Phytoremediation of Toxic Metals in Soils and Wetlands: Concepts and Applications

  • Chapter
Environmental Remediation Technologies for Metal-Contaminated Soils

Abstract

Over centuries, industrial, mining and military activities, agriculture, farming, and waste practices have contaminated soils and wetlands in many countries with high concentrations of toxic metals. In addition to their negative effects on ecosystems and other natural resources, toxic metals pose a great danger to human health. Unlike organic compounds, metals cannot be degraded, and clean-up usually requires their removal. Most of the conventional remedial methods have lost economic favor and public acceptance because they are expensive and cause degradation of soil fertility that subsequently results in adverse impacts on the ecosystem. Conventional methods of environmental remediation do not solve the problem; rather they merely transfer it to future generation. Obviously, there is an urgent need for alternative, cheap, and efficient methods to clean-up sites contaminated with toxic metals.

Phytoremediation, a plant-based green technology, is cost effective, environmental friendly, aesthetically pleasing approach for the remediation of toxic metals. Due to its elegance and the extent of contaminated areas, phytoremediation approaches have already received significant scientific and commercial attention. Two approaches have been proposed for the phytoremediation of toxic metals from soils and wetlands: natural and induced phytoremediation. Natural phytoremediation refers to the use of hyper-accumulating plants and associated soil microbes, while the induced phytoremediation refers to the use chemicals, especially synthetic chelating ligands, for the increase of metal bioavailability and uptake in plants. Recently, genetically modified plants (GMPs) have been proposed to use in phytoremediation technology; however, this approach is being hindered by ideology-driven restrictive legislation over the use of GMPs. We will discuss the concepts and practical applications of phytoremediation technologies for the restoration of contaminated soils and wetlands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abhilash PC, Pandey VC, Srivastava P, Rakesh PS, Chandran S, Singh N, Thomas AP (2009) Phytofiltration of cadmium from water by Limnocharis flava (L.). Buchenau grown in free-floating culture system. J Hazard Mater 170:791–797

    Article  CAS  Google Scholar 

  • Adesodun JK, Atayese MO, Agbaje TA, Osadiaye BA, Mafe O, Soretire AA (2010) Phytoremediation potentials of sunflowers (Tithonia diversifolia and Helianthus annuus) for metals in soils contaminated with zinc and lead nitrates. Water Air Soil Pollut 207:195–201

    Article  CAS  Google Scholar 

  • Adriano DC (ed) (2001) Trace elements in the terestrial environment. Springer, New york

    Google Scholar 

  • Åkesson A, Julin B, Wolk A (2008) Long-term dietary cadmium intake and postmenopausal endometrial cancer incidence: a population-based prospective cohort study. Cancer Res 68:6435–6441

    Article  CAS  Google Scholar 

  • Al Jassir MS, Shaker A, Khaliq MA (2005) Deposition of heavy metals on green leafy vegerables sold on roadsides of Riyadh City. Saudi Arab Bull Environ Contam Toxicol 75:1020–1027

    Article  CAS  Google Scholar 

  • Alam B, Chatterjee AK, Duttagupta S (1995) Bioaccumulation of Cd(II) by water lettuce. Pollut Res 14:59–64

    CAS  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals-concepts and applications. Chemosphere 91:869–881

    Article  CAS  Google Scholar 

  • Allen RD (1995) Dissection of oxidative stress tolerance using transgenic plants. Plant Physiol 107:1049

    CAS  Google Scholar 

  • Alvarado S, Guédez M, Lué-Merú MP, Nelson G, Alvaro A, Jesús AC, Gyula Z (2008) Arsenic removal from waters by bioremediation with the aquatic plants water hyacinth (Eichhornia crassipes) and lesser duckweed (Lemna minor). Bioresour Technol 99:8436–8440

    Article  CAS  Google Scholar 

  • Anderson CWN, Brooks RR, Chiarucci A, Lacoste CJ, Leblanc M, Robinson BH, Simcock R, Stewart RB (1999) Phytomining for nickel, thallium and gold. J Geochem Explor 67:407–415

    Article  CAS  Google Scholar 

  • Assunção AGL, Schat H, Aarts MGM (2003) Thlaspi caerulescens, an attractive model species to study heavy metal hyperaccumulation in plants. New Phytol 159:351–360

    Article  CAS  Google Scholar 

  • Augustynowicz J, Grosicki M, Hanus-Fajerska E, Lekka M, Waloszek A, Koloczek H (2010) Chromium(VI) bioremediation by aquatic macrophyte Callitriche cophocarpa Sendtn. Chemosphere 79:1077–1083

    Article  CAS  Google Scholar 

  • Axtell NR, Sternberg SPK, Claussen K (2003) Lead and nickel removal using Microspora and Lemna minor. Bioresour Technol 89:41–48

    Article  CAS  Google Scholar 

  • Baker AJM, Mcgrath SP, Reeves RD, Smith JAC (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biochemical resource for phytoremediation of metal-polluted soils. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soil and water. Lewis Publication, Boca Raton

    Google Scholar 

  • Baldantoni D, Ligrone R, Alfani A (2009) Macro- and trace-element concentrations in leaves and roots of Phragmites australis in a volcanic lake in Southern Italy. J Geochem Explor 101:166–174

    Article  CAS  Google Scholar 

  • Banerjee G, Sarker S (1997) The role of Salvinia rotundifolia in scavenging aquatic Pb(II) pollution: a case study. Bioprocess Eng 17:295–300

    CAS  Google Scholar 

  • Bender J, Lee RF, Phillips P (1995) Uptake and transformation of metals and metalloids by microbial mats and their use in bioremediation. J Ind Microbiol 14:113–118

    Article  CAS  Google Scholar 

  • Bennett LE, Burkhead JL, Hale KL, Terry N, Pilon M, Pilon-Smits EAH (2003) Analysis of transgenic Indian mustard plants for phytoremediation of metal-contaminated mine tailings. J Environ Qual 32:432–440

    Article  CAS  Google Scholar 

  • Bizily SP, Rugh CL, Summers AO, Meagher RB (1999) Phytoremediation of methylmercury pollution: merB expression in Arabidopsis thaliana confers resistance to organomercurials. Proc Natl Acad Sci 96:6808–6813

    Article  CAS  Google Scholar 

  • Blaylock MJ, Haung JW (1999) Phytoextraction of metals. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York

    Google Scholar 

  • Blaylock MJ, Salt DE, Dushenkov S, Zakharova O, Gussman C, Kapulnik Y, Ensley BD, Raskin I (1997) Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ Sci Technol 31:860–865

    Article  Google Scholar 

  • Blute NK, Brabander DJ, Hemond HF, Sutton SR, Newville MG, Rivers ML (2004) Arsenic sequestration by ferric iron plaque on cattail roots. Environ Sci Technol 38:6074–6077

    Article  CAS  Google Scholar 

  • Bodar CWM, Pronk MEJ, Sijm DTHM (2005) The european union risk assessment on zinc and zinc compounds: the process and the facts. Integr Environ Assess Manag 1:301–319

    Article  CAS  Google Scholar 

  • Borišev M, Pajević S, Nikolić N, Pilipović A, Krstić B, Orlović S (2009) Phytoextraction of Cd, Ni, and Pb using four willow clones (Salix spp.). Pol J Environ Stud 18:553

    Google Scholar 

  • Brooks RR, Robinson BH (1998) Aquatic phytoremediation by accumulator plants. In: Brooks RR (ed) Plants that hyperaccumulate heavy metals: their role in archaeology, microbiology, mineral exploration, phytomining and phytoremediation. CAB International, Wallingford

    Google Scholar 

  • Brooks RR, Chambers MF, Nicks LJ, Robinson BH (1998) Phytomining. Trends Plant Sci 3:359–362

    Article  Google Scholar 

  • Brunner I, Luster J, Günthardt-Goerg MS, Frey B (2008) Heavy metal accumulation and phytostabilisation potential of tree fine roots in a contaminated soil. Environ Pollut 152:559–568

    Article  CAS  Google Scholar 

  • Cardwell AJ, Hawker DW, Greenway M (2002) Metal accumulation in aquatic macrophytes from southeast Queensland, Australia. Chemosphere 48:653–663

    Article  CAS  Google Scholar 

  • Chandra P, Kulshreshtha K (2004) Chromium accumulation and toxicity in aquatic vascular plants. Bot Rev 70:313–327

    Article  Google Scholar 

  • Chaney RL, Malik M, Li YM, Brown SL, Brewer EP, Angle JS, Baker AJM (1997) Phytoremediation of soil metals. Curr Opin Biotechnol 8:279–284

    Article  CAS  Google Scholar 

  • Cheng S, Grosse W, Karrenbrock F, Thoennessen M (2002) Efficiency of constructed wetlands in decontamination of water polluted by heavy metals. Ecol Eng 18:317–325

    Article  Google Scholar 

  • Cherian S, Oliveira MM (2005) Transgenic plants in phytoremediation: recent advances and new possibilities. Environ Sci Technol 39:9377–9390

    Article  CAS  Google Scholar 

  • Choo TP, Lee CK, Low KS, Hishamuddin O (2006) Accumulation of chromium(VI) from aqueous solutions using water lilies (Nymphaea spontanea). Chemosphere 62:961–967

    Article  CAS  Google Scholar 

  • Clemens S (2001) Develo** tools for phytoremediation: towards a molecular understanding of plant metal tolerance and accumulation. Int J Occup Med Environ Health 14:235–239

    CAS  Google Scholar 

  • Clemens S, Palmgren MG, Krämer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7:309–315

    Article  CAS  Google Scholar 

  • Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:825–832

    Article  CAS  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182

    Article  CAS  Google Scholar 

  • Conesa HM, Faz Á, Arnaldos R (2007) Initial studies for the phytostabilization of a mine tailing from the Cartagena-La Union Mining District (SE Spain). Chemosphere 66:38–44

    Article  CAS  Google Scholar 

  • Cooper EM, Sims JT, Cunningham SD, Huang JW, Berti WR (1999) Chelate-assisted phytoextraction of lead from contaminated soils. J Environ Qual 28:1709–1719

    Article  CAS  Google Scholar 

  • Cordes KB, Mehra A, Farago ME, Banerjee DK (2000) Uptake of Cd, Cu, Ni and Zn by the water hyacinth, Eichhornia crassipes (Mart.) solms from pulverised fuel ash (PFA) leachates and slurries. Environ Geochem Health 22:297–316

    Article  CAS  Google Scholar 

  • Cunningham SD, Berti WR (2000) Phytoextraction and phytostabilization: technical, cconomic, and regulatory considerations of the soil–lead issue. In: Terry N, Bañuelos G (eds) Phytoremediation of contaminated soil and water. Taylor & Francis, Boca Raton

    Google Scholar 

  • Cunningham SD, Ow DW (1996) Promises and prospects of phytoremediation. Plant Physiol 110:715–719

    CAS  Google Scholar 

  • Del Río M, Font R, Almela C, Vélez D, Montoro R, De Haro Bailón A (2002) Heavy metals and arsenic uptake by wild vegetation in the Guadiamar river area after the toxic spill of the Aznalcóllar mine. J Biotechnol 98:125–137

    Article  Google Scholar 

  • Delgado M, Bigeriego M, Guardiola E (1993) Uptake of Zn, Cr and Cd by water hyacinths. Water Res 27:269–272

    Article  CAS  Google Scholar 

  • Demirezen D, Aksoy A (2004) Accumulation of heavy metals in Typha angustifolia (L.) and Potamogeton pectinatus (L.) living in Sultan Marsh (Kayseri, Turkey). Chemosphere 56:685–696

    Article  CAS  Google Scholar 

  • Demirezen D, Aksoy A (2006) Heavy metal levels in vegetables in Turkey are within safe limits for Cu, Zn, Ni and exceeded for Cd and Pb. J Food Qual 29:252–265

    Article  CAS  Google Scholar 

  • Demirezen D, Aksoy A, Uruç K (2007) Effect of population density on growth, biomass and nickel accumulation capacity of Lemna gibba (Lemnaceae). Chemosphere 66:553–557

    Article  CAS  Google Scholar 

  • Deng H, Ye ZH, Wong MH (2004) Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China. Environ Pollut 132:29–40

    Article  CAS  Google Scholar 

  • Dhir B (2009) Salvinia: an aquatic fern with potential use in phytoremediation. Environ We Int J Sci Technol 4:23–27

    Google Scholar 

  • Dietz AC, Schnoor JL (2001) Advances in phytoremediation. Environ Health Perspect 109:163–168

    Article  CAS  Google Scholar 

  • Dixit S, Dhote S (2010) Evaluation of uptake rate of heavy metals by Eichhornia crassipes and Hydrilla verticillata. Environ Monit Assess 169:367–374

    Article  CAS  Google Scholar 

  • Dogan M, Saygideger S, Colak U (2009) Effect of lead toxicity on aquatic macrophyte Elodea canadensis Michx. Bull Environ Contam Toxicol 83:249–254

    Article  CAS  Google Scholar 

  • Dushenkov V, Kumar PBAN, Motto H, Raskin I (1995) Rhizofiltration: the use of plants to remove heavy metals from aqueous streams. Environ Sci Technol 29:1239–1245

    Article  CAS  Google Scholar 

  • EC (1986) On the protection of the environment, and in particular of the soil, when sewage sludge is used in agriculture. In: EC (ed) Council directive 86/278/EEC, In: EC Official Journal L181. European Community, Brussels

    Google Scholar 

  • EC (2004) Communication from the Commission to the Council, the European Parliament, the European Economic and Social Committee and the Committee of the Regions: towards a thematic strategy on the urban environment. In: EC (ed) COM(2004)60 final. Commission of the European Communities, Brussels

    Google Scholar 

  • EEA (2003) Europe’s environment: the third assessment. European Environment Agency, Copenhagen

    Google Scholar 

  • Egli T (2001) Biodegradation of metal-complexing aminopolycarboxylic acids. J Biosci Bioeng 92:89–97

    Article  CAS  Google Scholar 

  • Elayan NMS (1999) Phytoremediation of arsenic and lead from contaminated waters by the emergent aquatic macrophyte Althernanthera philoxeroides (alligatorweed). Southern University, Louisiana, USA

    Google Scholar 

  • Elliott HA, Brown GA (1989) Comparative evaluation of NTA and EDTA for extractive decontamination of Pb-polluted soils. Water Air Soil Pollut 45:361–369

    Article  CAS  Google Scholar 

  • Erakhrumen A, Agbontalor A (2007) Phytoremediation: an environmentally sound technology for pollution prevention, control and remediation in develo** countries. Educ Res Rev 7:151–156

    Google Scholar 

  • Espinoza-Quiñones F, Da Silva E, De Almeida Rizzutto M, Palácio S, Módenes A, Szymanski N, Martin N, Kroumov A (2008) Chromium ions phytoaccumulation by three floating aquatic macrophytes from a nutrient medium. World J Microbiol Biotechnol 24:3063–3070

    Article  CAS  Google Scholar 

  • Espinoza-Quiñones F, Módenes A, Costa I, Palácio S, Szymanski N, Trigueros D, Kroumov A, Silva E (2009) Kinetics of lead bioaccumulation from a hydroponic medium by aquatic macrophytes Pistia stratiotes. Water Air Soil Pollut 203:29–37

    Article  CAS  Google Scholar 

  • Evangelou MWH, Ebel M, Schaeffer A (2007) Chelate assisted phytoextraction of heavy metals from soil. Effect, mechanism, toxicity, and fate of chelating agents. Chemosphere 68:989–1003

    Article  CAS  Google Scholar 

  • Flathman PE, Lanza GR (1998) Phytoremediation: current views on an emerging green technology. J Soil Contam 7:415–432

    Article  Google Scholar 

  • Fritioff A, Greger M (2003) Aquatic and terrestrial plant species with potential to remove heavy metals from stormwater. Int J Phytorem 5:211–224

    Article  CAS  Google Scholar 

  • Fritioff A, Greger M (2006) Uptake and distribution of Zn, Cu, Cd, and Pb in an aquatic plant Potamogeton natans. Chemosphere 63:220–227

    Article  CAS  Google Scholar 

  • Gaetke LM, Chow CK (2003) Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 189:147–163

    Article  CAS  Google Scholar 

  • Galletti A, Verlicchi P, Ranieri E (2010) Removal and accumulation of Cu, Ni and Zn in horizontal subsurface flow constructed wetlands: contribution of vegetation and filling medium. Sci Total Environ 408:5097–5105

    Article  CAS  Google Scholar 

  • Gallon C, Munger C, Premont S, Campbell PGC (2004) Hydroponic study of aluminum accumulation by aquatic plants: effects of fluoride and pH. Water Air Soil Pollut 153:135–155

    Article  CAS  Google Scholar 

  • Gardea-Torresdey JL, Gonzalez JH, Tiemann KJ, Rodriguez O, Gamez G (1998) Phytofiltration of hazardous cadmium, chromium, lead and zinc ions by biomass of Medicago sativa (Alfalfa). J Hazard Mater 57:29–39

    Article  CAS  Google Scholar 

  • Gardea-Torresdey JL, De La Rosa G, Peralta-Videa JR (2004) Use of phytofiltration technologies in the removal of heavy metals: a review. Pure Appl Chem 76:801–813

    Article  CAS  Google Scholar 

  • Ghassemzadeh F, Yousefzadeh H, Arbab-Zavar MH (2008) Arsenic phytoremediation by Phragmites australis: green technology. Int J Environ Stud 65:587–594

    Article  CAS  Google Scholar 

  • Ghosh S (2010) Wetland macrophytes as toxic metal accumulators. Int J Environ Sci 1:523–528

    Google Scholar 

  • Gleba D, Borisjuk NV, Borisjuk LG, Kneer R, Poulev A, Skarzhinskaya M, Dushenkov S, Logendra S, Gleba YY, Raskin I (1999) Use of plant roots for phytoremediation and molecular farming. Proc Natl Acad Sci 96:5973–5977

    Article  CAS  Google Scholar 

  • Glover-Kerkvliet J (1995) Environmental assault on immunity. Environ Health Perspect 103:236–239

    Article  CAS  Google Scholar 

  • Goncalves EP, Boaventura RAR (1998) Uptake and release kinetics of copper by the aquatic moss Fontinalis antipyretica. Water Res 32:1305–1313

    Article  CAS  Google Scholar 

  • Göthberg A, Greger M, Bengtsson BE (2002) Accumulation of heavy metals in water spinach (Ipomoea aquatica) cultivated in the Bangkok region, Thailand. Environ Toxicol Chem 21:1934–1939

    Article  Google Scholar 

  • Göthberg A, Greger M, Holm K, Bengtsson BE (2004) Influence of nutrient levels on uptake and effects of mercury, cadmium, and lead in water spinach. J Environ Qual 33:1247–1255

    Article  Google Scholar 

  • Grčman H, Velikonja-Bolta Š, Vodnik D, Kos B, Leštan D (2001) EDTA enhanced heavy metal phytoextraction: metal accumulation, leaching and toxicity. Plant Soil 235:105–114

    Article  Google Scholar 

  • Greger M, Landberg T (1999) Use of willow in phytoextraction. Int J Phytorem 1:115–123

    Article  CAS  Google Scholar 

  • Guerinot ML, Salt DE (2001) Fortified foods and phytoremediation. Two sides of the same coin. Plant Physiol 125:164–167

    Article  CAS  Google Scholar 

  • Gulz PA, Gupta S-K, Schulin R (2005) Arsenic accumulation of common plants from contaminated soils. Plant Soil 272:337–347

    Article  CAS  Google Scholar 

  • Gupta M, Chandra P (1998) Bioaccumulation and toxicity of mercury in rooted-submerged macrophyte Vallisneria spiralis. Environ Pollut 103:327–332

    Article  CAS  Google Scholar 

  • Ha NTH, Sakakibara M, Sano S (2009a) Phytoremediation of Sb, As, Cu, and Zn from contaminated water by the aquatic macrophyte Eleocharis acicularis. Clean: Soil, Air, Water 37:720–725

    Google Scholar 

  • Ha NTH, Sakakibara M, Sano S, Hori RS, Sera K (2009b) The potential of Eleocharis acicularis for phytoremediation: case study at an abandoned mine site. Clean: Soil, Air, Water 37:203–208

    CAS  Google Scholar 

  • Ha NTH, Sakakibara M, Sano S (2011) Accumulation of Indium and other heavy metals by Eleocharis acicularis: an option for phytoremediation and phytomining. Bioresour Technol 102:2228–2234

    Article  CAS  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Article  CAS  Google Scholar 

  • Hammond-Kosack KE, Jones J (1996) Resistance gene-dependent plant defense responses. Plant Cell 8:1773

    Article  CAS  Google Scholar 

  • Hasan SH, Talat M, Rai S (2007) Sorption of cadmium and zinc from aqueous solutions by water hyacinth (Eichchornia crassipes). Bioresour Technol 98:918–928

    Article  CAS  Google Scholar 

  • Heaton AC, Rugh CL, Wang N-J, Meagher RB (1998) Phytoremediation of mercury-and methylmercury-polluted soils using genetically engineered plants. J Soil Contam 7:497–509

    Article  CAS  Google Scholar 

  • Henry JR (2000) An overview of phytoremediation of lead and mercury. U.S. Environmental Protection Agency, Washington, DC

    Google Scholar 

  • Hernández-Ochoa I, García-Vargas G, López-Carrillo L, Rubio-Andrade M, Morán-Martínez J, Cebrián ME, Quintanilla-Vega B (2005) Low lead environmental exposure alters semen quality and sperm chromatin condensation in northern Mexico. Reprod Toxicol 20:221–228

    Article  CAS  Google Scholar 

  • Hillel D (2005) Heavy metals. In: Adriano DC, Bolan NS, Vangronsveld J, Wenzel WW (eds) Encyclopedia of soils in the environment. Elsevier, Amsterdam

    Google Scholar 

  • Hoffmann T, Kutter C, Santamaria J (2004) Capacity of Salvinia minima Baker to tolerate and accumulate As and Pb. Eng Life Sci 4:61–65

    Article  CAS  Google Scholar 

  • Hou WH, Chen X, Song GL, Wang QH, Chang CC (2007) Effects of copper and cadmium on heavy metal polluted waterbody restoration by duckweed (Lemna minor). Plant Physiol Biochem 45:62–69

    Article  CAS  Google Scholar 

  • Hozhina EI, Khramov AA, Gerasimov PA, Kumarkov AA (2001) Uptake of heavy metals, arsenic, and antimony by aquatic plants in the vicinity of ore mining and processing industries. J Geochem Explor 74:153–162

    Article  CAS  Google Scholar 

  • Hu MH, Ao YS, Yang XE, Li TQ (2008) Treating eutrophic water for nutrient reduction using an aquatic macrophyte (Ipomoea aquatica Forsskal) in a deep flow technique system. Agric Water Manag 95:607–615

    Article  Google Scholar 

  • Huang JW, Chen J, Berti WB, Cunningham SD (1997) Phytoremediation of lead-contaminated soils: role of synthetic chelates in lead phytoextraction. Environ Sci Technol 31:800–805

    Article  CAS  Google Scholar 

  • Huang JW, Poynton CY, Kochian LV, Elless MP (2004) Phytofiltration of arsenic from drinking water using arsenic-hyperaccumulating ferns. Environ Sci Technol 38:3412–3417

    Article  CAS  Google Scholar 

  • Huebert DB, Shay JM (1992) Zinc toxicity and its interaction with cadmium in the submerged aquatic macrophyte Lemna trisulca L. Environ Toxicol Chem 11:715–720

    CAS  Google Scholar 

  • Hughes MF (2002) Arsenic toxicity and potential mechanisms of action. Toxicol Lett 133:1–16

    Article  CAS  Google Scholar 

  • Hutchinson GE (1975) A treatise on limnology. Wiley, London

    Google Scholar 

  • Ingole NW, Ting JP (2002) Study on nutrient removal potential of selected aquatic macrophytes. J Inst Eng (India) Environ Eng Div 83:1–6

    Google Scholar 

  • Islam E, Yang X-E, He Z-L, Mahmood Q (2007) Assessing potential dietary toxicity of heavy metals in selected vegetables and food crops. J Zhejiang Univ (Sci B) 8:1–13

    Article  CAS  Google Scholar 

  • Jabeen R, Ahmad A, Iqbal M (2009) Phytoremediation of heavy metals: physiological and molecular mechanisms. Bot Rev 75:339–364

    Article  Google Scholar 

  • Jayaweera MW, Kasturiarachchi JC, Kularatne RKA, Wijeyekoon SLJ (2007) Removal of aluminium by constructed wetlands with water hyacinth (Eichhornia crassipes (Mart.) Solms) grown under different nutritional conditions. J Environ Sci Health A Tox Hazard Subst Environ Eng 42:185–193

    Article  CAS  Google Scholar 

  • Jayaweera MW, Kasturiarachchi JC, Kularatne RKA, Wijeyekoon SLJ (2008) Contribution of water hyacinth (Eichhornia crassipes (Mart.) Solms) grown under different nutrient conditions to Fe-removal mechanisms in constructed wetlands. J Environ Manag 87:450–460

    Article  CAS  Google Scholar 

  • Junior ACG, Lindino CA, Da Rosa MF, Bariccatti R, Gomes GD (2008) Removal of toxic heavy metals cadmium, lead and chromium from swine biofertilizer, using an aquatic macrophyte (Eichornia crassipes) as a bioindicator. Acta Sci Technol 30:9–14

    Google Scholar 

  • Kamal M, Ghaly AE, Mahmoud N, Cote R (2004) Phytoaccumulation of heavy metals by aquatic plants. Environ Int 29:1029–1039

    Article  CAS  Google Scholar 

  • Kara Y (2004) Bioaccumulation of copper from contaminated wastewater by using Lemna minor. Bull Environ Contam Toxicol 72:467–471

    Article  CAS  Google Scholar 

  • Kara Y (2005) Bioaccumulation of Cu, Zn and Ni from the wastewater by treated Nasturtium officinale. Int J Environ Sci Technol 2:63–67

    Article  CAS  Google Scholar 

  • Kedziorek MAM, Dupuy A, Bourg ACM, Compère F (1998) Leaching of Cd and Pb from a polluted soil during the percolation of EDTA: laboratory column experiments modeled with a non-equilibrium solubilization step. Environ Sci Technol 32:1609–1614

    Article  CAS  Google Scholar 

  • Keskinkan O, Goksu MZL, Yuceer A, Basibuyuk M, Forster CF (2003) Heavy metal adsorption characteristics of a submerged aquatic plant (Myriophyllum spicatum). Process Biochem 39:179–183

    Article  CAS  Google Scholar 

  • Keskinkan O, Goksu MZL, Basibuyuk M, Forster CF (2004) Heavy metal adsorption properties of a submerged aquatic plant (Ceratophyllum demersum). Bioresour Technol 92:197–200

    Article  CAS  Google Scholar 

  • Kłos A, Czora M, Rajfur M, Wacławek M (2012) Mechanisms for translocation of heavy metals from soil to epigeal mosses. Water Air Soil Pollut 223:1829–1836

    Article  CAS  Google Scholar 

  • Kos B, Lestan D (2004) Chelator induced phytoextraction and in situ soil washing of Cu. Environ Pollut 132:333–339

    Article  CAS  Google Scholar 

  • Kraemer U (2003) Phytoremediation to phytochelatin–plant trace metal homeostasis. New Phytol 158:4–6

    Article  Google Scholar 

  • Kuiper I, Lagendijk EL, Bloemberg GV, Lugtenberg BJJ (2004) Rhizoremediation: a beneficial plant-microbe interaction. Mol Plant-Microbe Interact 17:6–15

    Article  CAS  Google Scholar 

  • Lee CK, Low KS, Hew NS (1991) Accumulation of arsenic by aquatic plants. Sci Total Environ 103:215–227

    Article  CAS  Google Scholar 

  • Lesage E, Mundia C, Rousseau DPL, Van De Moortel AMK, Du Laing G, Meers E, Tack FMG, De Pauw N, Verloo MG (2007) Sorption of Co, Cu, Ni and Zn from industrial effluents by the submerged aquatic macrophyte Myriophyllum spicatum L. Ecol Eng 30:320–325

    Article  Google Scholar 

  • Leštan D, Luo C-L, Li X-D (2008) The use of chelating agents in the remediation of metal-contaminated soils: a review. Environ Pollut 153:3–13

    Article  CAS  Google Scholar 

  • Li X, Poon C-S, Liu PS (2001) Heavy metal contamination of urban soils and street dusts in Hong Kong. Appl Geochem 16:1361–1368

    Article  CAS  Google Scholar 

  • Li JT, Liao B, Lan CY, Ye ZH, Baker AJM, Shu WS (2010) Cadmium tolerance and accumulation in cultivars of a high-biomass tropical tree (Averrhoa carambola) and its potential for phytoextraction. J Environ Qual 39:1262–1268

    Article  CAS  Google Scholar 

  • Liao S-W, Chang W-L (2004) Heavy metal phytoremediation by water hyacinth at constructed wetlands in Taiwan. J Aquat Plant Manag 42:60–68

    Google Scholar 

  • Liu J, Dong Y, Xu H, Wang D, Xu J (2007) Accumulation of Cd, Pb and Zn by 19 wetland plant species in constructed wetland. J Hazard Mater 147:947–953

    Article  CAS  Google Scholar 

  • Liu JG, Li GH, Shao WC, Xu JK, Wang DK (2010) Variations in uptake and translocation of copper, chromium and nickel among nineteen wetland plant species. Pedosphere 20:96–103

    Article  CAS  Google Scholar 

  • Lone MI, He Z-L, Stoffella PJ, Yang X-E (2008) Phytoremediation of heavy metal polluted soils and water: progresses and perspectives. J Zhejiang Univ Sci B 9:210–220

    Article  CAS  Google Scholar 

  • Low KS, Lee CK, Tai CH (1994) Biosorption of copper by water hyacinth roots. J Environ Sci Health, Part A: Environ Sci Eng 29:171–188

    Google Scholar 

  • Luo C, Shen Z, Li X (2005) Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS. Chemosphere 59:1–11

    Article  CAS  Google Scholar 

  • Luo C, Shen Z, Li X, Baker AJM (2006) Enhanced phytoextraction of Pb and other metals from artificially contaminated soils through the combined application of EDTA and EDDS. Chemosphere 63:1773–1784

    Article  CAS  Google Scholar 

  • Lytle CM, Lytle PW, Yang N, Qian JH, Hansen D, Zayed A, Terry N (1998) Reduction of Cr(VI) to Cr(III) by wetland plants: potential for in situ heavy metal detoxification. Environ Sci Technol 32:3087–3093

    Article  CAS  Google Scholar 

  • Ma LQ, Komar KM, Tu C, Zhang W, Cai Y (2001) A fern that hyperaccumulates arsenic. Nature (London) 409:579

    Article  CAS  Google Scholar 

  • Macnair MR, Tilstone GH, Smith SE (2000) The genetics of metal tolerance and accumulation in higher plants. In: Terry N, Bañuelos G (eds) Phytoremediation of contaminated soil and water. Taylor & Francis, Boca Raton

    Google Scholar 

  • Maine MA, Suñé NL, Lagger SC (2004) Chromium bioaccumulation: comparison of the capacity of two floating aquatic macrophytes. Water Res 38:1494–1501

    Article  CAS  Google Scholar 

  • Mal TK, Adorjan P, Corbett AL (2002) Effect of copper on growth of an aquatic macrophyte, Elodea canadensis. Environ Pollut 120:307–311

    Article  CAS  Google Scholar 

  • Marchand L, Mench M, Jacob DL, Otte ML (2010) Metal and metalloid removal in constructed wetlands, with emphasis on the importance of plants and standardized measurements: a review. Environ Pollut 158:3447–3461

    Article  CAS  Google Scholar 

  • Marchiol L, Fellet G, Perosa D, Zerbi G (2007) Removal of trace metals by Sorghum bicolor and Helianthus annuus in a site polluted by industrial wastes: a field experience. Plant Physiol Biochem 45:379–387

    Article  CAS  Google Scholar 

  • Martins RJE, Boaventura RAR (2002) Uptake and release of zinc by aquatic bryophytes (Fontinalis antipyretica L. ex. Hedw.). Water Res 36:5005–5012

    Article  CAS  Google Scholar 

  • Mayes RA, Macintosh AW, Anderson VL (1977) Uptake of cadmium and lead by a rooted aquatic macrophyte (Elodea canadensis). Ecology 58:1176–1180

    Article  CAS  Google Scholar 

  • Mcgrath SP, Zhao F-J (2003) Phytoextraction of metals and metalloids from contaminated soils. Curr Opin Biotechnol 14:277–282

    Article  CAS  Google Scholar 

  • Mcintyre T (2003) Phytoremediation of heavy metals from soils. Phytoremediation. Springer, Berlin/Heidelberg

    Google Scholar 

  • Meagher RB (2000) Phytoremediation of toxic elemental and organic pollutants. Curr Opin Plant Biol 3:153–162

    Article  CAS  Google Scholar 

  • Means JL, Kucak T, Crerar DA (1980) Relative degradation rates of NTA, EDTA and DTPA and environmental implications. Environ Pollut Ser B Chem Phys 1:45–60

    Article  CAS  Google Scholar 

  • Meers E, Slycken SV, Adriaensen K, Ruttens A, Vangronsveld J, Laing GD, Witters N, Thewys T, Tack FMG (2010) The use of bio-energy crops (Zea mays) for ‘phytoremediation’ of heavy metals on moderately contaminated soils: a field experiment. Chemosphere 78:35–41

    Article  CAS  Google Scholar 

  • Mendez MO, Maier RM (2008) Phytostabilization of mine tailings in arid and semiarid environments-an emerging remediation technology. Environ Health Perspect 116:278–283

    Article  CAS  Google Scholar 

  • Mesjasz-Przybyłowicz J, Nakonieczny M, Migula P, Augustyniak M, Tarnawska M, Reimold W, Koeberl C, Przybyłowicz W, Głowacka E (2004) Uptake of cadmium, lead nickel and zinc from soil and water solutions by the nickel hyperaccumulator Berkheya coddii. Acta Biol Cracov Ser Bot 46:75–85

    Google Scholar 

  • Miretzky P, Saralegui A, Cirelli AF (2004) Aquatic macrophytes potential for the simultaneous removal of heavy metals (Buenos Aires, Argentina). Chemosphere 57:997–1005

    Article  CAS  Google Scholar 

  • Mishra S, Srivastava S, Tripathi RD, Kumar R, Seth CS, Gupta DK (2006) Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere 65:1027–1039

    Article  CAS  Google Scholar 

  • Mishra V, Upadhyay A, Pathak V, Tripathi B (2008) Phytoremediation of mercury and arsenic from tropical opencast coalmine effluent through naturally occurring aquatic macrophytes. Water Air Soil Pollut 192:303–314

    Article  CAS  Google Scholar 

  • Mkandawire M, Dudel EG (2005) Accumulation of arsenic in Lemna gibba L. (ducweed) in tailing waters of two abandoned uranium mining sites in Saxony, Germany. Sci Total Environ 336:81–89

    Article  CAS  Google Scholar 

  • Mkandawire M, Lyubun YV, Kosterin PV, Dudel EG (2004a) Toxicity of arsenic species to Lemna gibba L. and the influence of phosphate on arsenic bioavailability. Environ Toxicol 19:26–35

    Article  CAS  Google Scholar 

  • Mkandawire M, Taubert B, Dudel EG (2004b) Capacity of Lemna gibba L. (Duckweed) for uranium and arsenic phytoremediation in mine tailing waters. Int J Phytorem 6:347–362

    Article  CAS  Google Scholar 

  • Molisani MM, Rocha R, Machado W, Barreto RC, Lacerda LD (2006) Mercury contents in aquatic macrophytes from two reservoirs in the Paraíba do Sul: Guandú river system, SE Brazil. Braz J Biol 66:101–107

    Article  CAS  Google Scholar 

  • Mukhopadhyay S, Maiti SK (2010) Phytoremediation of metal enriched mine waste: a review. Glob J Environ Res 4:135–150

    CAS  Google Scholar 

  • Muramoto S, Oki Y (1983) Removal of some heavy metals from polluted water by water hyacinth (Eichhornia crassipes). Bull Environ Contam Toxicol 30:170–177

    Article  CAS  Google Scholar 

  • Newman LA, Reynolds CM (2004) Phytodegradation of organic compounds. Curr Opin Biotechnol 15:225–230

    Article  CAS  Google Scholar 

  • Nicks LJ, Chambers MF (1998) A pioneering study of the potential of phytomining for nickel. In: Brooks RR (ed) Plants that hyperaccumulate heavy metals. CAB International, Oxford

    Google Scholar 

  • Noctor G, Arisi A-CM, Jouanin L, Kunert KJ, Rennenberg H, Foyer CH (1998) Glutathione: biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants. J Exp Bot 49:623–647

    CAS  Google Scholar 

  • Nordberg GF (1996) Current issues in low-dose cadmium toxicology: nephrotoxicity and carcinogenicity. Environ Sci 4:133–147

    CAS  Google Scholar 

  • Nörtemann B (1999) Biodegradation of EDTA. Appl Microbiol Biotechnol 51:751–759

    Article  Google Scholar 

  • Norvell WA (1984) Comparison of chelating agents as extractants for metals in diverse soil materials. Soil Sci Soc Am J 48:1285–1292

    Article  CAS  Google Scholar 

  • Nowack B, Vanbriesen JM (2005) Chelating agents in the environment. In: Nowack B, Vanbriesen JM (eds) Biogeochemistry of chelating agents. American Chemical Society, Washington, DC

    Chapter  Google Scholar 

  • Odjegba VJ, Fasidi IO (2007) Phytoremediation of heavy metals by Eichhornia crassipes. Environmentalist 27:349–355

    Article  Google Scholar 

  • Olguin E, Rodriguez D, Sanchez G, Hernandez E, Ramirez M (2003) Productivity, protein content and nutrient removal from anaerobic effluents of coffee wastewater in Salvinia minima ponds, under subtropical conditions. Acta Biotechnol 23:259–270

    Article  CAS  Google Scholar 

  • Outridge PM, Noller BN (1991) Accumulation of toxic trace elements by freshwater vascular plants. Rev Environ Contam Toxicol 121:1–63

    CAS  Google Scholar 

  • Oviedo C, Rodríguez J (2003) EDTA: the chelating agent under environmental scrutiny. Quim Nova 26:901–905

    Article  CAS  Google Scholar 

  • Ow D, Shewry P, Napier J, Davis P (1998) Prospects of engineering heavy metal detoxification genes in plants. Symposium of the Industrial Biochemistry and Biotechnology Group of the Biochemical Society, Bristol

    Google Scholar 

  • Padmavathiamma PK, Li LY (2007) Phytoremediation technology: hyper-accumulation metals in plants. Water Air Soil Pollut 184:105–126

    Article  CAS  Google Scholar 

  • Palumbo AV, Lee SY, Boerman P (1994) The effect of media composition on EDTA degradation by Agrobacterium sp. Appl Biochem Biotechnol 45–46:811–822

    Article  Google Scholar 

  • Peng K, Luo C, Lou L, Li X, Shen Z (2008) Bioaccumulation of heavy metals by the aquatic plants Potamogeton pectinatus L. and Potamogeton malaianus Miq. and their potential use for contamination indicators and in wastewater treatment. Sci Total Environ 392:22–29

    Article  CAS  Google Scholar 

  • Peuke AD, Rennenberg H (2005a) Phytoremediation. EMBO Rep 6:497–501

    Article  CAS  Google Scholar 

  • Peuke AD, Rennenberg H (2005b) Phytoremediation with transgenic trees. Z Naturforsch C 60c:199–207

    Google Scholar 

  • Pillay AE, Williams JR, El Mardi MO, Al-Lawati SMH, Al-Hadabbi MH, Al-Hamdi A (2003) Risk assessment of chromium and arsenic in date palm leaves used as livestock feed. Environ Int 29:541–545

    Article  CAS  Google Scholar 

  • Pilon-Smits E, Pilon M (2002) Phytoremediation of metals using transgenic plants. Crit Rev Plant Sci 21:439–456

    Article  CAS  Google Scholar 

  • Pinto E, Sigaud-Kutner T, Leitao MA, Okamoto OK, Morse D, Colepicolo P (2003) Heavy metal-induced oxidative stress in algae. J Phycol 39:1008–1018

    Article  CAS  Google Scholar 

  • Prasad MNV (2003) Phytoremediation of metal-polluted ecosystems: hype for commercialization. Russ J Plant Physiol 50:686–701

    Article  CAS  Google Scholar 

  • Prasad MNV (2004) Phytoremediation of metals in the environment for sustainable development. Proc Indian Natl Sci Acad Part B 70:71–98

    CAS  Google Scholar 

  • Pratas J, Favas P, Rodrigues N, Prasad M (2007) Arsenic accumulation in aquatic plants (Central Portugal). In: The 6th WSEAS international conference, 2007 Arcachon, World Science and Engineering Academy and Society (WSEAS), France, pp 73–76

    Google Scholar 

  • Qin J, Rosen BP, Zhang Y, Wang G, Franke S, Rensing C (2006) Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase. Proc Natl Acad Sci U S A 103:2075–2080

    Article  CAS  Google Scholar 

  • Qin J, Lehr CR, Yuan C, Le XC, Mcdermott TR, Rosen BP (2009) Biotransformation of arsenic by a Yellowstone thermoacidophilic eukaryotic alga. Proc Natl Acad Sci 106:5213–5217

    Article  CAS  Google Scholar 

  • Raab A, Feldmann J (2003) Microbial transformation of metals and metalloids. Sci Prog 86:179–202

    Article  CAS  Google Scholar 

  • Rafati M, Khorasani N, Moattar F, Shirvany A, Moraghebi F, Hosseinzadeh S (2011) Phytoremediation potential of Populus alba and Morus alba for cadmium, chromuim and nickel absorption from polluted soil. Int J Environ Res 5:961–970

    CAS  Google Scholar 

  • Rahman MA, Hasegawa H (2011) Aquatic arsenic: phytoremediation using floating macrophytes. Chemosphere 83:633–646

    Article  CAS  Google Scholar 

  • Rahman MA, Hassler C (2014) Is arsenic biotransformation a detoxification mechanism for microorganisms? Aquat Toxicol 146:212–219

    Article  CAS  Google Scholar 

  • Rahman MA, Hasegawa H, Ueda K, Maki T, Okumura C, Rahman MM (2007) Arsenic accumulation in duckweed (Spirodela polyrhiza L.): a good option for phytoremediation. Chemosphere 69:493–499

    Article  CAS  Google Scholar 

  • Rahman MA, Hasegawa H, Kitahara K, Maki T, Ueda K, Rahman MM (2008a) The effects of phosphorous on the accumulation of arsenic in water fern (Azolla pinnata L.). J Ecotechnol Res 14:21–24

    Google Scholar 

  • Rahman MA, Hasegawa H, Ueda K, Maki T, Rahman MM (2008b) Arsenic uptake by aquatic macrophyte Spirodela polyrhiza L.: interactions with phosphate and iron. J Hazard Mater 160:356–361

    Article  CAS  Google Scholar 

  • Rahman MA, Hasegawa H, Ueda K, Maki T, Rahman MM (2008c) Influence of phosphate and iron ions in selective uptake of arsenic species by water fern (Salvinia natans L.). Chem Eng J 145:179–184

    Article  CAS  Google Scholar 

  • Rahman MA, Ismail MMR, Rahman MM, Hasegawa H (2011) Arsenic in the environment: phytoremediation using aquatic macrophytes. In: Golubev IA (ed) Handbook of phytoremediation. Nova, Hauppauge

    Google Scholar 

  • Rai PK (2008a) Heavy metal pollution in aquatic ecosystems and its phytoremediation using wetland plants: an ecosustainable approach. Int J Phytorem 10:133–160

    Article  CAS  Google Scholar 

  • Rai PK (2008b) Phytoremediation of Hg and Cd from industrial effluents using an aquatic free floating macrophyte Azolla pinnata. Int J Phytorem 10:430–439

    Article  CAS  Google Scholar 

  • Rai PK, Tripathi BD (2009) Comparative assessment of Azolla pinnata and Vallisneria spiralis in Hg removal from G.B. Pant Sagar of Singrauli industrial region, India. Environ Monit Assess 148:75–84

    Article  CAS  Google Scholar 

  • Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180:169–181

    Article  CAS  Google Scholar 

  • Raskin I, Ensley BD (2000) Phytoremediation of toxic metals: using plants to clean up the environment. John Wiley & Sons, New York

    Google Scholar 

  • Rauser WE (1995) Phytochelatins and related peptides. Structure, biosynthesis, and function. Plant Physiol 109:1141–1149

    Article  CAS  Google Scholar 

  • Rauser WE (1999) Structure and function of metal chelators produced by plants. Cell Biochem Biophys 31:19–48

    Article  CAS  Google Scholar 

  • Reichman SR, Parker DR (2005) Metal complexation by phytosiderophores in the rhizosphere. In: Huang PM, Gobran GR (eds) Biogeochemistry of trace elements in the rhizophere. Elsevier, Toronto

    Google Scholar 

  • Robinson BH, Brooks RR, Howes AW, Kirkman JH, Gregg PEH (1997) The potential of the high-biomass nickel hyperaccumulator Berkheya coddii for phytoremediation and phytomining. J Geochem Explor 60:115–126

    Article  CAS  Google Scholar 

  • Robinson BH, Leblanc M, Petit D, Brooks RR, Kirkman JH, Gregg PEH (1998) The potential of Thlaspi caerulescens for phytoremediation of contaminated soils. Plant Soil 203:47–56

    Article  CAS  Google Scholar 

  • Robinson BH, Mills TM, Petit D, Fung LE, Green SR, Clothier BE (2000) Natural and induced cadmium-accumulation in poplar and willow: implications for phytoremediation. Plant Soil 227:301–306

    Article  CAS  Google Scholar 

  • Robinson B, Duwing C, Bolan N, Kannathasan M, Saravanan A (2003) Uptake of arsenic by New Zealand watercress (Lepidium sativum L.). Sci Total Environ 301:67–73

    Article  CAS  Google Scholar 

  • Robinson B, Marchetti M, Moni C, Schroeter L, Van Den Dijssel C, Milne G, Bolan N, Mahimairaja S (2005) Arsenic accumulation by aquatic and terrestrial plants. In: Naidu R, Smith E, Owens G, Bhattacharya P, Nadebaum P (eds) Managing arsenic in the environment: from soil to human health. CSIRO, Collingwood

    Google Scholar 

  • Robinson B, Kim N, Marchetti M, Moni C, Schroeter L, Van Den Dijssel C, Milne G, Clothier B (2006) Arsenic hyperaccumulation by aquatic macrophytes in the Taupo Volcanic Zone, New Zealand. Environ Exp Bot 58:206–215

    Article  CAS  Google Scholar 

  • Rugh CL, Senecoff JF, Meagher RB, Merkle SA (1998) Development of transgenic yellow poplar for mercury phytoremediation. Nat Biotechnol 16:925–928

    Article  CAS  Google Scholar 

  • Sakakibara M, Watanabe A, Inoue M, Sano S, Kaise T (2010) Phytoextraction and phytovolatili-zation of arsenic from as-contaminated soils by Pteris vittata. In: Proceedings of the annual international conference on soils, sediments, water and energy, vol 12, Article 26. Available at: http://scholarworks.umass.edu/soilsproceedings/vol12/iss1/26

  • Sakakibara M, Ohmori Y, Ha NTH, Sano S, Sera K (2011) Phytoremediation of heavy metal‐contaminated water and sediment by Eleocharis acicularis. Clean: Soil, Air, Water 39:735–741

    CAS  Google Scholar 

  • Salt DE, Blaylock M, Kumar NPBA, Dushenkov V, Ensley BD, Chet I, Raskin I (1995a) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Nat Biotechnol 13:468–474

    Article  CAS  Google Scholar 

  • Salt DE, Prince RC, Pickering IJ, Raskin I (1995b) Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiol 109:1427–1433

    CAS  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668

    Article  CAS  Google Scholar 

  • Sanchez-Galvan G, Monroy O, Gomez J, Olguin EJ (2008) Assessment of the hyperaccumulating lead capacity of Salvinia minima using bioadsorption and intracellular accumulation factors. Water Air Soil Pollut 194:77–90

    Article  CAS  Google Scholar 

  • Sasmaz A, Obek E, Hasar H (2008) The accumulation of heavy metals in Typha latifolia L. grown in a stream carrying secondary effluent. Ecol Eng 33:278–284

    Article  Google Scholar 

  • Schor-Fumbarov T, Keilin Z, Tel-Or E (2003) Characterization of cadmium uptake by the water lily Nymphaea aurora. Int J Phytorem 5:169–179

    Article  CAS  Google Scholar 

  • Sekara A, Poniedzialeek M, Ciura J, Jedrszczyk E (2005) Cadmium and lead accumulation and distribution in the organs of nine crops: implications for phytoremediation. Pol J Environ Stud 14:509–516

    CAS  Google Scholar 

  • Selvapathy P, Sreedhar P (1991) Heavy metals removal by water hyacinth. J Indian Publ Health Eng 3:11–17

    Google Scholar 

  • Sen AK, Bhattacharyya M (1993) Studies on uptake and toxic effects of lead on Salvinia natans. Indian J Environ Health 35:308–320

    CAS  Google Scholar 

  • Sen AK, Mondal NG (1987) Salvinia natans as the scavenger of Hg (II). Water Air Soil Pollut 34:439–446

    Article  CAS  Google Scholar 

  • Sen AK, Mondal NG (1990) Removal and uptake of copper (II) by Salvinia natans from wastewater. Water Air Soil Pollut 49:1–6

    Article  CAS  Google Scholar 

  • Seth CS (2012) A review on mechanisms of plant tolerance and role of transgenic plants in environmental clean-up. Bot Rev 78:32–62

    Article  Google Scholar 

  • Seth CS, Chaturvedi PK, Misra V (2007) Toxic effect of arsenate and cadmium alone and in combination on giant duckweed (Spirodela polyrrhiza L.) in response to its accumulation. Environ Toxicol 22:539–549

    Article  CAS  Google Scholar 

  • Seth CS, Kumar Chaturvedi P, Misra V (2008) The role of phytochelatins and antioxidants in tolerance to Cd accumulation in Brassica juncea L. Ecotoxicol Environ Saf 71:76–85

    Article  CAS  Google Scholar 

  • Sharma DC (2003) Concern over mercury pollution in India. Lancet 362:1050

    Article  Google Scholar 

  • Sharma RK, Agrawal M, Marshall FM (2008) Heavy metal (Cu, Zn, Cd and Pb) contamination of vegetables in urban India: a case study in Varanasi. Environ Pollut 154:254–263

    Article  CAS  Google Scholar 

  • Sheoran V, Sheoran A, Poonia P (2011) Role of hyperaccumulators in phytoextraction of metals from contaminated mining sites: a review. Crit Rev Environ Sci Technol 41:168–214

    Article  Google Scholar 

  • Singh R, Tripathi RD, Dwivedi S, Kumar A, Trivedi PK, Chakrabarty D (2010) Lead bioaccumulation potential of an aquatic macrophyte Najas indica are related to antioxidant system. Bioresour Technol 101:3025–3032

    Article  CAS  Google Scholar 

  • Sobolewski A (1999) A review of processes responsible for metal removal in wetlands treating contaminated mine drainage. Int J Phytorem 1:19–51

    Article  CAS  Google Scholar 

  • Song W-Y, Sohn EJ, Martinoia E, Lee YJ, Yang Y-Y, Jasinski M, Forestier C, Hwang I, Lee Y (2003) Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nat Biotechnol 21:914–919

    Article  CAS  Google Scholar 

  • Sood A, Uniyal PL, Prasanna R, Ahluwalia AS (2012) Phytoremediation potential of aquatic macrophyte, Azolla. Ambio 41:122–137

    Article  CAS  Google Scholar 

  • Sparks DL (2005) Toxic metals in the environment: the role of surfaces. Elements 1:193–197

    Article  CAS  Google Scholar 

  • Summers AO, Silver S (1978) Microbial transformations of metals. Ann Rev Microbiol 32:637–672

    Article  CAS  Google Scholar 

  • Sun B, Zhao FJ, Lombi E, Mcgrath SP (2001) Leaching of heavy metals from contaminated soils using EDTA. Environ Pollut 113:111–120

    Article  CAS  Google Scholar 

  • Suñe N, Sánchez G, Caffaratti S, Maine MA (2007) Cadmium and chromium removal kinetics from solution by two aquatic macrophytes. Environ Pollut 145:467–473

    Article  CAS  Google Scholar 

  • Taghavi S, Barac T, Greenberg B, Borremans B, Vangronsveld J, Van Der Lelie D (2005) Horizontal gene transfer to endogenous endophytic bacteria from poplar improves phytoremediation of toluene. Appl Environ Microbiol 71:8500–8505

    Article  CAS  Google Scholar 

  • Tandy S, Bossart K, Mueller R, Ritschel J, Hauser L, Schulin R, Nowack B (2004) Extraction of heavy metals from soils using biodegradable chelating agents. Environ Sci Technol 38:937–944

    Article  CAS  Google Scholar 

  • Tangahu BV, Sheikh Abdullah SR, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng 2011:31 pp. Article ID 939161. doi: 10.1155/2011/939161

    Google Scholar 

  • Tiedje JM (1975) Microbial degradation of ethylenediaminetetraacetate in soils and sediments. Appl Microbiol 30:327–329

    CAS  Google Scholar 

  • Tlustoš P, Száková J, Hrubý J, Hartman I, Najmanová J, Nedělník J, Pavlíková D, Batysta M (2006) Removal of As, Cd, Pb, and Zn from contaminated soil by high biomass producing plants. Plant Soil Environ 52:413–423

    Google Scholar 

  • Tong Y-P, Kneer R, Zhu Y-G (2004) Vacuolar compartmentalization: a second-generation approach to engineering plants for phytoremediation. Trends Plant Sci 9:7–9

    Article  CAS  Google Scholar 

  • Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A, Thewys T, Vassilev A, Meers E, Nehnevajova E (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res 16:765–794

    Article  CAS  Google Scholar 

  • Vardanyan LG, Ingole BS (2006) Studies on heavy metal accumulation in aquatic macrophytes from Sevan (Armenia) and Carambolim (India) lake systems. Environ Int 32:208–218

    Article  CAS  Google Scholar 

  • Vesk PA, Nockolds CE, Allaway WG (1999) Metal localization in water hyacinth roots from an urban wetland. Plant Cell Environ 22:149–158

    Article  Google Scholar 

  • Wagner GJ (1993) Accumulation of cadmium in crop plants and its consequences to human health. In: Donald LS (ed) Advances in agronomy. Academic, New York

    Google Scholar 

  • Wang KS, Huang LC, Lee HS, Chen PY, Chang SH (2008) Phytoextraction of cadmium by Ipomoea aquatica (water spinach) in hydroponic solution: effects of cadmium speciation. Chemosphere 72:666–672

    Article  CAS  Google Scholar 

  • Wang QA, Li Z, Cheng SP, Wu ZB (2010) Influence of humic acids on the accumulation of copper and cadmium in Vallisneria spiralis L. from sediment. Environ Earth Sci 61:1207–1213

    Article  CAS  Google Scholar 

  • Weis JS, Weis P (2004) Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environ Int 30:685–700

    Article  CAS  Google Scholar 

  • Wenzel WW, Unterbrunner R, Sommer P, Sacco P (2003) Chelate-assisted phytoextraction using canola (Brassica napus L.) in outdoors pot and lysimeter experiments. Plant Soil 249:83–96

    Article  CAS  Google Scholar 

  • Williams JB (2002) Phytoremediation in wetland ecosystems: progress, problems, and potential. Crit Rev Plant Sci 21:607–635

    Article  CAS  Google Scholar 

  • Williams LE, Pittman JK, Hall J (2000) Emerging mechanisms for heavy metal transport in plants. Biochim Biophys Acta Biomembr 1465:104–126

    Article  CAS  Google Scholar 

  • Wolff G, Assis LR, Pereira GC, Carvalho JG, Castro EM (2009) Effects of zinc toxicity on leaves of Salvinia auriculata cultivated in nutrient solution. Planta Daninha 27:133–137

    Article  Google Scholar 

  • Wolverton BC, Mcdonald RC (1978) Bioaccumulation and detection of trace levels of cadmium in aquatic systems by Eichhornia crassipes. Environ Health Perspect 27:161–164

    Article  CAS  Google Scholar 

  • Wu LH, Luo YM, **ng XR, Christie P (2004) EDTA-enhanced phytoremediation of heavy metal contaminated soil with Indian mustard and associated potential leaching risk. Agric Ecosyst Environ 102:307–318

    Article  CAS  Google Scholar 

  • Wu CH, Wood TK, Mulchandani A, Chen W (2006) Engineering plant-microbe symbiosis for rhizoremediation of heavy metals. Appl Environ Microbiol 72:1129–1134

    Article  CAS  Google Scholar 

  • Wu G, Kang H, Zhang X, Shao H, Chu L, Ruan C (2010) A critical review on the bio-removal of hazardous heavy metals from contaminated soils: issues, progress, eco-environmental concerns and opportunities. J Hazard Mater 174:1–8

    Article  CAS  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol 4:1–20. Article ID 402647. doi:10.5402/2011/402647

    Google Scholar 

  • **a HP (2004) Ecological rehabilitation and phytoremediation with four grasses in oil shale mined land. Chemosphere 54:345–353

    Article  CAS  Google Scholar 

  • Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76:167–179

    Article  CAS  Google Scholar 

  • Yadav R, Arora P, Kumar S, Chaudhury A (2010) Perspectives for genetic engineering of poplars for enhanced phytoremediation abilities. Ecotoxicology 19:1574–1588

    Article  CAS  Google Scholar 

  • Yang XE, Yang MJ (2001) Some mechanisms of zinc and cadmium detoxification in a zinc and cadmium hyperaccumulating plant species (Thlaspi). In: Orst W (ed) Plant nutrition-food security and sustainability of agro-ecosystems. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Yang J, Ye Z (2009) Metal accumulation and tolerance in wetland plants. Front Biol China 4:282–288

    Article  Google Scholar 

  • Ye ZH, Baker AJM, Wong MH, Willis AJ (1997) Copper and nickel uptake, accumulation and tolerance in Typha latifolia with and without iron plaque on the root surface. New Phytol 136:481–488

    Article  CAS  Google Scholar 

  • Ye Z, Baker AJM, Wong M-H, Willis AJ (1998) Zinc, lead and cadmium accumulation and tolerance in Typha latifolia as affected by iron plaque on the root surface. Aquat Bot 61:55–67

    Article  CAS  Google Scholar 

  • Yoon J, Cao X, Zhou Q, Ma LQ (2006) Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ 368:456–464

    Article  CAS  Google Scholar 

  • Zacchini M, Pietrini F, Mugnozza GS, Iori V, Pietrosanti L, Massacci A (2009) Metal tolerance, accumulation and translocation in poplar and willow clones treated with cadmium in hydroponics. Water Air Soil Pollut 197:23–34

    Article  CAS  Google Scholar 

  • Zenk MH (1996) Heavy metal detoxification in higher plants-a review. Gene 179:21–30

    Article  CAS  Google Scholar 

  • Zhang X, Lin A-J, Zhao F-J, Xu G-Z, Duan G-L, Zhu Y-G (2008) Arsenic accumulation by the aquatic fern Azolla: comparison of arsenate uptake, speciation and efflux by Azolla caroliniana and Azolla filiculoides. Environ Pollut 156:1149–1155

    Article  CAS  Google Scholar 

  • Zhang BY, Zheng JS, Sharp RG (2010) Phytoremediation in engineered wetlands: mechanisms and applications. Procedia Environ Sci 2:1315–1325

    Article  Google Scholar 

  • Zhu Y-G, Rosen BP (2009) Perspectives for genetic engineering for the phytoremediation of arsenic-contaminated environments: from imagination to reality? Curr Opin Biotechnol 20:220–224

    Article  CAS  Google Scholar 

  • Zhu YL, Zayed AM, Qian JH, De Souza M, Terry N (1999) Phytoaccumulation of trace elements by wetland plants: II. Water hyacinth. J Environ Qual 28:339–344

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Azizur Rahman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Japan

About this chapter

Cite this chapter

Rahman, M.A., Reichman, S.M., De Filippis, L., Tavakoly Sany, S.B., Hasegawa, H. (2016). Phytoremediation of Toxic Metals in Soils and Wetlands: Concepts and Applications. In: Hasegawa, H., Rahman, I., Rahman, M. (eds) Environmental Remediation Technologies for Metal-Contaminated Soils. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55759-3_8

Download citation

Publish with us

Policies and ethics

Navigation