10.1007/s40858-017-0139-3

    Article  Google Scholar 

  • Cruz-Martín M, Acosta-Suárez M, Mena E, Roque B, Pichardo T, Alvarado-Capó Y (2018) Effect of Bacillus pumilus CCIBP-C5 on Musa-Pseudocercospora fijiensis interaction. 3 Biotech 8(2):122. https://doi.org/10.1007/s13205-018-1152-z

    Article  Google Scholar 

  • Cui R, Lu X, Chen X, Malik WA, Wang D, Wang J, Wang S, Guo L, Chen C, Wang X, Wang X (2021) A novel raffinose biological pathway is observed by symbionts of cotton≡Verticillium dahliae to improve salt tolerance genetically on cotton. J Agron Crop Sci 207(6):956–969. https://doi.org/10.1111/jac.12556

    Article  CAS  Google Scholar 

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Env Sci 2:53. https://doi.org/10.3389/fenvs.2014.00053

    Article  Google Scholar 

  • Dastogeer KMG, Tumpa FH, Sultana A, Akter MA, Chakraborty A (2020) Plant microbiome—an account of the factors that shape community composition and diversity. Current Plant Biol 23:100161. https://doi.org/10.1016/j.cpb.2020.100161

    Article  Google Scholar 

  • Datta A, Singh RK, Tabassum S (2015) Isolation, characterization and growth of Rhizobium strains under optimum conditions for effective biofertilizer production. Int J Pharm Sci Rev Res 32(1):199–208

    CAS  Google Scholar 

  • De Jensen CE, Percich JA, Graham PH (2002) Integrated management strategies of bean root rot with Bacillus subtilis and Rhizobium in Minnesota. Field Crops Res 74(2-3):107–115. https://doi.org/10.1016/S0378-4290(01)00200-3

    Article  Google Scholar 

  • De Sassi C, Müller CB, Krauss J (2006) Fungal plant endosymbionts alter life history and reproductive success of aphid predators. Proc R Soc B Biol Sci 273(1591):301–1306. https://doi.org/10.1098/rspb.2005.3442

    Article  Google Scholar 

  • de Souza R, Beneduzi A, Ambrosini A, Da Costa PB, Meyer J, Vargas LK, Schoenfeld R, Passaglia LM (2013) The effect of plant growth-promoting rhizobacteria on the growth of rice (Oryza sativa L.) cropped in southern Brazilian fields. Plant Soil 366:585–603. https://doi.org/10.1007/s11104-012-1430-1

    Article  CAS  Google Scholar 

  • Delmotte N, Knief C, Chaffron S, Innerebner G, Roschitzki B, Schlapbach R, von Mering C, Vorholt JA (2009) Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc Natl Acad Sci 106(38):16428–16433. https://doi.org/10.1073/pnas.0905240106

    Article  Google Scholar 

  • Deshmukh R, Sonah H, Patil G, Chen W, Prince S, Mutava R, Vuong T, Valliyodan B, Nguyen HT (2014) Integrating omic approaches for abiotic stress tolerance in soybean. Front Plant Sci 5:244. https://doi.org/10.3390/d12100370

    Article  CAS  Google Scholar 

  • Dhayanithy G, Subban K, Chelliah J (2019) Diversity and biological activities of endophytic fungi associated with Catharanthus roseus. BMC Microbiol 19:22. https://doi.org/10.1186/s12866-019-1386-x

    Article  Google Scholar 

  • Diagne N, Arumugam K, Ngom M, Nambiar-Veetil M, Franche C, Narayanan KK, Laplaze L (2013) Use of Frankia and actinorhizal plants for degraded lands reclamation. Bio Med Res Int 2013:1–9. https://doi.org/10.1155/2013/948258

    Article  CAS  Google Scholar 

  • Diagne N, Ngom M, Djighaly PI, Fall D, Hocher V, Svistoonoff S (2020) Roles of arbuscular mycorrhizal fungi on plant growth and performance: importance in biotic and abiotic stressed regulation. Diversity 12(10):370. https://doi.org/10.3390/d12100370

    Article  CAS  Google Scholar 

  • Din M, Nelofer R, Salman M, Khan FH, Khan A, Ahmad M, Jalil F, Din JU, Khan M (2019) Production of nitrogen fixing Azotobacter (SR-4) and phosphorus solubilizing Aspergillus niger and their evaluation on Lagenaria siceraria and Abelmoschus esculentus. Biotechnol Rep 22:e00323. https://doi.org/10.1016/j.btre.2019.e00323

    Article  Google Scholar 

  • Dinesh R, Srinivasan V, TE S, Anandaraj M, Srambikka H (2017) Endophytic actinobacteria: diversity, secondary metabolism and mechanisms to unsilence biosynthetic gene clusters. Crit Rev Microbiol 43(5):546–566. https://doi.org/10.1080/1040841x.2016.1270895

    Article  CAS  Google Scholar 

  • Dong CJ, Wang LL, Li Q, Shang QM (2019) Bacterial communities in the rhizosphere, phyllosphere and endosphere of tomato plants. PLoS One 14(11):e0223847. https://doi.org/10.1371/journal.pone.0223847

    Article  CAS  Google Scholar 

  • dos Santos Ferreira N, Hayashi Sant’ Anna F, Massena Reis V et al (2020) Genome-based reclassification of Azospirillum brasilense Sp245 as the type strain of Azospirillum baldaniorum sp. nov. Int J Syst Evol Microbiol 70(12):6203–6212. https://doi.org/10.1099/ijsem.0.004517

    Article  CAS  Google Scholar 

  • Du HJ, Zhang YQ, Liu HY, Su J, Wei YZ, Ma BP, Guo BL, Yu LY (2013) Allonocardiopsis opalescens gen. nov., sp. nov., a new member of the suborder Streptosporangineae, from the surface-sterilized fruit of a medicinal plant. Int J Syst Evol Microbiol 63:900–904. https://doi.org/10.1099/ijs.0.041491-0

    Article  CAS  Google Scholar 

  • Dubey A, Mall MA, Khan F, Chowdhary K, Yadav S, Kumar A, Sharma S, Khare PK, Khan ML (2019) Soil microbiome: a key player for conservation of soil health under changing climate. Biodivers Conserv 28(8):2405–2429. https://doi.org/10.1007/s10531-019-01760-5

    Article  Google Scholar 

  • Dubilier N, McFall-Ngai M, Zhao L (2015) Microbiology: create a global microbiome effort. Nat News 526(7575):631

    Article  CAS  Google Scholar 

  • Durand A, Maillard F, Alvarez-Lopez V, Guinchard S, Bertheau C, Valot B, Blaudez D, Chalot M (2018) Bacterial diversity associated with poplar trees grown on a Hg-contaminated site: community characterization and isolation of Hg-resistant plant growth-promoting bacteria. Sci Total Environ 622-623:1165–1177. https://doi.org/10.1016/j.scitotenv.2017.12.069

    Article  CAS  Google Scholar 

  • Dutta S, Singh MS (2002) Mustard and rapeseed response to azotobacter. Indian J Hill Farming 15:44–46

    Google Scholar 

  • Egamberdieva D, Wirth SJ, Alqarawi AA, Abd_Allah EF, Hashem A (2017) Phytohormones and beneficial microbes: essential components for plants to balance stress and fitness. Front Microbiol 8:2104. https://doi.org/10.3389/fmicb.2017.02104

  • El-Badry MA, Elbarbary TA, Ibrahim IA, Abdel-Fatah YM (2016) Azotobacter vinelandii evaluation and optimization of Abu Tartur Egyptian phosphate ore dissolution. Saudi J Pathol Microbiol 1(3):80–93. https://doi.org/10.21276/sjpm.2016.1.3.2

    Article  Google Scholar 

  • Elhindi KM, El-Din AS, Elgorban AM (2017) The impact of arbuscular mycorrhizal fungi in mitigating salt-induced adverse effects in sweet basil (Ocimum basilicum L.). Saudi J Biol Sci 24(1):170–179. https://doi.org/10.1016/j.sjbs.2016.02.010

    Article  CAS  Google Scholar 

  • Elías JM, Guerrero-Molina MF, Martínez-Zamora MG, Díaz-Ricci JC, Pedraza RO (2018) Role of ethylene and related gene expression in the interaction between strawberry plants and the plant growth-promoting bacterium Azospirillum brasilense. Plant Biol 20(3):490–496. https://doi.org/10.1111/plb.12697

    Article  CAS  Google Scholar 

  • El-Nashar YI (2017) Response of snapdragon (Antirrhinum majus L.) to blended water irrigation and arbuscular mycorrhizal fungi inoculation: uptake of minerals and leaf water relations. Photosynthetica 55(2):201–209. https://doi.org/10.1007/s11099-016-0650-7

    Article  CAS  Google Scholar 

  • El-Sayed MT (2014) The response of Fusarium solani to Cd (II) and Cu (II) in pure culture. Egypt J Microbiol 5:99–117. https://doi.org/10.21608/ejm.2014.244

    Article  Google Scholar 

  • Esitken A, Yildiz HE, Ercisli S, Donmez MF, Turan M, Gunes A (2010) Effects of plant growth promoting bacteria (PGPB) on yield, growth and nutrient contents of organically grown strawberry. Scia Hortic 124(1):62–66. https://doi.org/10.1007/s00572-011-0392-0

    Article  CAS  Google Scholar 

  • Evelin H, Giri B, Kapoor R (2012) Contribution of Glomus intraradices inoculation to nutrient acquisition and mitigation of ionic imbalance in NaCl-stressed Trigonella foenum-graecum. Mycorrhiza 22(3):203–217. https://doi.org/10.1007/s00572-011-0392-0

    Article  CAS  Google Scholar 

  • Evelin H, Giri B, Kapoor R (2013) Ultrastructural evidence for AMF mediated salt stress mitigation in Trigonella foenum-graecum. Mycorrhiza 23(1):71–86. https://doi.org/10.1007/s00572-012-0449-8

    Article  CAS  Google Scholar 

  • Fang W, St Leger RJ (2010) Mrt, a gene unique to fungi, encodes an oligosaccharide transporter and facilitates rhizosphere competency in Metarhizium robertsii. Plant Physiol 154(3):1549–1557. https://doi.org/10.1104/pp.110.163014

    Article  CAS  Google Scholar 

  • Farssi O, Mouradi M, Ghoulam C, Bouizgaren A, Berrougui H, Farissi M (2018) Genes and molecular signals involved in legumes-rhizobia symbiosis. Ann West Univ Timiş Ser Biol 21(2):193–206

    Google Scholar 

  • Fasciglione G, Casanovas EM, Quillehauquy V, Yommi AK, Goni MG, Roura SI, Barassi CA (2015) Azospirillum inoculation effects on growth, product quality and storage life of lettuce plants grown under salt stress. Scia Hortic 195:154–162. https://doi.org/10.1016/j.scienta.2015.09.015

    Article  CAS  Google Scholar 

  • Feng Y, Shen D, Dong X, Song W (2003) In vitro symplasmata formation in the rice diazotrophic endophyte Pantoea agglomerans YS19. Plant Soil 255(2):435–444

    Article  CAS  Google Scholar 

  • Fernando WGD, Nakkeeran S, Zhang Y, Savchuk S (2007) Biological control of Sclerotiniasclerotiorum (Lib.) de Bary by Pseudomonas and Bacillus species on canola petals. Crop Protect 26(2):100–107. https://doi.org/10.1016/j.cropro.2006.04.007

    Article  Google Scholar 

  • Fibach-Paldi S, Burdman S, Okon Y (2012) Key physiological properties contributing to rhizosphere adaptation and plant growth promotion abilities of Azospirillumbrasilense. FEMS Microbiol Lett 326(2):99–108. https://doi.org/10.1111/j.1574-6968.2011.02407.x

    Article  CAS  Google Scholar 

  • Field KJ, Rimington WR, Bidartondo MI, Allinson KE, Beerling DJ, Cameron DD, Duckett JG, Leake JR, Pressel S (2015) First evidence of mutualism between ancient plant lineages (H. aplomitriopsida liverworts) and M. ucoromycotina fungi and its response to simulated P. alaeozoic changes in atmospheric CO2. New Phytol 205(2):743–756. https://doi.org/10.1111/nph.13024

    Article  CAS  Google Scholar 

  • Foo JL, Ling H, Lee YS, Chang MW (2017) Microbiome engineering: current applications and its future. Biotechnol J 12(3):1600099. https://doi.org/10.1002/biot.201600099

    Article  CAS  Google Scholar 

  • Frąc M, Hannula SE, Bełka M, Jędryczka M (2018) Fungal biodiversity and their role in soil health. Front Microbiol 9:707. https://doi.org/10.3389/fmicb.2018.00707

    Article  Google Scholar 

  • Franche C, Bogusz D (2012) Signalling and communication in the actinorhizal symbiosis. In: Signaling and communication in plant symbiosis. Springer, Berlin, pp 73–92. https://doi.org/10.1007/978-3-642-20966-6_4

    Chapter  Google Scholar 

  • Freiberg E (1998) Microclimatic parameters influencing nitrogen fixation in the phyllosphere in a Costa Rican premontane rain forest. Oecologia 117(1-2):9–18. https://doi.org/10.1007/s004420050625

    Article  Google Scholar 

  • Fu SF, Sun PF, Lu HY, Wei JY, **ao HS, Fang WT, Cheng BY, Chou JY (2016) Plant growth-promoting traits of yeasts isolated from the phyllosphere and rhizosphere of Droseraspatulata Lab. Fungal Biol 120(3):433–448. https://doi.org/10.1016/j.funbio.2015.12.006

    Article  CAS  Google Scholar 

  • Fukami J, Nogueira MA, Araujo RS, Hungria M (2016) Accessing inoculation methods of maize and wheat with Azospirillum brasilense. Amb Express 6(1):1–13. https://doi.org/10.1186/s13568-015-0171-y

    Article  CAS  Google Scholar 

  • Fukami J, de la Osa C, Ollero FJ, Megías M, Hungria M (2017) Co-inoculation of maize with Azospirillum brasilense and Rhizobium tropici as a strategy to mitigate salinity stress. Funct Plant Biol 45(3):328–339. https://doi.org/10.1071/fp17167

    Article  Google Scholar 

  • Fukami J, Cerezini P, Hungria M (2018) Azospirillum: benefits that go far beyond biological nitrogen fixation. AMB Expr 8:73. https://doi.org/10.1186/s13568-018-0608-1

    Article  CAS  Google Scholar 

  • Fürnkranz M, Wanek W, Richter A, Abell G, Rasche F, Sessitsch A (2008) Nitrogen fixation by phyllosphere bacteria associated with higher plants and their colonizing epiphytes of a tropical lowland rainforest of Costa Rica. ISME J 2(5):561–570. https://doi.org/10.1038/ismej.2008.14

    Article  CAS  Google Scholar 

  • Gaofeng W, Hong X, Mei J (2004) Biodegradation of chlorophenols, a review. Chem J Internet 10:67. www.chemistrymag.on/cji/2004/

    Google Scholar 

  • Garcés-Ruiz M, Calonne-Salmon M, Plouznikoff K, Misson C, Navarrete-Mier M, Cranenbrouck S, Declerck S (2017) Dynamics of short-term phosphorus uptake by intact mycorrhizal and non-mycorrhizal maize plants grown in a circulatory semi-hydroponic cultivation system. Front Plant Sci 8:1471. https://doi.org/10.3389/fpls.2017.01471

    Article  Google Scholar 

  • Garcia K, Delteil A, Conéjéro G, Becquer A, Plassard C, Sentenac H, Zimmermann S (2014) Potassium nutrition of ectomycorrhizal P inus pinaster: overexpression of the Hebeloma cylindrosporum H c T rk1 transporter affects the translocation of both K+ and phosphorus in the host plant. New Phytol 201(3):951–960. https://doi.org/10.1111/nph.12603

    Article  CAS  Google Scholar 

  • García JE, Maroniche G, Creus C, Suárez-Rodríguez R, Ramirez-Trujillo JA, Groppa MD (2017) In vitro PGPR properties and osmotic tolerance of different Azospirillum native strains and their effects on growth of maize under drought stress. Microbiol Res 202:21–29. https://doi.org/10.1016/j.micres.2017.04.007

    Article  CAS  Google Scholar 

  • Garg N, Aggarwal N (2012) Effect of mycorrhizal inoculations on heavy metal uptake and stress alleviation of Cajanus cajan (L.) Millsp. genotypes grown in cadmium and lead contaminated soils. Plant Growth Regul 66:9–26. https://doi.org/10.1007/s10725-011-9624-8

    Article  CAS  Google Scholar 

  • Garg N, Bhandari P (2016) Silicon nutrition and mycorrhizal inoculations improve growth, nutrient status, K+/Na+ ratio and yield of Cicer arietinum L. genotypes under salinity stress. Plant Growth Regul 78(3):371–387. https://doi.org/10.1007/s10725-015-0099-x

    Article  CAS  Google Scholar 

  • Garg N, Bharti A (2018) Salicylic acid improves arbuscular mycorrhizal symbiosis, and chickpea growth and yield by modulating carbohydrate metabolism under salt stress. Mycorrhiza 28(8):727–746. https://doi.org/10.1007/s00572-018-0856-6

    Article  CAS  Google Scholar 

  • Garg N, Chandel S (2011) Role of Arbuscular Mycorrhizal (AM) fungi on growth, cadmium uptake, osmolyte, and phytochelatin synthesis in Cajanus cajan (L.) Millsp. under NaCl and Cd stresses. J Plant Growth Regul 31(3):292–308. https://doi.org/10.3389/fpls.2019.01068

    Article  Google Scholar 

  • Garg N, Singh S (2018) Arbuscular mycorrhiza Rhizophagus irregularis and silicon modulate growth, proline biosynthesis and yield in Cajanus cajan L. Millsp. (pigeon pea) genotypes under cadmium and zinc stress. J Plant Growth Regul 37(1):46–63. https://doi.org/10.1007/s00344-017-9708-4

    Article  CAS  Google Scholar 

  • Gazis R, Chaverri P (2010) Diversity of fungal endophytes in leaves and stems of wild rubber trees (Hevea brasiliensis) in Peru. Fungal Ecol 3(3):240–254. https://doi.org/10.1016/j.funeco.2009.12.001

    Article  Google Scholar 

  • Genetu G, Yli-Halla M, Asrat M, Alemayehu M (2021) Rhizobium inoculation and chemical fertilisation improve faba bean yield and yield components in Northwestern Ethiopia. Agriculture 11(7):678. https://doi.org/10.3390/agriculture11070678

    Article  CAS  Google Scholar 

  • Genre A, Chabaud M, Timmers T, Bonfante P, Barker DG (2005) Arbuscular mycorrhizal fungi elicit a novel intracellular apparatus in Medicago truncatula root epidermal cells before infection. Plant Cell 17(12):3489–3499. https://doi.org/10.1105/tpc.105.035410

    Article  CAS  Google Scholar 

  • Genre A, Chabaud M, Faccio A, Barker DG, Bonfante P (2008) Prepenetration apparatus assembly precedes and predicts the colonization patterns of arbuscular mycorrhizal fungi within the root cortex of both Medicago truncatula and Daucus carota. Plant Cell 20(5):1407–1420. https://doi.org/10.1105/tpc.108.059014

    Article  CAS  Google Scholar 

  • Gibson K, Kobayashi H, Walker G (2008) Molecular determinants of a symbiotic chronic infection. Annu Rev Genet 42(1):413–441. https://doi.org/10.1146/annurev.genet.42.110807.091427

    Article  CAS  Google Scholar 

  • Gill SS, Gill R, Trivedi DK, Anjum NA, Sharma KK, Ansari MW, Ansari AA, Johri AK, Prasad R, Pereira E, Varma A, Tuteja N (2016) Piriformospora indica: potential and significance in plant stress tolerance. Front Microbiol 7:332. https://doi.org/10.3389/fmicb.2016.00332

    Article  Google Scholar 

  • Giri B, Kapoor R, Mukerji KG (2007) Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues. Microbial Ecol 54(4):753–760. https://doi.org/10.1007/s00248-007-9239-9

    Article  CAS  Google Scholar 

  • Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica 2012:963401. https://doi.org/10.6064/2012/963401

    Article  Google Scholar 

  • Goicoechea N, Bettoni MM, Fuertes-Mendizabal T, González-Murua C, Aranjuelo I (2016) Durum wheat quality traits affected by mycorrhizal inoculation, water availability and atmospheric CO2 concentration. Crop Pasture Sci 67(2):147–155. https://doi.org/10.1071/CP15212

    Article  CAS  Google Scholar 

  • Gómez-Bellot M, Ortuño M, Nortes P, Vicente-Sánchez J, Bañón S, Sánchez-Blanco M (2015) Mycorrhizal euonymus plants and reclaimed water: biomass, water status and nutritional responses. Scia Hortic 186:61–69. https://doi.org/10.1016/j.scienta.2015.02.022

    Article  CAS  Google Scholar 

  • Gonzalez AJ, Larraburu EE, Llorente BE (2015) Azospirillum brasilense increased salt tolerance of jojoba during in vitro rooting. Indusl Crops Prod 76:41–48. https://doi.org/10.1016/j.indcrop.2015.06.017

    Article  CAS  Google Scholar 

  • González-Chávez MDCA, Miller B, Maldonado-Mendoza IE, Scheckel K, Carrillo-González R (2014) Localization and speciation of arsenic in Glomus intraradices by synchrotron radiation spectroscopic analysis. Fungal Biol 118(5-6):444–452. https://doi.org/10.1016/j.funbio.2014.03.002

    Article  CAS  Google Scholar 

  • González-Guerrero M, Azcon-Aguilar C, Mooney M, Valderas A, MacDiarmid CW, Eide DJ, Ferrol N (2005) Characterization of a Glomus intraradices gene encoding a putative Zn transporter of the cation diffusion facilitator family. Fungal Gen Biol 42(2):130–140. https://doi.org/10.1016/j.fgb.2004.10.007

    Article  CAS  Google Scholar 

  • Gopal M, Gupta A, Thomas GV (2013) Bespoke microbiome therapy to manage plant diseases. Front Microbiol 4:355. https://doi.org/10.3389/fmicb.2013.00355

    Article  Google Scholar 

  • Griffin EA, Carson WP (2015) The ecology and natural history of foliar bacteria with a focus on tropical forests and agroeco systems. Bot Rev 81(2):105–149. https://doi.org/10.1007/s12229-015-9151-9

    Article  Google Scholar 

  • Grümberg B, Urcelay C, Shroeder M, Vargas-Gil S, Luna C (2014) The role of inoculum identity in drought stress mitigation by arbuscular mycorrhizal fungi in soybean. Biol Ferti Soils 51(1):1–10. https://doi.org/10.1007/s00374-014-0942-7

    Article  CAS  Google Scholar 

  • Guerreiro S, Dawson R, Kilsby C, Lewis E, Ford A (2018) Future heat-waves, droughts and floods in 571 European cities. Environ Res Let 13(3):034009

    Article  Google Scholar 

  • Guerrieri R, Lecha L, Mattana S, Cáliz J, Casamayor EO, Barceló A et al (2020) Partitioning between atmospheric deposition and canopy microbial nitrification into throughfall nitrate fluxes in a Mediterranean forest. J Ecol 108(2):626–640

    Article  CAS  Google Scholar 

  • Gupta G, Parihar SS, Ahirwar NK, Snehi SK, Singh V (2015) Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. J Microb Biochem Technol 7(2):96–102. https://doi.org/10.4172/1948-5948.1000188

    Article  CAS  Google Scholar 

  • Gupta N, Vats S, Bhargava P (2018) Sustainable agriculture: role of metagenomics and metabolomics in exploring the soil microbiota. In: Choudhary D, Kumar M, Prasad R, Kumar V (eds) Silico approach for sustainable agriculture. Springer, Singapore. https://doi.org/10.1007/978-981-13-0347-0_11

    Chapter  Google Scholar 

  • Gureny KA, Mantle PG (1993) Biosynthesis of 1-N-methylalbonoursin by an endophytic Streptomyces sp. isolated from perennial ryegrass. J Nat Prod 56(7):1194–1198

    Article  Google Scholar 

  • Hajiboland R, Aliasgharzadeh N, Laiegh SF, Poschenrieder C (2010) Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants. Plant Soil 331(1):313–327. https://doi.org/10.1007/s11104-009-0255-z

    Article  CAS  Google Scholar 

  • Hajiboland R, Dashtebani F, Aliasgharzad N (2015) Physiological responses of halophytic C4 grass Aeluropus littoralis to salinity and arbuscular mycorrhizal fungi colonization. Photosynthetica 53(4):572–584. https://doi.org/10.1007/s11099-015-0131-4

    Article  CAS  Google Scholar 

  • Hamdia MAES, Shaddad MAK, Doaa MM (2004) Mechanisms of salt tolerance and interactive effects of Azospirillum brasilense inoculation on maize cultivars grown under salt stress conditions. Plant Growth Regul 44(2):165–174. https://doi.org/10.1023/B:GROW.0000049414.03099.9b

    Article  CAS  Google Scholar 

  • Hart M, Antunes P, Chaudhary VB, Abbott L (2018) Fungal inoculants in the field: is the reward greater than the risk? Funct Ecol 32:126–135. https://doi.org/10.1111/1365-2435.12976

    Article  Google Scholar 

  • Hartmann A, Rothballer M, Schmid M (2008) Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant Soil 312(1):7–14. https://doi.org/10.1007/s11104-007-9514-z

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Gill SS, Fujita M (2013) Physiological role of nitric oxide in plants grown under adverse environmental conditions. In: Plant acclimation to environmental stress. Springer, New York, pp 269–322. https://doi.org/10.1007/978-1-4614-5001-6_11

    Chapter  Google Scholar 

  • Hashem A, Abd-Allah EF, Alqarawi AA, Egamberdieva D (2018a) Arbuscular mycorrhizal fungi and plant stress tolerance. In: Plant microbiome: stress response. Springer, Singapore, pp 81–103. https://doi.org/10.1007/978-981-10-5514-0_4

    Chapter  Google Scholar 

  • Hashem A, Alqarawi AA, Radhakrishnan R, Al-Arjani, ABF, Aldehaish HA, Egamberdieva D, Abd_Allah EF (2018b) Arbuscular mycorrhizal fungi regulate the oxidative system, hormones and ionic equilibrium to trigger salt stress tolerance in Cucumis sativus L. Saudi J Biol Sci 25(6):1102–1114. https://doi.org/10.1016/j.sjbs.2018.03.009

  • Hassen AI, Pierneef R, Swanevelder ZH, Bopape FL (2020) Microbial and functional diversity of Cyclopia intermedia rhizosphere microbiome revealed by analysis of shotgun metagenomics sequence data. Data Brief 32:106288. https://doi.org/10.1016/j.dib.2020.106288

    Article  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60(4):579–598. https://doi.org/10.1007/s13213-010-0117-1

    Article  Google Scholar 

  • Helber N, Wippel K, Sauer N, Schaarschmidt S, Hause B, Requena N (2011) A versatile monosaccharide transporter that operates in the arbuscular mycorrhizal fungus Glomus sp is crucial for the symbiotic relationship with plants. Plant Cell 23(10):3812–3823. https://doi.org/10.1105/tpc.111.089813

    Article  CAS  Google Scholar 

  • Herliana O, Harjoso T, Anwar AHS, Fauzi A (2019) The effect of rhizobium and N fertilizer on growth and yield of black soybean (Glycine max (L) Merril). IOP Conf Ser Earth Environ Sci 255:012015

    Article  Google Scholar 

  • Hernández-León R, Rojas-Solís D, Contreras-Pérez M, del Carmen Orozco-Mosqueda M, Macías-Rodríguez LI, Reyes-de la Cruz H, Valencia-Cantero E, Santoyo G (2015) Characterization of the antifungal and plant growth-promoting effects of diffusible and volatile organic compounds produced by Pseudomonas fluorescens strains. Biol Cont 81:83–92. https://doi.org/10.1016/j.biocontrol.2014.11.011

    Article  CAS  Google Scholar 

  • Hietz P, Wanek W, Wania R, Nadkarni NM (2002) Nitrogen-15 natural abundance in a montane cloud forest canopy as an indicator of nitrogen cycling and epiphyte nutrition. Oecologia 131(3):350–355. https://doi.org/10.1007/s00442-002-0896-6

    Article  Google Scholar 

  • Hodge A, Fitter AH (2010) Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proc Nat Acad Sci 107(31):13754–13759. https://doi.org/10.1073/pnas.1005874107

    Article  Google Scholar 

  • Horn WS, Simmonds MSJ, Schwartz RE, Blaney WM (1995) Phomopsichalasin, a novel antimicrobial agent from an endophytic Phomopsis sp. Tetrahedron 51(14):3969–3978. https://doi.org/10.1016/0040-4020(95)00139-Y

    Article  CAS  Google Scholar 

  • Hoysted GA, Kowal J, Pressel S, Duckett JG, Bidartondo MI, Field KJ (2021) Carbon for nutrient exchange between Lycopodiellainundata and Mucoromycotina fine root endophytes is unresponsive to high atmospheric CO2. Mycorrhiza 31:1–10. https://doi.org/10.1007/s00572-021-01033-6

    Article  CAS  Google Scholar 

  • Hu Y, **e W, Cen B (2020) Arbuscular mycorrhiza improved drought tolerance of maize seedlings by altering photosystem II efficiency and the levels of key metabolites. Chem Biol Technol Agricul 7(1):1–14. https://doi.org/10.1007/s00572-021-01033-6

    Article  CAS  Google Scholar 

  • Huang TP, Tzeng DDS, Wong AC, Chen CH, Lu KM, Lee YH et al (2012) DNA polymorphisms and biocontrol of Bacillus antagonistic to citrus bacterial canker with indication of the interference of phyllosphere biofilms. PLoS One 7(7):e42124. https://doi.org/10.1371/journal.pone.0042124

    Article  CAS  Google Scholar 

  • Huang L, Yu LJ, Zhang X, Fan B, Wang FZ, Dai YS, Qi H, Zhou Y, **e LJ, **ao S (2019) Autophagy regulates glucose-mediated root meristem activity by modulating ROS production in Arabidopsis. Autophagy 15(3):407–422. https://doi.org/10.1080/15548627.2018.1520547

    Article  CAS  Google Scholar 

  • Huang D, Ma M, Wang Q, Zhang M, **g G, Li C, Ma F (2020) Arbuscular mycorrhizal fungi enhanced drought resistance in apple by regulating genes in the MAPK pathway. Plant Physiol Biochem 149:245–255. https://doi.org/10.1016/j.plaphy.2020.02.020

    Article  CAS  Google Scholar 

  • Hunter PJ, Hand P, Pink D, Whipps JM, Bending GD (2010) Both leaf properties and microbe-microbe interactions influence within-species variation in bacterial population diversity and structure in the lettuce (Lactuca species) phyllosphere. Appl Environ Microbiol 76(24):8117–8125. https://doi.org/10.1128/AEM.01321-10

    Article  CAS  Google Scholar 

  • Imam J, Singh PK, Shukla P (2016) Plant microbe interactions in post genomic era: perspectives and applications. Front Microbiol 7:1488. https://doi.org/10.3389/fmicb.2016.01488

    Article  Google Scholar 

  • Impa SM, Nadaradjan S, Jagadish SVK (2012) Drought stress induced reactive oxygen species and anti-oxidants in plants. In: Abiotic stress responses in plants. Springer, New York, pp 131–147. https://doi.org/10.1007/978-1-4614-0634-1_7

    Chapter  Google Scholar 

  • Inácio J, Pereira P, Carvalho DM, Fonseca A, Amaral-Collaco MT, Spencer-Martins I (2002) Estimation and diversity of phylloplane mycobiota on selected plants in a Mediterranean-type ecosystem in Portugal. Microbial Ecol 44(4):344–353. https://doi.org/10.1007/s00248-002-2022-z

    Article  Google Scholar 

  • Innerebner G, Knief C, Vorholt JA (2011) Protection of Arabidopsis thaliana against leaf-pathogenic Pseudomonas syringae by Sphingomonas strains in a controlled model system. Appl Environ Microbiol 77(10):3202–3210

    Article  CAS  Google Scholar 

  • Jaber LR, Araj S-E (2018) Interactions among endophytic fungal entomopathogens (Ascomycota: Hypocreales), the green peach aphid Myzus persicae Sulzer (Homoptera: Aphididae), and the aphid endoparasitoid Aphidius colemani Viereck (Hymenoptera: Braconidae). Biol Control 116:53–61. https://doi.org/10.1016/j.biocontrol.2017.04.005

    Article  Google Scholar 

  • Jaber LR, Salem NM (2014) Endophytic colonisation of squash by the fungal entomopathogen Beauveria bassiana (Ascomycota: Hypocreales) for managing Zucchini yellow mosaic virus in cucurbits. Biocont Sci Technol 24(10):1096–1109. https://doi.org/10.1080/09583157.2014.923379

    Article  Google Scholar 

  • Jacobs JL, Sundin GW (2001) Effect of solar UV-B radiation on a phyllosphere bacterial community. Appl Environ Microbiol 67(12):5488–5496. https://doi.org/10.1128/AEM.67.12.5488-5496.2001

    Article  CAS  Google Scholar 

  • Jain A, Singh S, Kumar Sarma B, Bahadur Singh H (2012) Microbial consortium-mediated reprogramming of defence network in pea to enhance tolerance against Sclerotinia sclerotiorum. J Appl Microbiol 112(3):537–550. https://doi.org/10.1111/j.1365-2672.2011.05220.x

    Article  CAS  Google Scholar 

  • Jaipaul SS, Dixit AK, Sharma AK (2011) Growth and yield of capsicum (Capsicum annum) and garden pea (Pisum sativum) as influenced by organic manures and biofertilizers. Indian J Agri Sci 81(7):637–642

    Google Scholar 

  • Janakiev T, Dimkić I, Bojić S, Fira D, Stanković S, Berić T (2020) Bacterial communities of plum phyllosphere and characterization of indigenous antagonistic Bacillus thuringiensis R3/3 isolate. J Appl Microbiol 128(2):528–543

    Article  CAS  Google Scholar 

  • Janoušková M, Pavlíková D (2010) Cadmium immobilization in the rhizosphere of arbuscular mycorrhizal plants by the fungal extraradical mycelium. Plant Soil 332(1):511–520

    Article  Google Scholar 

  • Javot H, Penmetsa RV, Terzaghi N, Cook DR, Harrison MJ (2007a) A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proc Nat Acad Sci 104(5):1720–1725

    Article  CAS  Google Scholar 

  • Javot H, Pumplin N, Harrison MJ (2007b) Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles. Plant Cell Environ 30(3):310–322. https://doi.org/10.1111/j.1365-3040.2006.01617.x

    Article  CAS  Google Scholar 

  • Jensen ES, Peoples MB, Boddey RM, Gresshoff PM, Hauggaard-Nielsen H, Alves BJR, Morrison MJ (2012) Legumes for mitigation of climate change and the provision of eedstock for biofuels and biorefineries. A review. Agron Sustain Dev 32(2):329–364

    Article  CAS  Google Scholar 

  • Jia M, Chen L, **n HL, Zheng CJ, Rahman K, Han T, Qin LP (2016) A friendly relationship between endophytic fungi and medicinal plants: a systematic review. Front Microbiol 7:906

    Article  Google Scholar 

  • Jiang Q, Zhuo F, Long S, Zhao H, Yang D, Ye Z, Li S, **g Y (2016) Can arbuscular mycorrhizal fungi reduce Cd uptake and alleviate Cd toxicity of Lonicera japonica grown in Cd-added soils? Scie Rep 6:21805. https://doi.org/10.1038/srep21805

    Article  CAS  Google Scholar 

  • Jiménez-Morillo NT, González-Pérez JA, Jordán A, Zavala LM, de la Rosa JM, Jiménez-González MA, González-Vila FJ (2016) Organic matter fractions controlling soil water repellency in sandy soils from the Doñana National Park (Southwestern Spain). Land Degrad Dev 27(5):1413–1423

    Article  Google Scholar 

  • Jixiang L, Yingnan W, Shengnan S, Chunsheng M, **ufeng Y (2017) Effects of arbuscular mycorrhizal fungi on the growth, photosynthesis and photosynthetic pigments of Leymus chinensis seedlings under salt-alkali stress and nitrogen deposition. Sci Total Environ 576:234–241. https://doi.org/10.1016/j.scitotenv.2016.10.091

    Article  CAS  Google Scholar 

  • Jnawali AD, Ojha RB, Marahatta S (2015) Role of Azotobacter in soil fertility and sustainability—a review. Adv Plants Agric Res 2(6):1–5

    Google Scholar 

  • Johnson NC, Gehring CA (2007) Mycorrhizas: Symbiotic mediators of Rhizosphere and ecosystem processes. Rhizosphere:73–100. https://doi.org/10.1016/b978-012088775-0/50006-9

  • Jones P, Garcia BJ, Furches A, Tuskan GA, Jacobson D (2019) Plant host-associated mechanisms for microbial selection. Front Plant Sci 10:862. https://doi.org/10.3389/fpls.2019.00862

    Article  Google Scholar 

  • Kamal S, Prasad R, Varma A (2010) Soil microbial diversity in relation to heavy metals. In: Sherameti I, Varma A (eds) Soil heavy metals, vol 19. Springer-Verlag, Berlin, pp 31–64

    Chapter  Google Scholar 

  • Kapoor R, Evelin H, Mathur P, Giri B (2013) Arbuscular mycorrhiza: approaches for abiotic stress tolerance in crop plants for sustainable agriculture. In: Tuteja N, Gill SS (eds) Plant acclimation to environmental stress. Springer Science+Business Media, Berlin, pp 359–401. https://doi.org/10.1007/978-1-4614-5001-6_14

    Chapter  Google Scholar 

  • Kaul S, Choudhary M, Gupta S, Dhar MK (2021) Engineering host microbiome for crop improvement and sustainable agriculture. Front Microbiol 12:1125

    Article  Google Scholar 

  • Kaushal M, Wani SP (2016) Plant-growth-promoting rhizobacteria: drought stress alleviators to ameliorate crop production in drylands. Ann Microbiol 66(1):35–42

    Article  CAS  Google Scholar 

  • Kecskeméti E, Berkelmann-Löhnertz B, Reineke A (2016) Are epiphytic microbial communities in the carposphere of ripening grape clusters (Vitis vinifera L.) different between conventional, organic, and biodynamic grapes? PLoS One 11(8):e0160852. https://doi.org/10.1371/journal.pone.0160852

    Article  CAS  Google Scholar 

  • Kemppainen MJ, Pardo AG (2013) LbNrt RNA silencing in the mycorrhizal symbiont Laccariabicolor reveals a nitrate-independent regulatory role for a eukaryotic NRT2-type nitrate transporter. Environ Microbiol Rep 5:353–366

    Article  CAS  Google Scholar 

  • Kennedy C, Rudnick P, MacDonald ML, Melton T (2015) Azotobacter. In: Trujillo ME, Dedysh S, DeVos P, Hedlund B, Kämpfer P, Rainey FA, Whitman WB (eds) Bergey’s manual of systematics of archaea and bacteria. Atlanta, GA, American Cancer Society, pp 1–33. https://doi.org/10.1002/9781118960608.gbm01207

    Chapter  Google Scholar 

  • Khadka K, Rachana D, Asis S, Laxmi R, Khem C, Shreeram S, Shrimala Y, Deepak U, Swikar K, Ram R, Pashupati C (2016) Constraints and opportunities for promotion of finger millet in Nepal. https://doi.org/10.13140/RG.2.2.13997.69606

  • Khalid M, Bilal M, Hassani D, Iqbal N, Wang H, Huang D (2017) Mitigation of salt stress in white clover (Trifolium repens) by Azospirillum brasilense and its inoculation effect. Bot Stud 58:5

    Article  Google Scholar 

  • Khalloufi M, Martínez-Andújar C, Lachaâl M, Karray-Bouraoui N, Pérez-Alfocea F, Albacete A (2017) The interaction between foliar GA3 application and arbuscular mycorrhizal fungi inoculation improves growth in salinized tomato (Solanum lycopersicum L.) plants by modifying the hormonal balance. J Plant Physiol 214:134–144. https://doi.org/10.1016/j.jplph.2017.04.012

    Article  CAS  Google Scholar 

  • Khan N, Ali S, Shahid MA, Mustafa A, Sayyed RZ, Curá JA (2021) Insights into the interactions among roots, rhizosphere, and rhizobacteria for improving plant growth and tolerance to abiotic stresses: a review. Cells 10(6):1551. https://doi.org/10.3390/cells10061551

    Article  CAS  Google Scholar 

  • Kizilkaya R (2009) Nitrogen fixation capacity of Azotobacter spp. strains isolated from soils in different ecosystems and relationship between them and the microbiological properties of soils. J Environ Biol 30:73–82

    CAS  Google Scholar 

  • Klieber J, Reineke A (2016) The entomopathogen Beauveria bassiana has epiphytic and endophytic activity against the tomato leaf miner Tutaabsoluta. J Appl Entomol 140:580–589. https://doi.org/10.1111/jen.12287

    Article  CAS  Google Scholar 

  • Knief C, Delmotte N, Chaffron S, Stark M, Innerebner G, Wassmann R, von Mering C, Vorholt JA (2012) Metaproteogenomic analysis of microbial communities in the phyllosphere and rhizosphere of rice. ISME J 6(7):1378–1390. https://doi.org/10.1038/ismej.2011.192

    Article  CAS  Google Scholar 

  • Kobae Y, Tamura Y, Takai S, Banba M, Hata S (2010) Localized expression of arbuscular mycorrhiza-inducible ammonium transporters in soybean. Plant Cell Physiol 51:411–1425

    Article  Google Scholar 

  • Kong Z, Hart M, Liu H (2018) Paving the way from the lab to the field: using synthetic microbial consortia to produce high-quality crops. Front Plant Sci 9:1467

    Article  Google Scholar 

  • Korenblum E, Dong Y, Szymanski J, Panda S, Jozwiak A, Massalha H, Meir S, Rogachev I, Aharoni A (2020) Rhizosphere microbiome mediates systemic root metabolite exudation by root-to-root signaling. Proc Natl Acad Sci 117(7):3874–3883

    Article  CAS  Google Scholar 

  • Kraepiel AML, Bellenger JP, Wichard T, Morel FM (2009) Multiple roles of siderophores in free-living nitrogen-fixing bacteria. Biometals 22(4):573

    Article  CAS  Google Scholar 

  • Kra**ski F, Courty P-E, Sieh D, Franken P, Zhang H, Bucher M, Gerlach N, Kryvoruchko I, Zoeller D, Udvardi M, Hause B (2014) The H+-ATPase HA1 of Medicago truncatula is essential for phosphate transport and plant growth during arbuscular mycorrhizal symbiosis. Plant Cell 26(4):1808–1817. https://doi.org/10.1105/tpc.113.120436

    Article  CAS  Google Scholar 

  • Krishnamoorthy R, Kwon S, Kumutha K, Senthilkumar M, Ahmed S, Sa T, Anandham R (2018) Diversity of culturable methylotrophic bacteria in different genotypes of groundnut and their potential for plant growth promotion. 3 Biotech 8(6):275. https://doi.org/10.1007/s13205-018-1291-2

    Article  CAS  Google Scholar 

  • Kumar A, Dubey A (2020) Rhizosphere microbiome: engineering bacterial competitiveness for enhancing crop production. J Adv Res 24:337–352. https://doi.org/10.1016/j.jare.2020.04.014

    Article  CAS  Google Scholar 

  • Kumar B, Gopal D (2015) Effective role of indigenous microorganisms for sustainable environment. 3 Biotech 5(6):867–876. https://doi.org/10.1007/s13205-015-0293-6

    Article  Google Scholar 

  • Kumar V, Singh P, Jorquera M, Sangwan P, Kumar P, Verma A, Agrawal S (2013) Isolation of phytase-producing bacteria from Himalayan soils and their effect on growth and phosphorus uptake of Indian mustard (Brassica juncea). World J Microbiol Biotechnol 29(8):1361–1369

    Article  CAS  Google Scholar 

  • Kumar A, Dames JF, Gupta A, Sharma S, Gilbert JA, Ahmad P (2015) Current developments in arbuscular mycorrhizal fungi research and its role in salinity stress alleviation: a biotechnological perspective. Crit Rev Biotechnol 35:461–474

    Article  Google Scholar 

  • Kumar A, Trefault N, Olaniran AO (2016) Microbial degradation of 2, 4-dichlorophenoxyacetic acid: insight into the enzymes and catabolic genes involved, their regulation and biotechnological implications. Crit Rev Microbiol 42(2):194–208

    CAS  Google Scholar 

  • Kumari MER, Gopal AV, Lakshmipathy R (2018) Effect of stress tolerant plant growth promoting rhizobacteria on growth of blackgram under stress condition. Int J Curr Microbiol App Sci 7(1):1479–1487

    Article  Google Scholar 

  • Laforest-Lapointe I, Messier C, Kembel S (2016) Host species identity, site and time drive temperate tree phyllosphere bacterial community structure. Microbiome 4(1):27. https://doi.org/10.1186/s40168-016-0174-1

    Article  Google Scholar 

  • Lahlali R, Peng G (2014) Suppression of clubroot by C lonostachys rosea via antibiosis and induced host resistance. Plant Pathol 63(2):447–455

    Article  CAS  Google Scholar 

  • Lamptey S, Ahiabor BDK, Yeboah S, Osei D (2014) Effect of Rhizobium inoculants and reproductive growth stages on shoot biomass and yield of soybean (Glycine max (L.) Merril). J Agricul Sci 6(5):44–54. https://doi.org/10.5539/jas.v6n5p44

    Article  Google Scholar 

  • Lata R, Chowdhury S, Gond SK, White JF (2018) Induction of abiotic stress tolerance in plants by endophytic microbes. Let Appl Microbiol 66:268–276

    Article  CAS  Google Scholar 

  • Lebeis SL, Paredes SH, Lundberg DS, Breakfield N et al (2015) Plant microbiome. Salicylic acid modulates colonization of the root microbiome by specific bacterial taxa. Science 349:860–864

    Article  CAS  Google Scholar 

  • Lemanceau P, Barret M, Mazurier S, Mondy S, Pivato B, Fort T, Vacher C (2017) Plant communication with associated microbiota in the spermosphere, rhizosphere and phyllosphere. Adv Bot Res 82:101–133. https://doi.org/10.1016/bs.abr.2016.10.007. How plants communicate with their biotic environment

    Article  CAS  Google Scholar 

  • Leveau JH (2015) Life of microbes on aerial plant parts. In: Principles of plant-microbe interactions. Springer, Cham, pp 17–24

    Google Scholar 

  • Li H, Luo N, Zhang LJ, Zhao HM, Li YW, Cai QY et al (2016) Do arbuscular mycorrhizal fungi affect cadmium uptake kinetics, subcellular distribution and chemical forms in rice? Sci Total Environ 571:1183–1190. https://doi.org/10.1016/j.scitotenv.2016.07.124

    Article  CAS  Google Scholar 

  • Li C, Zhou J, Wang X, Liao H (2019) A purple acid phosphatase, GmPAP33, participates in arbuscule degeneration during arbuscular mycorrhizal symbiosis in soybean. Plant Cell Environ 42(6):2015–2027

    Article  CAS  Google Scholar 

  • Liao X, Fang W, Lin L, Lu H-L, St. Leger RJ (2013) Metarhizium robertsii produces and extracellular invertase (MrINV) that plays a pivotal role in rhizospheric interactions and root colonization. PLoS One 8:1–11. https://doi.org/10.1371/journal.pone.0078118

    Article  CAS  Google Scholar 

  • Lin A-J, Zhang X-H, Wong M-H, Ye Z-H, Lou L-Q, Wang Y-S, Zhu Y-G (2007) Increase of multi-metal tolerance of three leguminous plants by arbuscular mycorrhizal fungi colonization. Environ Geochem Health 29:473–481

    Article  CAS  Google Scholar 

  • Lin SY, Shen FT, Young LS, Zhu ZL, Chen WM, Young CC (2012) Azospirillum formosense sp. nov., a diazotroph from agricultural soil. Int J syst Evol Microbiol 62(5):1185–1190

    Article  CAS  Google Scholar 

  • Lin SY, Liu YC, Hameed A, Hsu YH, Lai WA, Shen FT, Young CC (2013) Azospirillum fermentarium sp. nov., a nitrogen-fixing species isolated from a fermenter. Int J syst Evol Microbiol 63(10):3762–3768

    Article  CAS  Google Scholar 

  • Lin SY, Hameed A, Liu YC, Hsu YH, Lai WA, Shen FT, Young CC (2015) Azospirillum soli sp. nov., a nitrogen-fixing species isolated from agricultural soil. Int J Syst Evol Microbiol 65(12):4601–4607

    Article  CAS  Google Scholar 

  • Lin SY, Liu YC, Hameed A, Hsu YH, Huang HI, Lai WA, Young CC (2016) Azospirillum agricola sp. nov., a nitrogen-fixing species isolated from cultivated soil. Int J Syst Evol Microbiol 66(3):1453–1458

    Article  CAS  Google Scholar 

  • Lindow SE, Brandl MT (2003) Microbiology of the phyllosphere. Appl Environ Microbiol 69:1875–1883. https://doi.org/10.1128/AEM.69.4.1875-1883

    Article  CAS  Google Scholar 

  • Liu C, Ravnskov S, Liu F, Rubæk GH, Andersen MN (2018a) Arbuscular mycorrhizal fungi alleviate abiotic stresses in potato plants caused by low phosphorus and deficit irrigation/partial root-zone drying. J Agric Sci 156:46–58. https://doi.org/10.1017/S0021859618000023

    Article  CAS  Google Scholar 

  • Liu Z, Beskrovnaya P, Melnyk RA, Hossain SS, Khorasani S, O’Sullivan LR, Haney CH (2018b) A genome-wide screen identifies genes in rhizosphere-associated Pseudomonas required to evade plant defenses. mBio 9(6):e00433-18. https://doi.org/10.1128/mBio.00433-18

    Article  Google Scholar 

  • Liu H, Brettell LE, Singh B (2020) Linking the phyllosphere microbiome to plant health. Trends Plant Sci 25:41–844

    Article  Google Scholar 

  • López-Pedrosa A, Gonzalez-Guerrero M, Valderas A, Azcon-Aguilar C, Ferrol N (2006) GintAMT1 encodes a functional high-affinity ammonium transporter that is expressed in the extraradical mycelium of Glomus intraradices. Fungal Gene Biol 43:102–110. https://doi.org/10.1016/j.fgb.2005.10.005

    Article  CAS  Google Scholar 

  • Lynch MDJ, Neufeld JD (2015) Ecology and exploration of the rare biosphere. Nat Rev Microbiol 13:217–229

    Article  CAS  Google Scholar 

  • Maignien L, DeForce EA, Chafee ME, Eren AM, Simmons SL (2014) Ecological succession and stochastic variation in the assembly of Arabidopsis thaliana phyllosphere communities. mBio 5(1):e00682-13. https://doi.org/10.1128/mBio.00682-13

    Article  CAS  Google Scholar 

  • Maina UM, Galadima IB, Gambo FM, Zakaria D (2018) A review on the use of entomopathogenic fungi in the management of insect pests of field crops. J Entomol Zool Stud 6(1):27–32

    Google Scholar 

  • Maldonado-Mendoza IE, Harrison MJ (2018) RiArsB and RiMT-11: two novel genes induced by arsenate in arbuscular mycorrhiza. Fungal Biol 122(2-3):121–130

    Article  CAS  Google Scholar 

  • Maldonado-Mendoza I, Dewbre G, Harrison M (2001) A phosphate transporter gene from the extra-radical mycelium of an arbuscular mycorrhizal fungus. Mol Plant Microbe Interact 14(10):1140–1148. https://doi.org/10.1094/MPMI.2001.14.10.1140

    Article  CAS  Google Scholar 

  • Manching HC, Balint-Kurti PJ, Stapleton AE (2014) Southern leaf blight disease severity is correlated with decreased maize leaf epiphytic bacterial species richness and the phyllosphere bacterial diversity decline is enhanced by nitrogen fertilization. Front Plant Sci 5:403. https://doi.org/10.3389/fpls.2014.00403

    Article  Google Scholar 

  • Marschner P (2012) Chapter 15—rhizosphere biology. In: Marschner’s mineral nutrition of higher plants, 3rd edn. Academic, San Diego, pp 369–388

    Chapter  Google Scholar 

  • Martin F, Aerts A, Ahren D, Brun A, Danchin EGJ, Duchaussoy F, Gibon J, Kohler A, Lindquist E, Pereda V et al (2008) The genome of Laccariabicolor provides insights into mycorrhizal symbiosis. Nature 452:88–92

    Article  CAS  Google Scholar 

  • Martinuz A, Schouten A, Sikora R (2012) Systemically induced resistance and microbial competitive exclusion: implications on biological control. Phytopathology 102:260–266. https://doi.org/10.1094/PHYTO-04-11-0120

    Article  CAS  Google Scholar 

  • Mathur S, Sharma MP, Jajoo A (2016) Improved photosynthetic efficacy of maize Zea mays plants with arbuscular mycorrhizal fungi (AMF) under high temperature stress. J Photochem Photobiol B 180:149–154. https://doi.org/10.1016/j.jphotobiol.2018.02.002

    Article  CAS  Google Scholar 

  • McNear DH Jr (2013) The rhizosphere—roots, soil and everything in between. Nat Educ Knowl 4(3):1

    Google Scholar 

  • Meena RK, Singh RK, Singh NP et al (2015) Isolation of low temperature surviving plant growth–promoting rhizobacteria (PGPR) from pea (Pisum sativum L.) and documentation of their plant growth promoting traits. Biocat Agric Biotechnol 4:806–811

    Article  Google Scholar 

  • Meena RS, Kumar S, Datta R, Lal R, Vijayakumar V, Brtnicky M, Sharma MP, Yadav GS, Jhariya MK, Jangir CK, Pathan SI, Dokulilova T, Pecina V, Marfo TD (2020) Impact of agrochemicals on soil microbiota and management: a review. Land 9:34. https://doi.org/10.3390/land9020034

    Article  Google Scholar 

  • Mehnaz S (2015) Azospirillum: a biofertilizer for every crop. In: Plant microbes symbiosis: applied facets. Springer, New Delhi, pp 297–314

    Google Scholar 

  • Mehnaz S, Weselowski B, Lazarovits G (2007) Azospirillum zeae sp. nov., a diazotrophic bacterium isolated from rhizosphere soil of Zea mays. Int J Sys Evol Microbiol 57(12):2805–2809

    Article  CAS  Google Scholar 

  • Mejia LC, Herre EA, Sparks JP, Winter K, Garcia MN, Van Bael SA et al (2014) Pervasive effects of a dominant foliar endophytic fungus on host genetic and phenotypic expression in a tropical tree. Front Microbiol 5:479. https://doi.org/10.3389/fmicb.2014.00479

    Article  Google Scholar 

  • Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37(5):634–663. https://doi.org/10.1111/1574-6976.12028

    Article  CAS  Google Scholar 

  • Méndez-Gómez M, Castro-Mercado E, Alexandre G, García-Pineda E (2015) Oxidative and antioxidative responses in the wheat-Azospirillum brasilense interaction. Protoplasma 253:477–486

    Article  Google Scholar 

  • Metwally A, Azooz M, Nafady N, El-Enany A (2019) Arbuscular mycorrhizal symbiosis alleviates drought stress imposed on wheat plants (Triticum aestivum L.). Appl Ecol Environ Res 17(6):13713–13727

    Article  Google Scholar 

  • Mian IA, Riaz M, Cresser MS (2009) The importance of ammonium mobility in nitrogen-impacted unfertilized grasslands: a critical reassessment. Environ Pollut 157(4):1287–1293. https://doi.org/10.1016/j.envpol.2008.11.041

    Article  CAS  Google Scholar 

  • Michavila G, Adler C, De Gregorio PR et al (2017) Pseudomonas protegens CS1 from the lemon phyllosphere as a candidate for citrus canker biocontrol agent. Plant Biol 19:608–617

    Article  CAS  Google Scholar 

  • Milošević N, Tintor B, Protić R, Cvijanovic G, Dimitrijević T (2012) Effect of inoculation with Azotobacter chroococcum on wheat yield and seed quality. Romanian Biotechnol Lett 17(3):7352–7357

    Google Scholar 

  • Mina D, Pereira J, Lino-Neto T, Baptista P (2020) Epiphytic and endophytic bacteria on olive tree phyllosphere: exploring tissue and cultivar effect. Microbial Ecol 80(1):145–157

    Article  Google Scholar 

  • Miransari M (2017) Arbuscular mycorrhizal fungi and heavy metal tolerance in plants. In: Wu QS (ed) Arbuscular mycorrhizas and stress tolerance of plants. Springer Nature, Singapore, pp 161–174. https://doi.org/10.1007/978-3-319-68867-1_4

    Chapter  Google Scholar 

  • Mirshad P, Puthur J (2017) Drought tolerance of bioenergy grass Saccharum spontaneum L. enhanced by arbuscular mycorrhizae. Rhizosphere 3(1):1–8. https://doi.org/10.1016/j.rhisph.2016.09.004

    Article  Google Scholar 

  • Miyamoto T, Kawahara M, Minamisawa K (2004) Novel endophytic nitrogen-fixing clostridia from the grass Miscanthus sinensis as revealed by terminal restriction fragment length polymorphism analysis. Appl Environ Microbiol 70(11):6580–6586

    Article  CAS  Google Scholar 

  • Moghadam SK, Bahadoran Z, Mirmiran P, Tohidi M, Azizi F (2016) Association between dietary acid load and insulin resistance: tehran lipid and glucose study. Prev Nutr Food Sci 21(2):104–109. https://doi.org/10.3746/pnf.2016.21.2.104

    Article  CAS  Google Scholar 

  • Mohan Gupta S, Kumar K, Kumar Joshi R, Gupta S, Bala M (2020) Frankia: a promising N-fixing plant growth promoting rhizobacteria (PGPR) improved drought tolerance in crops at higher altitude. In: Microbiological advancements for higher altitude agro-ecosystems & sustainability. Springer, Singapore, pp 411–431

    Chapter  Google Scholar 

  • Molina-Favero C, Creus CM, Simontacchi M, Puntarulo S, Lamattina L (2008) Aerobic nitric oxide production by Azospirillum brasilense Sp245 and its influence on root architecture in tomato. Mol Plant Microbe Int 21(7):1001–1009

    Article  CAS  Google Scholar 

  • Moradtalab N, Roghieh H, Nasser A, Tobias EH, Günter N (2019) Silicon and the association with an arbuscular-mycorrhizal fungus (Rhizophagus clarus) mitigate the adverse effects of drought stress on strawberry. Agronomy 9:41. https://doi.org/10.3390/agronomy9010041

    Article  CAS  Google Scholar 

  • Morris CE, Kinkel LL (2002) Fifty years of phyllosphere microbiology: significant contributions to research in related fields. In: Lindow SE, Hecht-Poinar EI, Elliott VJ (eds) Phyllosphere microbiology. APS Press, St Paul, pp 365–375

    Google Scholar 

  • Muleta D (2017) Legume response to arbuscular mycorrhizal fungi inoculation in sustainable agriculture. In: Zaidi A, Khan M, Musarrat J (eds) Microbes for legume improvement. Springer, Cham

    Google Scholar 

  • Müller T, Ruppel S (2014) Progress in cultivation-independent phyllosphere microbiology. FEMS Microbiol Ecol 87:2–17. https://doi.org/10.1111/1574-6941.12198

    Article  CAS  Google Scholar 

  • Müller D, Vogel C, Bai Y, Vorholt J (2016a) The plant microbiota: systems-level insights and perspectives. Annual Rev Gene 50(1):211–234

    Article  Google Scholar 

  • Müller T, Behrendt U, Ruppel S, von der Waydbrink G, Müller ME (2016b) Fluorescent pseudomonads in the phyllosphere of wheat: potential antagonists against fungal phytopathogens. Curr Microbiol 72(4):383–389

    Article  Google Scholar 

  • Nalini MS, Prakash HS (2017) Diversity and bioprospecting of actinomycete endophytes from the medicinal plants. Lett Appl Microbiol 64(4):261–270

    Article  CAS  Google Scholar 

  • Navarrete AA, Tsai SM, Mendes LW, Faust K et al (2015) Soil microbiome responses to the short-term effects of Amazonian deforestation. Mol Ecol 24:2433–2448

    Article  CAS  Google Scholar 

  • Neinhuis C, Barthlott W (1997) Characterization and distribution of water-repellent, self-cleaning plant surfaces. Annals Bot 79:667–677

    Article  Google Scholar 

  • Newcomb W, Wood SM (1987) Morphogenesis and fine structure of Frankia (Actinomycetales): the microsymbiont of nitrogen-fixing actinorhizal root nodules. Int Rev Cytol 109:1–88. https://doi.org/10.1016/s0074-7696(08)61719-2. PMID: 3323105

    Article  CAS  Google Scholar 

  • Ngom M, Gray K, Diagne N, Oshone R, Fardoux J, Gherbi H, Valérie H, Sergio S, Laurent L, Tisa Louis S, Sy Mame O, Champion A (2016) Symbiotic performance of diverse Frankia strains on salt-stressed Casuarina glauca and Casuarina equisetifolia plants. Front Plant Sci 7:1331

    Article  Google Scholar 

  • Nguyen TD, Cavagnaro TR, Watts-Williams SJ (2019) The effects of soil phosphorus and zinc availability on plant responses to mycorrhizal fungi: a physiological and molecular assessment. Sci Rep 9:14880. https://doi.org/10.1038/s41598-019-51369-5

    Article  CAS  Google Scholar 

  • Ngwene B, Elke G, Eckhard G (2013) Influence of different mineral nitrogen sources (NO3-N vs. NH4+–N) on arbuscular mycorrhiza development and N transfer in a Glomus intraradices–cowpea symbiosis. Mycorrhiza 23:107–117

    Article  CAS  Google Scholar 

  • Nord EA, Lynch JP (2009) Plant phenology: a critical controller of soil resource acquisition. J Exp Bot 60:1927–1937

    Article  CAS  Google Scholar 

  • Nouioui I, Ghodhbane-Gtari F, Montero-Calasanz MD, Göker M et al (2016) Proposal of a type strain for Frankia alni (Woronin 1866) Von Tubeuf 1895, emended description of Frankia alni, and recognition of Frankia casuarinae sp. nov. and Frankia elaeagni sp. nov. Int J Syst Evol Microbiol 66:5201–5210. https://doi.org/10.1099/ijsem.0.001496

    Article  CAS  Google Scholar 

  • Nouioui I, Cortés-albayay C, Carro L, Castro JF, Gtari M, Ghodhbane-Gtari F, Klenk H-P, Tisa LS, Sangal V, Goodfellow M (2019) Genomic insights into plant growth-promoting potentialities of the genus Frankia. Front Microbiol 10:1457. https://doi.org/10.3389/fmicb.2019.01457

    Article  Google Scholar 

  • Obertello M, Sy MO, Laplaze L et al (2003) Actinorhizal nitrogen fixing nodules: infection process, molecular biology and genomics. African J Biotechnol. 2(12):528–538

    Article  CAS  Google Scholar 

  • Odelade KA, Babalola OO (2019) Bacteria, Fungi and Archaea domains in rhizospheric soil and their effects in enhancing agricultural productivity. Int J Environ Res Public Health 16(20):3873. https://doi.org/10.3390/ijerph16203873

    Article  CAS  Google Scholar 

  • Oldroyd GE (2013) Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 11:252–264. https://doi.org/10.1038/nrmicro2990

    Article  CAS  Google Scholar 

  • Oldroyd GE, Murray JD, Poole PS, Downie JA (2011) The rules of engagement in the legume-rhizobial symbiosis. Annu Rev Genet 45:119–144. https://doi.org/10.1146/annurev-genet-110410-132549

    Article  CAS  Google Scholar 

  • Oleńska E, Małek W, Wójcik M, Swiecicka I, Thijs S, Vangronsveld J (2020) Beneficial features of plant growth-promoting rhizobacteria for improving plant growth and health in challenging conditions: a methodical review. Sci Total Environ 743:140682

    Article  Google Scholar 

  • Olle M, Lepse L, Williams I (2016) Organic farming of pea in the northern hemisphere—a revieiv. Acta Hortic 1123:137–141. https://doi.org/10.17660/ActaHortic.2016.1123.19

    Article  Google Scholar 

  • Orchard S, Hilton S, Bending GD, Dickie IA, Standish RJ, Gleeson DB, Jeffery RP, Powell JR, Walker C, Bass D, Monk J, Simonin A, Ryan MH (2017) Fine endophytes (Glomus tenue) are related to Mucoromycotina, not Glomeromycota. New Phytol 213:481–486. https://doi.org/10.1111/nph.14268

    Article  Google Scholar 

  • Ordookhani K, Khavazi K, Moezzi A, Rejali F (2010) Influence of PGPR and AMF on antioxidant activity, lycopene and potassium contents in tomato. African J Agricul Res 5(10):1108–1116

    Google Scholar 

  • Orozco-Mosqueda MC, Flores A, Rojas-Sánchez B, Urtis-Flores CA, Morales-Cedeño LR, Valencia-Marin MF, Chávez-Avila S, Rojas-Solis D, Santoyo G (2021) Plant growth-promoting bacteria as bioinoculants: attributes and challenges for sustainable crop improvement. Agronomy 11(6):1167. https://doi.org/10.3390/agronomy11061167

    Article  CAS  Google Scholar 

  • Ottesen A, González Peña A, White J, Pettengill J, Li C, Allard S, Rideout S, Allard M, Hill T, Evans P, Strain E, Musser S, Knight R, Brown E (2013) Baseline survey of the anatomical microbial ecology of an important food plant: Solanum lycopersicum (tomato). BMC Microbiol 13(1):114

    Article  Google Scholar 

  • Oukala N, Aissat K, Pastor V (2021) Bacterial endophytes: the hidden actor in plant immune responses against biotic stress. Plants 10(5):1012

    Article  CAS  Google Scholar 

  • Owen D, Williams A, Griffith G, Withers P (2015) Use of commercial bio-inoculants to increase agricultural production through improved phosphrous acquisition. Appl Soil Ecol 86:41–54

    Article  Google Scholar 

  • Oyserman BO, Medema MH, Raaijmakers JM (2018) Road MAPs to engineer host microbiomes. Curr Opin Microbiol 43:46–54

    Article  CAS  Google Scholar 

  • Pal A, Pandey S (2016) Role of arbuscular mycorrhizal fungi on plant growth and reclamation of barren soil with wheat (Triticum aestivum L.) crop. Int. J Soil Sci 12(1):25–31

    Google Scholar 

  • Paterson E, Gebbing T, Abel C, Sim A, Telfer G (2007) Rhizodeposition shapes rhizosphere microbial community structure in organic soil. New Phytol 173(3):600–610

    Article  CAS  Google Scholar 

  • Pawlak K, Kołodziejczak M (2020) The role of agriculture in ensuring food security in develo** countries: considerations in the context of the problem of sustainable food production. Sustainability 12:5488. https://doi.org/10.3390/su12135488

    Article  Google Scholar 

  • Pawlowski K, Demchenko KN (2012) The diversity of actinorhizal symbiosis. Protoplasma 249(4):967–979

    Article  Google Scholar 

  • Pawlowski K, Jacobsen KR, Alloisio N et al (2007) Truncated hemoglobins in actinorhizal nodules of Datisca glomerata. Plant Biol 9:776–785. https://doi.org/10.1055/s-2007-965258

    Article  CAS  Google Scholar 

  • Peck MC, Fisher RF, Long SR (2006) Diverse flavonoids stimulate NodD1 binding to nod gene promoters in Sinorhizobium meliloti. J Bacteriol 188:5417–5427

    Article  CAS  Google Scholar 

  • Peng G, Wang H, Zhang G, Hou W, Liu Y, Wang ET, Tan Z (2006) Azospirillum melinis sp. nov., a group of diazotrophs isolated from tropical molasses grass. Int J Syst Evol Microbiol 56(6):1263–1271

    Article  CAS  Google Scholar 

  • Peng XN, Gilmore SP, O’Malley MA (2016) Microbial communities for bioprocessing: lessons learned from nature. Curr Opin Chem Eng 14:103–109. https://doi.org/10.1016/j.coche.2016.09.003

    Article  Google Scholar 

  • Pérez-Tienda J, Testillano PS, Balestrini R, Fiorilli V, Azcón-Aguilar C, Ferrol N (2011) GintAMT2, a new member of the ammonium transporter family in the arbuscular mycorrhizal fungus Glomus intraradices. Fungal Genet Biol 48:1044–1055. https://doi.org/10.1016/j.fgb.2011.08.003

    Article  CAS  Google Scholar 

  • Photita W, Lumyong S, Lumyong P, McKenzie EHC, Hyde KD (2005) Are some fungi isolated as endophytes of Musa acuminata latent pathogens? Fungal Divers 16:131–140

    Google Scholar 

  • Porcel R, Redondogómez S, Mateosnaranjo E, Aroca R, Garcia R, Ruizlozano JM (2015) Arbuscular mycorrhizal symbiosis ameliorates the optimum quantum yield of photosystem II and reduces non-photochemical quenching in rice plants subjected to salt stress. J Plant Physiol 185:75–83. https://doi.org/10.1016/j.jplph.2015.07.006

    Article  CAS  Google Scholar 

  • Porcel R, Aroca R, Azcon R, Ruiz-Lozano J (2016) Regulation of cation transporter genes by the arbuscular mycorrhizal symbiosis in rice plants subjected to salinity suggests improved salt tolerance due to reduced Na+ root-to-shoot distribution. Mycorrhiza 26(7):673–684

    Article  CAS  Google Scholar 

  • Porras-Alfaro A, Bayman P (2011) Hidden fungi, emergent properties: endophytes and microbiomes. Annu Rev Phytopathol 49:291–315

    Article  CAS  Google Scholar 

  • Poveda K, Jiménez MIG, Kessler A (2010) The enemy as ally: herbivore-induced increase in crop yield. Ecol Appl 20(7):1787–1793

    Article  Google Scholar 

  • Poveda J, Eugui D, Abril-Urías P, Velasco P (2021) Endophytic fungi as direct plant growth promoters for sustainable agricultural production. Symbiosis 85(1):1–19

    Article  CAS  Google Scholar 

  • Powell WA, Klingeman WE, Ownley BH, Gwinn KD (2009) Evidence of endophytic Beauveria bassiana in seed-treated tomato plants acting as a systemic entomopathogen to larval Helicover pazea (Lepidoptera: Noctuidae). J Entomol Sci 44(4):391–396

    Article  Google Scholar 

  • Prasad R, Zhang S-H (2022) Benefical microorganisms in agriculture. Springer, Singapore. https://springer.longhoe.net/book/9789811907326

    Book  Google Scholar 

  • Prasad R, Kumar M, Varma A (2015) Role of PGPR in soil fertility and plant health. In: Egamberdieva D, Shrivastava S, Varma A (eds) Plant growth-promoting rhizobacteria (PGPR) and medicinal plants. Springer International Publishing, Cham, pp 247–260

    Chapter  Google Scholar 

  • Prasad R, Kumar V, Kumar M, Choudhary D (2019) Nanobiotechnology in bioformulations. Springer International Publishing. ISBN 978-3-030-17061-5. https://www.springer.com/gp/book/9783030170608

    Book  Google Scholar 

  • Puente ML, Gualpa JL, Lopez GA, Molina RM, Carletti SM, Cassán FD (2017) The benefits of foliar inoculation with Azospirillum brasilense in soybean are explained by an auxin signaling model. Symbiosis 76:41–49

    Article  Google Scholar 

  • Punamiya P, Datta R, Sarkar D, Barber S, Patel M, Das P (2010) Symbiotic role of glomus mosseae in phytoextraction of lead in vetiver grass [Chrysopogon zizanioides (L.)]. J Hazard Mater 177(1–3):465–447

    Article  CAS  Google Scholar 

  • Pusey PL, Wend C (2012) Potential of osmoadaptation for improving Pantoeaag glomerans E325 as biocontrol agent for fire blight of apple and pear. Biol Control 62(1):29–37

    Article  Google Scholar 

  • Qayyum MA, Wakil W, Arif MJ, Sahi ST, Dunlap CA (2015) Infection of Helicoverpa armigera by endophytic Beauveria bassiana colonizing tomato plants. Biol. Control 90:200–207. https://doi.org/10.1016/j.biocontrol.2015.04.005

    Article  Google Scholar 

  • Qin Y, Druzhinina IS, Pan X, Yuan Z (2016) Microbially mediated plant salt tolerance and microbiome-based solutions for saline agriculture. Biotechnol Adv 34(7):1245–1259

    Article  CAS  Google Scholar 

  • Qin C, Tao J, Liu T et al (2019) Responses of phyllosphere microbiota and plant health to application of two different biocontrol agents. AMB Expr 9:42. https://doi.org/10.1186/s13568-019-0765-x

    Article  Google Scholar 

  • Quan M, Liang J (2017) The influences of four types of soil on the growth, physiological and biochemical characteristics of Lycoris aurea (L’ Her.). Herb Scie Rep 7(1):43284. https://doi.org/10.1038/srep43284

    Article  Google Scholar 

  • Quesada-Moraga E, Munoz-Ledesma FJ, Santiago-Alvarez C (2009) Systemic protection of Papaver somniferum L. against Iraellaluteipes (Hymenoptera: Cynipidae) by an endophytic strain of Beauveria bassiana (Ascomycota: Hypocreales). Environ Entomol 38(3):723–730

    Article  CAS  Google Scholar 

  • Rana KL, Kour D, Kaur T, Devi R, Yadav AN, Yadav N et al (2020) Endophytic microbes: biodiversity, plant growth-promoting mechanisms and potential applications for agricultural sustainability. Antonie Van Leeuwenhoek 113:1075–1107

    Article  CAS  Google Scholar 

  • Rani B (2016) Effect of arbuscular mycorrhiza fungi on biochemical parameters in wheat Triticum aestivum L. under drought conditions. Front Plant Sci 10:499. https://doi.org/10.3389/fpls.2019.00499. Doctoral dissertation, CCSHAU, Hisardrought stress in C3 (Leymus chinensis) and C4 (Hemarthria altissima) grasses via altering antioxidant enzyme activities and photosynthesis.

    Article  Google Scholar 

  • Ranjbar Sistani N, Kaul H-P, Desalegn G, Wienkoop S (2017) Rhizobium impacts on seed productivity, quality, and protection of pisum sativum upon disease stress caused by didymellapinodes: phenotypic, proteomic, and metabolomic traits. Front Plant Sci 8:1961. https://doi.org/10.3389/fpls.2017.01961

    Article  Google Scholar 

  • Rascio N, La Rocca N (2008) Biological nitrogen fixation. In: Jørgensen SE, Fath BD (eds) Encyclopedia of ecology. Academic, Oxford, pp 412–419

    Chapter  Google Scholar 

  • Rastogi G, Sbodio A, Tech JJ, Suslow TV, Coaker GL, Leveau JH (2012) Leaf microbiota in an agroecosystem: spatiotemporal variation in bacterial community composition on field-grown lettuce. ISME J 6(10):1812–1822

    Article  CAS  Google Scholar 

  • Rastogi G, Coaker GL, Leveau JHJ (2013) New insights into the structure and function of phyllosphere microbiota through high-throughput molecular approaches. FEMS Microbiol Lett 348(1):1–10. https://doi.org/10.1111/1574-6968.12225

    Article  CAS  Google Scholar 

  • Ren CG, Bai YJ, Kong CC et al (2016) Synergistic interactions between salt-tolerant rhizobia and arbuscular mycorrhizal fungi on salinity tolerance of Sesbania cannabina plants. J Plant Growth Regul 35:1098–1107. https://doi.org/10.1007/s00344-016-9607-0

    Article  CAS  Google Scholar 

  • Resquín-Romero G, Garrido-Jurado I, Delso C, Ríos-Moreno A, Quesada-Moraga E (2016) Transient endophytic colonizations of plants improves the outcome of foliar applications of mycoinsecticides against chewing insects. J. Invertebr Pathol 136:23–31. https://doi.org/10.1016/j.jip.2016.03.003

    Article  CAS  Google Scholar 

  • Rico L, Ogaya R, Terradas J, Peñuelas J (2014) Community structures of N2-fixing bacteria associated with the phyllosphere of a Holm oak forest and their response to drought. Plant Biol 16:586–593

    Article  CAS  Google Scholar 

  • Ripa F, Cao W, Tong S, Sun J (2019) Assessment of plant growth promoting and abiotic stress tolerance properties of wheat endophytic fungi. Bio Med Resh Int 2019:6105865. https://doi.org/10.1155/2019/6105865

    Article  CAS  Google Scholar 

  • Ritika B, Utpal D (2014) Biofertilizer, a way towards organic agriculture: a review. African J Microbiol Res 8:2332–2343. https://doi.org/10.5897/AJMR2013.6374

    Article  Google Scholar 

  • Rodriguez RJ, Woodward C, Kim YO, Redman RS (2009) Habitat-adapted symbiosis as a defense against abiotic and biotic stresses. In: White JF, Torres MS (eds) Defensive mutualism in microbial symbiosis. CRC Press, Boca Raton, FL, pp 335–346

    Google Scholar 

  • Rodríguez-Navarro D, Oliver M, Albareda Contreras J, Ruiz-Sainz E (2011) Soybean interactions with soil microbes, agronomical and molecular aspects. Agron Sustain Dev 31(1):173–190. https://doi.org/10.1051/agro/2010023.hal-00930474

    Article  Google Scholar 

  • Rodríguez-Salazar J, Suárez R, Caballero-Mellado J, Iturriaga G (2009) Trehalose accumulation in Azospirillum brasilense improves drought tolerance and biomass in maize plants. FEMS Microbiol Lett 296(1):52–59

    Article  Google Scholar 

  • Romero-Perdomo F, Abril J, Camelo M, Moreno-Galván A, Pastrana I, Rojas-Tapias D et al (2017) Azotobacter chroococcum as a potentially useful bacterial biofertilizer for cotton (Gossypium hirsutum): effect in reducing N fertilization. Rev Argent Microbiol 49:377–383. https://doi.org/10.1016/j.ram.2017.04.006

    Article  Google Scholar 

  • Ruiz-Lozano J, Aroca R, Zamarreño Á, Molina S, Andreo-Jiménez B, Porcel R, García-Mina J, Ruyter-Spira C, López-Ráez J (2015) Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato. Plant Cell Environ 39(2):441–452

    Article  Google Scholar 

  • Ruttenberg KC (2003) The global phosphorus cycle. Treatise Geochem 8:585–643. https://doi.org/10.1016/B0-08-043751-6/08153-6

    Article  Google Scholar 

  • Ryan P, Dessaux Y, Thomashow L, Weller D (2009) Rhizosphere engineering and management for sustainable agriculture. Plant Soil 321(1-2):363–383

    Article  CAS  Google Scholar 

  • Saeed KA, Ahmed SA, Hassan IA, Ahmed PH (2015) Effect of bio-fertilizer and chemical fertilizer on growth and yield in cucumber (Cucumis sativus L.) in green house condition. Am Eurasian J Agric Environ Sci 15:353–358. https://doi.org/10.3923/pjbs.2015.129.134

    Article  CAS  Google Scholar 

  • Saha B, Saha S, Das A, Bhattacharyya P, Basak N, Sinha A et al (2017) Biological nitrogen fixation for sustainable agriculture. In: Meena VS (ed) Agriculturally important microbes for sustainable agriculture. Springer, Singapore, pp 81–128. https://doi.org/10.1007/978-981-10-5343-6_4

    Chapter  Google Scholar 

  • Saharan BS, Nehra V (2011) Plant growth promoting rhizobacteria: a critical review. Life Sci Med Res 21(1):30

    Google Scholar 

  • Sahoo RK, Ansari MW, Pradhan M, Dangar TK, Mohanty S, Tuteja N (2014) Phenotypic and molecular characterization of native Azospirillum strains from rice fields to improve crop productivity. Protoplasma 251(4):943–953

    Article  CAS  Google Scholar 

  • Saikkonen K (2007) Forest structure and fungal endophytes. Fungal Biol Rev. 21:67–74

    Article  Google Scholar 

  • Sánchez-Rodríguez AR, Raya-Díaz S, Zamarreño ÁM, García-Mina JM, Del Campillo MC, Quesada-Moraga E (2018) An endophytic Beauveria bassiana strain increases spike production in bread and durum wheat plants and effectively controls cotton leafworm (Spodoptera littoralis) larvae. Biol Control 116:90–102. https://doi.org/10.1016/j.biocontrol.2017.01.012

    Article  Google Scholar 

  • Santander C, Sanhueza M, Olave J, Borie F, Valentine C, Cornejo P (2019) Arbuscular mycorrhizal colonization promotes the tolerance to salt stress in lettuce plants through an efficient modification of ionic balance. J Soil Sci Plant Nutr 19(2):321–331. https://doi.org/10.1007/s42729-019-00032-z

    Article  CAS  Google Scholar 

  • Santhanam R, Luu VT, Weinhold A, Goldberg J, Oh Y, Baldwin IT (2015) Native root-associated bacteria rescue a plant from a sudden-wilt disease that emerged during continuous crop**. Proc Natl Acad Sci USA 112:E5013–E5020

    Article  CAS  Google Scholar 

  • Santi C, Bogusz D, Franche C (2013) Biological nitrogen fixation in non-legume plants. Annals Bot 111(5):743–767. https://doi.org/10.1093/aob/mct048

    Article  CAS  Google Scholar 

  • Santos Kron A, Zengerer V, Bieri M, Dreyfuss V, Sostizzo T, Schmid M, Lutz M, Remus-Emsermann MN, Pelludat C (2020) Pseudomonas orientalis F9 pyoverdine, safracin, and phenazine mutants remain effective antagonists against Erwinia amylovora in apple flowers. Appl Environ Microbiol 86(8):e02620-19

    Article  Google Scholar 

  • Santoyo G, Orozco-Mosqueda MDC, Govindappa M (2012) Mechanisms of biocontrol and plant growth-promoting activity in soil bacterial species of Bacillus and Pseudomonas: a review. Biocontrol Sci Technol 22:855–872

    Article  Google Scholar 

  • Saribay GF (2003) Growth and nitrogen fixation dynamic of azotobacter chroococcum in nitrogen-free and OMW containing medium [M.S.- Master of Science]. Middle East Technical University.

    Google Scholar 

  • Sarkar A, Mandal AR, Prasad PH, Maity TK, Chandra B, Viswavidyalaya K et al (2010) Influence of nitrogen and biofertilizer on growth and yield of cabbage. J Crop Weed 6:72–73

    Google Scholar 

  • Sarma I, Phookan DB, Boruah S (2015) Influence of manures and biofertilizers on carrot (Daucus carota L.) cv. early nantes growth, yield and quality. J Ecofriendly Agric 10:25–27

    Google Scholar 

  • Schüßler A, Martin H, Cohen D, Fitz M, Wipf D (2007) Arbuscular Mycorrhiza-Studies on the geosiphon symbiosis lead to the characterization of the first Glomeromycotan sugar transporter. Plant Signal Behavior 2(5):431–434

    Article  Google Scholar 

  • Sekar J, Raj R, Vaiyapuri PR (2016) Microbial consortia for sustainable agriculture: commercialization and regulatory issues in India. In: Singh HB et al (eds) Agriculturally important microorganisms. Springer Science, Business Media, Singapore, pp 107–131

    Chapter  Google Scholar 

  • Sendek A, Karakoç C, Wagg C et al (2019) Drought modulates interactions between arbuscular mycorrhizal fungal diversity and barley genotype diversity. Sci Rep 9:9650. https://doi.org/10.1038/s41598-019-45702-1

    Article  CAS  Google Scholar 

  • Shantharam S, Mattoo AK (1997) Enhancing biological nitrogen fixation: an appraisal of current and alternative technologies for N input into plants. Plant Soil 194:205–216

    Article  CAS  Google Scholar 

  • Shao J, Miao Y, Liu K, Ren Y, Xu Z, Zhang N, Feng H, Shen Q, Zhang R, Xun W (2021) Rhizosphere microbiome assembly involves seed-borne bacteria in compensatory phosphate solubilization. Soil Biol Biochem 159:108273

    Article  CAS  Google Scholar 

  • Sharma S, Shukla KP, Singh V, Singh J, Devi S, Tewari A (2013) Plant-microbe symbiosis: perspectives and applications. In: Arora NK (ed) Plant microbe symbiosis: fundamentals and advances. Springer, New Delhi, pp 119–145

    Chapter  Google Scholar 

  • Sheng M, Tang M, Zhang F, Huang Y (2011) Influence of arbuscular mycorrhiza on organic solutes in maize leaves under salt stress. Mycorrhiza 21:423–430. https://doi.org/10.1007/s00572-010-0353-z

    Article  Google Scholar 

  • Siegel MR, Latch GCM, Bush LP, Fannin FF, Rowan DD, Tapper BA, Johnson MC (1990) Fungal endophyte-infected grasses: alkaloid accumulation and aphid response. J Chemical Ecol 16(12):3301–3315

    Article  CAS  Google Scholar 

  • Singh R, Dubey AK (2018) Diversity and applications of endophytic actinobacteria of plants in special and other ecological niches. Front Microbiol 9:1767. https://doi.org/10.3389/fmicb.2018.01767

    Article  Google Scholar 

  • Singh BP, Hatton BJ, Balwant S, Cowie AL, Kathuria A (2010) Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils. J Environ Qual 39:1224–1235. https://doi.org/10.2134/jeq2009.0138

    Article  CAS  Google Scholar 

  • Singh A, Sarma BK, Upadhyay RS, Singh HB (2013) Compatible rhizosphere microbes mediated alleviation of biotic stress in chickpea through enhanced antioxidant and phenylpropanoid activities. Microbiol Res 168(1):33–40

    Article  CAS  Google Scholar 

  • Singh A, Maji S, Kumar S (2014) Effect of biofertilizers on yield and biomolecules of anti-cancerous vegetable broccoli. Int J Bioresour Stress Manag 5:262. https://doi.org/10.5958/0976-4038.2014.00565.x

    Article  Google Scholar 

  • Singh R, Jha P, Jha P (2015a) The plant-growth-promoting bacterium Klebsiella sp. SBP-8 confers induced systemic tolerance in wheat (Triticum aestivum) under salt stress. J Plant Physiol 184:57–67

    Article  CAS  Google Scholar 

  • Singh SK, Sharma HR, Shukla A, Singh U, Thakur A (2015b) Effect of biofertilizers and mulch on growth, yield and quality of tomato in mid-hills of Himachal Pradesh. Int J Farm Sci 5:98–110

    Google Scholar 

  • Singh S, Parihar P, Singh R, Singh VP, Prasad SM (2016) Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Front Plant Sci 6:1143. https://doi.org/10.3389/fpls.2015.01143

    Article  Google Scholar 

  • Sinsabaugh RL (2010) Phenol oxidase, peroxidase and organic matter dynamics of soil. Soil Biol Biochem 42:391–404

    Article  CAS  Google Scholar 

  • Sivakumar N, Sathishkumar R, Selvakumar G, Shyamkumar R, Arjunekumar K (2020) Phyllospheric microbiomes: diversity, ecological significance, and biotechnological applications. Plant Microb Sust Agricult. pp 113–172. https://doi.org/10.1007/978-3-030-38453-1_5

  • Smith SE, Read DJ (eds) (1997) Mycorrhizal symbiosis. Academic, London, p 13

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, London

    Google Scholar 

  • Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol 62:227–250

    Article  CAS  Google Scholar 

  • Smith FA, Grace EJ, Smith SE (2009) More than a carbon economy: nutrient trade and ecological sustainability in facultative arbuscular mycorrhizal symbioses. New Phytol 182:347–358

    Article  CAS  Google Scholar 

  • Spaepen S, Vanderleyden J (2015) Auxin signaling in Azospirillum brasilense: a proteome analysis. In: Biological nitrogen fixation. Wiley, New York, pp 937–940. https://doi.org/10.1002/9781119053095.ch91

    Chapter  Google Scholar 

  • Sprent JI (2009) Legume nodulation: a global perspective. Wiley, Hoboken, NJ. 1-4443-1639-7.

    Book  Google Scholar 

  • Sreekanth D, Kristin IM, Brett AN (2017) Endophytic fungi from Cathranthus roseus: a potential resource for the discovery of antimicrobial polyketides. Nat Prod Chem Res 5:256

    Google Scholar 

  • Sridhar K, Rajesh V, Omprakash S, Prathyusha C, Devi KS (2014) A critical review on organic farming of vegetables. Int J Appl Biol Pharm Technol 5(1):216–221

    Google Scholar 

  • Stanton DE, Batterman SA, Von Fischer JC, Hedin LO (2019) Rapid nitrogen fixation by canopy microbiome in tropical forest determined by both phosphorus and molybdenum. Ecology 100(9):e02795

    Article  Google Scholar 

  • Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24(4):487–506

    Article  CAS  Google Scholar 

  • Steven B, Huntley R, Zeng Q (2018) The influence of flower anatomy and apple cultivar on the apple flower phytobiome. Phytobiom J 2(3):171–179

    Article  Google Scholar 

  • Stone B, Weingarten E, Jackson C (2018) The role of the phyllosphere microbiome in plant health and function. Annual Plant Rev:533–556

    Google Scholar 

  • Strobel G, Daisy B (2003) Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 67:491–502

    Article  CAS  Google Scholar 

  • Strzelczyk E, Kampert M, Li CY (1994) Cytokinin-like substances and ethylene production by Azospirillum in media with different carbon sources. Microbiol Res 149(1):55–60

    Article  CAS  Google Scholar 

  • Sulieman S, Tran LSP (2013) Asparagine: an amide of particular distinction in the regulation of symbiotic nitrogen fixation of legumes. Crit Rev Biotechnol 33:309–327

    Article  CAS  Google Scholar 

  • Sumbul A, Ansari RA, Rizvi R, Mahmood I (2020) Azotobacter: a potential bio-fertilizer for soil and plant health management. Saudi J Biol Sci 27:3634–3640. https://doi.org/10.1016/j.sjbs.2020.08.004

    Article  CAS  Google Scholar 

  • Sun C, Johnson JM, Cai D, Sherameti I, Oelmüller R, Lou B (2010) Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes, the expression of drought-related genes and the plastid-localized CAS protein. J Plant Physiol 167(12):1009–1017. https://doi.org/10.1016/j.jplph.2010.02.013

    Article  CAS  Google Scholar 

  • Taghavi S, Barac T, Greenberg B, Borremans B, Vangronsveld J, van Der Lelie D (2005) Horizontal gene transfer to endogenous endophytic bacteria from poplar improved phyto-remediation of toluene. Appl Environ Microbiol 71:8500–8505

    Article  CAS  Google Scholar 

  • Tahat MMM, Alananbeh KA, Othman YI, Leskovar D (2020) Soil health and sustainable agriculture. Sustainability 12(12):4859. https://doi.org/10.3390/su12124859

    Article  CAS  Google Scholar 

  • Ta**i F, Trabelsi M, Drevon JJ (2012) Combined inoculation with Glomus intraradices and Rhizobium tropici CIAT899 increases phosphorus use efficiency for symbiotic nitrogen fixation in common bean (Phaseolus vulgaris L.). Saudi J Biol Scie 19(2):157–163

    Article  CAS  Google Scholar 

  • Tamayo E, Gómez-Gallego T, Azcón-Aguilar C, Ferrol N (2014) Genome-wide analysis of copper, iron and zinc transporters in the arbuscular mycorrhizal fungus Rhizophagus irregularis. Front Plant Sci 2014(14):55

    Google Scholar 

  • Tatry M, Kassis EE, Lambilliotte R, Corratgé C, Van Aarle I, Amenc LK, Alary R, Zimmermann S, Sentenac H, Plassard C (2009) Two differentially regulated phosphate transporters from the symbiotic fungus Hebeloma cylindrosporum and phosphorus acquisition by ectomycorrhizal Pinus pinaster. Plant J 57:1092–1102

    Article  CAS  Google Scholar 

  • Tecon R, Leveau J (2016) Symplasmata are a clonal, conditional, and reversible type of bacterial multicellularity. Scie Rep 6(1):31914

    Article  CAS  Google Scholar 

  • Tecon R, Ebrahimi A, Kleyer H, Erev Levi S, Or D (2018) Cell-to-cell bacterial interactions promoted by drier conditions on soil surfaces. Proc Nat Acad Sci 115(39):9791–9796

    Article  CAS  Google Scholar 

  • Tena W, Wolde-Meskel E, Walley F (2016) Symbiotic efficiency of native and exotic rhizobium strains nodulating lentil (Lens culinaris Medik.) in soils of Southern Ethiopia. Agronomy 6(1):11. https://doi.org/10.3390/agronomy6010011

    Article  CAS  Google Scholar 

  • Thaiss CA, Zmora N, Levy M, Elinav E (2016) The microbiome and innate immunity. Nature 535:65–74

    Article  CAS  Google Scholar 

  • Thapa S, Prasanna R (2018) Prospecting the characteristics and significance of the phyllosphere microbiome. Ann Microbiol 68(5):229–245. https://doi.org/10.1007/s13213-018-1331-5

    Article  CAS  Google Scholar 

  • Thapa S, Prasanna R (2018) Prospecting the characteristics and significance of the phyllosphere microbiome. Ann Microbiol 68(5):229–245

    Article  CAS  Google Scholar 

  • Thapa S, Prasanna R, Ranjan K, Velmourougane K, Ramakrishnan B (2017) Nutrients and host attributes modulate the abundance and functional traits of phyllosphere microbiome in rice. Microbiol Res 204:55–64

    Article  CAS  Google Scholar 

  • Tien TM, Gaskins MH, Hubbell D (1979) Plant growth substances produced by Azospirillum brasilense and their effect on the growth of pearl millet (Pennisetum americanum L.). Appl Environ Microbiol 37(5):1016–1024

    Article  CAS  Google Scholar 

  • Tikhonova EN, Grouzdev DS, Kravchenko IK (2019) Azospirillum palustre sp. nov., a methylotrophic nitrogen-fixing species isolated from raised bog. Int J Syst Evol Microbiol 69(9):2787–2793

    Article  CAS  Google Scholar 

  • Timmusk S, Behers L, Muthoni J, Muraya A, Aronsson A-C (2017) Perspectives and challenges of microbial application for crop improvement. Front Plant Sci 8:49. https://doi.org/10.3389/fpls.2017.00049

    Article  Google Scholar 

  • Tisa LS, Oshone R, Sarkar I, Ktari A, Sen A, Gtari M (2016) Genomic approaches toward understanding the actinorhizal symbiosis: an update on the status of the Frankia genomes. Symbiosis 70:5–16. https://doi.org/10.1007/s13199-016-0390-2

    Article  CAS  Google Scholar 

  • Tittabutr P, Payakapong W, Teaumroong N, Singleton PW, Boonkerd N (2007) Growth, survival andfield performance of Bradyrhizobial liquid inoculant formulations with polymeric additives. Sci Asia 33:69–77. https://doi.org/10.2306/scienceasia1513-1874.2007.33.069

    Article  CAS  Google Scholar 

  • Toju H, Kurokawa H, Kenta T (2019) Factors influencing leaf- and root-associated communities of bacteria and fungi across 33 plant orders in a Grassland. Front Microbiol 10:241. https://doi.org/10.3389/fmicb.2019.00241

    Article  Google Scholar 

  • Torres N, Goicoechea N, Morales F, Antolín MC (2016) Berry quality and antioxidant properties in Vitis vinifera cv. Tempranillo as affected by clonal variability, mycorrhizal inoculation and temperature. Crop Pasture Sci 67(9):961–977. https://doi.org/10.1071/CP16038

    Article  CAS  Google Scholar 

  • Tortora ML, Díaz-Ricci JC, Pedraza RO (2011) Azospirillum brasilense siderophores with antifungal activity against Colletotrichum acutatum. Arch Microbiol 193(4):275–286. https://doi.org/10.1007/s00203-010-0672-7

    Article  CAS  Google Scholar 

  • Tsoata E, Njock SR, Youmbi E, Nwaga D (2015) Early effects of water stress on some biochemical and mineral parameters of mycorrhizal Vigna subterranea (L.) Verdc (Fabaceae) cultivated in Cameroon. Int J Agron Agric Res 7(2):21–35

    Google Scholar 

  • Turan M, Gulluce M, von Wirén N, Sahin F (2012) Yield promotion and phosphorus solubilization by plant growth–promoting rhizobacteria in extensive wheat production in Turkey. J Plant Nut Soil Sci 175(6):818–826. https://doi.org/10.1002/jpln.201200054

    Article  CAS  Google Scholar 

  • Turrini A, Avio L, Giovannetti M, Agnolucci M (2018) Functional complementarity of arbuscular mycorrhizal fungi and associated microbiota: the challenge of translational research. Front Plant Sci 9:1407. https://doi.org/10.3389/fpls.2018.01407

    Article  Google Scholar 

  • Usuki F, Narisawa K (2007) A mutualistic symbiosis between a dark septate endophytic fungus, Heteroconium chaetospira, and a non mycorrhizal plant, Chinese cabbage. Mycologia 99:175–184. https://doi.org/10.3852/mycologia.99.2.175

    Article  CAS  Google Scholar 

  • Vacher C, Hampe A, Porté AJ, Sauer U, Compant S, Morris CE (2016) The phyllosphere: microbial jungle at the plant–climate interface. Annu Rev Ecol Evol Syst 47(1):1–24. https://doi.org/10.1146/annurev-ecolsys-121415-032238

    Article  Google Scholar 

  • Van Der Heijden MGA, Bardgett RD, van Straalen NM (2007) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310. https://doi.org/10.1111/j.1461-0248.2007.01139.x

    Article  Google Scholar 

  • Varma A, Prasad R, Tuteja N (2017a) Mycorrhiza: function, diversity and state-of-art. Springer International Publishing. ISBN: 978-3-319-53064-2. http://www.springer.com/us/book/9783319530635

    Book  Google Scholar 

  • Varma A, Prasad R, Tuteja N (2017b) Mycorrhiza: eco-physiology, secondary metabolites, nanomaterials. Springer International Publishing. ISBN: 978-3-319-57849-1. http://www.springer.com/us/book/9783319578484

    Book  Google Scholar 

  • Varma A, Prasad R, Tuteja N (2017c) Mycorrhiza: nutrient uptake, biocontrol, ecorestoration. Springer International Publishing. ISBN: 978-3-319-68867-1. http://www.springer.com/us/book/9783319688664

    Book  Google Scholar 

  • Varma A, Swati T, Prasad R (2020) Plant microbe symbiosis. Springer International Publishing. ISBN: 978-3-030-36247-8. https://www.springer.com/gp/book/9783030362478

    Book  Google Scholar 

  • Velmourougane K, Prasanna R, Chawla G, Nain L, Kumar A, Saxena AK (2019) TrichodermaAzotobacter biofilm inoculation improves soil nutrient availability and plant growth in wheat and cotton. J Basic Microbiol 59:632–644. https://doi.org/10.1002/jobm.201900009

    Article  CAS  Google Scholar 

  • Venkatachalam S, Ranjan K, Prasanna R, Ramakrishnan B, Thapa S, Kanchan A (2016) Diversity and functional traits of culturable microbiome members, including cyanobacteria in the rice phyllosphere. Plant Biol 18(4):627–637. https://doi.org/10.1111/plb.12441

    Article  CAS  Google Scholar 

  • Verma JP, Yadav J, Tiwari KN, Kumar A (2013) Effect of indigenous Mesorhizobium spp. and plant growth promoting rhizobacteria on yields and nutrients uptake of chickpea (Cicer arietinum L.) under sustainable agriculture. Ecol Eng 51:282–286

    Article  Google Scholar 

  • Verma P, Yadav AN, Kazy SK, Saxena AK, Suman A (2014) Evaluating the diversity and phylogeny of plant growth promoting bacteria associated with wheat (Triticum aestivum) growing in central zone of India. Int J Curr Microbiol Appl Sci 3(5):432–447

    Google Scholar 

  • Villamil Carvajal JE, Viteri Rosero SE, Villegas Orozco WL (2015) Application of microbial antagonists for the biological control of Moniliophthora roreri Cif & Par in Theobroma cacao L. under field conditions. Rev Fac Nac Agron Medellin 68(1):7441–7450. https://doi.org/10.15446/rfnam.v68n1.47830

    Article  Google Scholar 

  • Vorholt JA (2012) Microbial life in the phyllosphere. Nat Rev 10:828–840. https://doi.org/10.1038/nrmicro2910

    Article  CAS  Google Scholar 

  • Wagenaar MM, Corwin J, Strobel G, Clardy J (2000) Three new cytochalasins produced by an endophytic fungus in the genus Rhinocladiella. J Nat Prod 63(12):1692–1695. https://doi.org/10.1021/np0002942

    Article  CAS  Google Scholar 

  • Waller F, Achatz B, Baltruschat H, Fodor J, Becker K, Fisher M et al (2005) The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. PNAS 102:13386–13391

    Article  CAS  Google Scholar 

  • Wang S (2009) Molecular mechanism of plant growth promotion and induced systemic resistance to tobacco mosaic virus by Bacillus spp. J. Microbiol Biotechnol 19:1250–1258

    Article  CAS  Google Scholar 

  • Wang Y, **g H, Gao Y (2012) Arbuscular mycorrhizal colonization alters subcellular distribution and chemical forms of cadmium in Medicago sativa L. and resists cadmium toxicity. PLoS One 7:3161–3164. https://doi.org/10.1371/journal.pone.0048669

    Article  CAS  Google Scholar 

  • Wang X, Xue Y, Han M, Bu Y, Liu C (2014a) The ecological roles of Bacillus thuringiensis within phyllosphere environments. Chemosphere 108:258–264. https://doi.org/10.1016/j.chemosphere.2014.01.050

    Article  CAS  Google Scholar 

  • Wang S, Zhang S, Sun C, Xu Y, Chen Y, Yu C, Qian Q, Jiang DA, Qi Y (2014b) Auxin response factor (OsARF12), a novel regulator for phosphate homeostasis in rice (Oryza sativa). New Phytologist 201:91–103. https://doi.org/10.1111/nph.12499

    Article  CAS  Google Scholar 

  • Wang P, Niu GY, Fang YH, Wu RJ, Yu JJ, Yuan GF, Pozdniakov SP, Scott RL (2018a) Implementing dynamic root optimization in Noah-MP for simulating phreatophytic root water uptake. Water Reso Res 54(3):1560–1575. https://doi.org/10.1002/2017WR021061

    Article  Google Scholar 

  • Wang Y, Wang M, Li Y, Wu A, Huang J (2018b) Effects of arbuscular mycorrhizal fungi on growth and nitrogen uptake of Chrysanthemum morifolium under salt stress. PLoS One 13(4):e0196408. https://doi.org/10.1371/journal.pone.0196408

    Article  CAS  Google Scholar 

  • Wani S, Ali T (2013) Potential use of Azotobacter chroococcum in crop production: an overview. Curr Agric Res J 1:35–38. https://doi.org/10.12944/CARJ.1.1.04

    Article  Google Scholar 

  • Wei F, Hu X, Xu X (2016) Dispersal of Bacillus subtilis and its effect on strawberry phyllosphere microbiota under open field and protection conditions. Scie Rep 6:22611. https://doi.org/10.1038/srep22611

    Article  CAS  Google Scholar 

  • Wensing A, Braun SD, Büttner P, Expert D, Völksch B, Ullrich MS, Weingart H (2010) Impact of siderophore production by Pseudomonas syringae pv. syringae 22d/93 on epiphytic fitness and biocontrol activity against Pseudomonas syringae pv. glycinea 1a/96. Appl Environ Microbiol 76(9):2704–2711. https://doi.org/10.1128/AEM.02979-09

    Article  CAS  Google Scholar 

  • Whipps JM, Hand P, Pink D, Bending GD (2008) Phyllosphere microbiology with special reference to diversity and plant genotype. J Appl Microbiol 105:1744–1755. https://doi.org/10.1111/j.1365-2672.2008.03906.x

    Article  CAS  Google Scholar 

  • Wichard T, Bellenger JP, Morel FM, Kraepiel AM (2009) Role of the siderophore azotobactin in the bacterial acquisition of nitrogenase metal cofactors. Environ Sci Tech 43(19):7218–7224. https://doi.org/10.1021/es8037214

    Article  CAS  Google Scholar 

  • Williams T, Moyne A, Harris L, Marco M (2013) Season, irrigation, leaf age, and escherichia coli inoculation influence the bacterial diversity in the lettuce phyllosphere. PLoS One 8(7):e68642. https://doi.org/10.1371/journal.pone.0068642

    Article  CAS  Google Scholar 

  • Wilson M, Lindow SE (1993) Interactions between the biological control agent Pseudomonas fluorescens A506 and Erwinia amylovora in pear blossoms. Phytopathology 83(1):117–123. https://doi.org/10.1094/Phyto-83-117

    Article  Google Scholar 

  • Wu QS, Zou YN, Liu W, Ye XF, Zai HF, Zhao LJ (2010) Alleviation of salt stress in citrus seedlings inoculated with mycorrhiza: changes in leaf antioxidant defense systems. Plant Soil Environ 56:470–475. https://doi.org/10.17221/54/2010-PSE

    Article  CAS  Google Scholar 

  • Wu D, Zhang XJ, Liu HC, Zhou YG, Wu XL, Nie Y et al (2021) Azospirillum oleiclasticum sp. nov, a nitrogen-fixing and heavy oil degrading bacterium isolated from an oil production mixture of Yumen Oilfield. Syst Appl Microbiol 44(1):126171. https://doi.org/10.1016/j.syapm.2020.126171

    Article  CAS  Google Scholar 

  • **e QY, Wang C, Wang R, Qu Z, Lin HP, Goodfellow M, Hong K (2011) Jishengella endophytica gen. nov., sp. nov., a new member of the family Micromonosporaceae. Int J Syst Evol Microbiol 61(5):1153–1159. https://doi.org/10.1099/ijs.0.025288-0

    Article  CAS  Google Scholar 

  • **e X, Lin H, Peng X, Xu C, Sun Z, Jiang K, Huang A, Wu X, Tang N, Salvioli A, Bonfante P, Zhao B (2016) Arbuscular mycorrhizal symbiosis requires a phosphate transceptor in the Gigaspora margarita fungal symbiont. Mol Plant 9(12):1583–1608. https://doi.org/10.1016/j.molp.2016.08.011

    Article  CAS  Google Scholar 

  • Yadav AN (2017) Agriculturally important microbiomes: biodiversity and multifarious PGP attributes for amelioration of diverse abiotic stresses in crops for sustainable agriculture. Biomed J Sci Tech Res 1(4):861–864. https://doi.org/10.26717/BJSTR.2017.01.000321

    Article  Google Scholar 

  • Yadav AN, Yadav N (2018) Stress-adaptive microbes for plant growth promotion and alleviation of drought stress in plants. Acta Sci Agric 2(6):85–88

    Google Scholar 

  • Yadav N, Yadav AN (2019) Actinobacteria for sustainable agriculture. J Appl Biotechnol Bioeng 6(1):38–41. https://doi.org/10.15406/jabb.2019.06.00172

    Article  Google Scholar 

  • Yadav V, Kumar M, Deep DK, Kumar H, Sharma R, Tripathi T, Tuteja N, Saxena AK, Johri AK (2010) A phosphate transporter from the root endophytic fungus Piriformospora indica plays a role in phosphate transport to the host plant. J Biol Chem 285:26532–26544. https://doi.org/10.1074/jbc.M110.111021

    Article  CAS  Google Scholar 

  • Yang H, Knapp J, Koirala P, Rajagopal D, Peer WA, Silbart LK et al (2007) Enhanced phosphorus nutrition in monocots and dicots over-expressing a phosphorus responsive type I H+-pyrophosphatase. Plant Biotechnol J 5:735–745. https://doi.org/10.1111/j.1467-7652.2007.00281.x

    Article  CAS  Google Scholar 

  • Yang S-Y, Grønlund M, Jakobsen I, Grotemeyer MS, Rentsch D, Miyao A et al (2012) Nonredundant regulation of rice arbuscular mycorrhizal symbiosis by two members of the phosphate transporter1 gene family. Plant Cell 24(10):4236–4251. https://doi.org/10.1105/tpc.112.104901

    Article  CAS  Google Scholar 

  • Yang Y, Tang M, Sulpice R, Chen H, Tian S, Ban Y (2014) Arbuscular mycorrhizal fungi alter fractal dimension characteristics of Robinia pseudoacacia L. seedlings through regulating plant growth, leaf water status, photosynthesis, and nutrient concentration under drought stress. J Plant Growth Reg 33:612–625. https://doi.org/10.1007/s00344-013-9410-0

    Article  CAS  Google Scholar 

  • Yang Y, Zhao J, Jiang Y, Hu Y, Zhang M, Zeng Z (2017) Response of bacteria harboring nirS and nirK genes to different N fertilization rates in an alkaline northern Chinese soil. Eur J Soil Biol 82:1–9. https://doi.org/10.1016/j.ejsobi.2017.05.006

    Article  CAS  Google Scholar 

  • Yang Y, Zhang R, Feng J, Wang C, Chen J (2019) Azospirillum griseum sp. nov., isolated from lakewater. Int J Syst Evol Microbiol 69(12):3676–3681. https://doi.org/10.1099/ijsem.0.003460

    Article  CAS  Google Scholar 

  • Yao ZY, Kan FL, Wang ET, Wei GH, Chen WX (2002) Characterization of rhizobia that nodulate legume species of the genus Lespedeza and description of Bradyrhizobium yuanmingense sp. nov. Int J Syst Evol Microbiol 52:2219–2230. https://doi.org/10.1099/ijs.0.01408-0

    Article  CAS  Google Scholar 

  • Yao H, Sun X, He C, Maitra P, Li X, Guo L (2019) Phyllosphere epiphytic and endophytic fungal community and network structures differ in a tropical mangrove ecosystem. Microbiome 7:57. https://doi.org/10.1186/s40168-019-0671-0

    Article  Google Scholar 

  • Yi Y, Huang W, Ge Y (2008) Exopolysaccharide: a novel important factor in the microbial dissolution of tricalcium phosphate. World J Microbiol Biotechnol 24:1059–1065. https://doi.org/10.1007/s11274-007-9575-4

    Article  CAS  Google Scholar 

  • Yooyongwech S, Samphumphuang T, Tisarum R, Theerawitaya C, Chaum S (2016) Arbuscular mycorrhizal fungi (AMF) improved water deficit tolerance in two different sweet potato genotypes involves osmotic adjustments via soluble sugar and free proline. Sci Hort. 198:107–117. https://doi.org/10.1016/j.scienta.2015.11.002

    Article  CAS  Google Scholar 

  • Yooyongwech S, Samphumphung T, Tisaram R, Theerawitaya C, Suriyan CU (2017) Physiological, morphological changes and storage root yield of sweetpotato [Ipomoea batatas (L.) Lam.] under peg-induced water stress. Not Bot Horti Agrobo 45(1):164–171. https://doi.org/10.15835/nbha45110651

    Article  CAS  Google Scholar 

  • Yousaf B, Liu G, Wang R, Zia-ur-Rehman M, Rizwan MS, Imtiaz M, Murtaza G, Shakoor A (2016) Investigating the potential influence of biochar and traditional organic amendments on the bioavailability and transfer of CD in the soil–plant system. Environ Earth Sci 75(5):374. https://doi.org/10.1007/s12665-016-5285-2

    Article  CAS  Google Scholar 

  • Yu X, Lund SP, Scott RA, Greenwald JW, Records AH, Nettleton D, Lindow SE, Gross DC, Beattie GA (2013) Transcriptional responses of Pseudomonas syringae to growth in epiphytic versus apoplastic leaf sites. Proc Natl Acad Sci U S A 110(5):E425–E434. https://doi.org/10.1073/pnas.1221892110

    Article  Google Scholar 

  • Yurimoto H, Shiraishi K, Sakai Y (2021) Physiology of methylotrophs living in the phyllosphere. Microorganisms. 9(4):809. https://doi.org/10.3390/microorganisms9040809

    Article  CAS  Google Scholar 

  • Zaefarian F, Rezvani M, Ardakani MR, Rejali F, Miransari M (2013) Impact of mycorrhizae formation on the phosphorus and heavy-metal uptake of Alfalfa. Comm Soil Sci. Plant Anal 44:1340–1352. https://doi.org/10.1080/00103624.2012.756505

    Article  CAS  Google Scholar 

  • Zayadan BK, Matorin D, Baimakhanova GB, Bolathan K, Oraz GD, Sadanov AK (2014) Promising microbial consortia for producing biofertilizers for rice fields. Microbiol 83(4):391–397. https://doi.org/10.1134/S0026261714040171

    Article  CAS  Google Scholar 

  • Zhang HS, Qin FF, Qin P, Pan SM (2014) Evidence that arbuscular mycorrhizal and phosphate-solubilizing fungi alleviate NaCl stress in the halophyte Kosteletzkya virginica: nutrient uptake and ion distribution within root tissues. Mycorrhiza 24(5):383–395. https://doi.org/10.1007/s00572-013-0546-3

    Article  CAS  Google Scholar 

  • Zhang H, Liu Z, Chen H, Tang M (2016) Symbiosis of arbuscular mycorrhizal fungi and Robinia pseudoacacia L. improves root tensile strength and soil aggregate stability. PLoS One 11(4):e0153378. https://doi.org/10.1371/journal.pone.0153378

    Article  CAS  Google Scholar 

  • Zhang F, He J, Ni Q, Wu Q, Zou Y (2018a) Enhancement of drought tolerance in trifoliate orange by mycorrhiza: changes in root sucrose and proline metabolisms. Not Bot Horti Agrobot Cluj 46(1):270–276. https://doi.org/10.15835/nbha46110983

    Article  CAS  Google Scholar 

  • Zhang X, Han L, Wang Q, Zhang C, Yu Y, Tian J, Kong Z (2018b) The host actin cytoskeleton channels rhizobia release and facilitates symbiosome accommodation during nodulation in Medicago truncatula. New Phytol 221:1049–1059. https://doi.org/10.1111/nph.15423

    Article  CAS  Google Scholar 

  • Zhang J, Liu YX, Zhang N et al (2019) NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nat Biotechnol 37:676–684. https://doi.org/10.1038/s41587-019-0104-4

    Article  CAS  Google Scholar 

  • Zhao R, Guo W, Bi N, Guo J, Wang L, Zhao J, Zhang J (2015) Arbuscular mycorrhizal fungi affect the growth, nutrient uptake and water status of maize (Zea mays L.) grown in two types of coal mine spoils under drought stress. Appl Soil Ecol 88:41–49. https://doi.org/10.1016/j.apsoil.2014.11.016

    Article  Google Scholar 

  • Zhao ZL, Ming H, Ding CL, Ji WL, Cheng LJ, Niu MM et al (2020) Azospirillum thermophilum sp. nov., isolated from a hot spring. Int J Syst Evol 70(1):550–554. https://doi.org/10.1099/ijsem.0.003788

    Article  CAS  Google Scholar 

  • Zhou S, Han L, Wang Y, Yang G, Zhuang L, Hu P (2013) Azospirillum humicireducens sp. nov., a nitrogen-fixing bacterium isolated from a microbial fuel cell. Int J Syst Evol Microbiol 63:2618–2624. https://doi.org/10.1099/ijs.0.046813-0

    Article  CAS  Google Scholar 

  • Zhu XC, Song FB, Xu HW (2010) Arbuscular mycorrhizae improve low temperature stress in maize via alterations in host water status and photosynthesis. Plant Soil 331:129–137. https://doi.org/10.1007/s11104-009-0239-z

    Article  CAS  Google Scholar 

  • Zhu XC, Song FB, Liu SQ, Liu FL (2016) Arbuscular mycorrhiza improves growth, nitrogen uptake, and nitrogen use efficiency in wheat grown under elevated CO2. Mycorrhiza 26:133–140. https://doi.org/10.1007/s00572-015-0654-3

    Article  CAS  Google Scholar 

  • Zolla G, Badri DV, Bakker MG, Manter DK, Vivanco JM (2013) Soil microbiomes vary in their ability to confer drought tolerance to Arabidopsis. Appl Soil Ecol 68:1–9. https://doi.org/10.1016/j.apsoil.2013.03.007

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the DST-PURSE facility, Madurai Kamaraj University for providing internet facility and RUSA (MHRD) programs.

Author Contributions

All authors listed have made a considerable intellectual contribution to this chapter and approved it for publication.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Natesan, S., Rajaram, S., Manoharan, D., Ramachandran, T. (2023). The Beneficial Plant Microbial Association for Sustainable Agriculture. In: Chhabra, S., Prasad, R., Maddela, N.R., Tuteja, N. (eds) Plant Microbiome for Plant Productivity and Sustainable Agriculture . Microorganisms for Sustainability, vol 37. Springer, Singapore. https://doi.org/10.1007/978-981-19-5029-2_7

Download citation

Publish with us

Policies and ethics

Navigation