Heterogeneous Nuclear Ribonucleoprotein Particle A/B Proteins and the Control of Alternative Splicing of the Mammalian Heterogeneous Nuclear Ribonucleoprotein Particle A1 Pre-mRNA

  • Chapter
Regulation of Alternative Splicing

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 31))

Abstract

Mammalian pre-messenger RNAs (pre-mRNAs) interact with a distinct set of proteins to form heterogeneous nuclear ribonucleoprotein particles (hnRNPs). More than 25 different hnRNP proteins have been found associated with these complexes (Piñol-Roma et al. 1988; Dreyfuss et al. 1993). The core hnRNP proteins A1, A2, B1, B2, C1, and C2 are the most abundant species and are expressed in actively growing cells to levels that are comparable to core histones (Beyer et al. 1977; Kiledjian et al. 1994). Although several observations support the notion that core hnRNP proteins participate in pre-mRNA processing, the question of whether these proteins act in a sequence-independent or a sequence-specific manner is still a matter of debate (Abdul-Manan and Williams 1996; Abdul-Manan et al. 1996; McAfee et al. 1997). Early investigations have suggested that hnRNP proteins associate randomly with many different types of pre-mRNAs and ribopolymers to form particles sharing common structures and sedimentation properties (McKnight and Miller 1979; Lamb and Daneholt 1979; Pullman and Martin 1983; Thomas et al. 1983; Wilk et al. 1983). While the great abundance of core hnRNP proteins in the nucleus of growing cells (approximately 0.2 mM in a HeLa cell nucleus) can be taken as an argument in favor of generic RNA binding activity, it is unclear what fraction of this population of hnRNP proteins is free to interact with a nascent RNA sequence that exits the RNA polymerase II transcription complex. More recently, the use of antibodies recognizing individual hnRNP proteins has revealed that some hnRNP proteins can be deposited nonrandomly on nascent pre-mRNAs (Piñol-Roma et al. 1989; Matunis et al. 1993; Wurtz et al. 1996), suggesting that binding can be sequence-specific. Given the high abundance of hnRNP proteins and their ability to bind to many types of sequences with a range of affinities (Cobianchi et al. 1988; Conway et al. 1988; Piñol-Roma et al. 1988; LeStourgeon et al. 1990; Casas-Finet et al. 1993; Abdul-Manan and Williams 1996; Abdul-Manan et al. 1996), it has remained unclear to what extent the functions of core hnRNP proteins in nuclear RNA processing always depend on their ability to bind RNA in a sequence-specific manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abdul-Manan N, Williams KR (1996) hnRNP Al binds promiscuously to oligoribonucleotides: utilization of random and homo-oligonucleotides to discriminate sequence from base-specific binding. Nucleic Acids Res 24: 4063–4070

    Google Scholar 

  • Abdul-Manan N, O’Malley SM, Williams KR (1996) Origins of binding specificity of the Al heterogeneous nuclear ribonucleoprotein. Biochemistry 35: 3545–3554

    PubMed  CAS  Google Scholar 

  • Arning S, Gruter P, Bilbe G, Krämer A (1996) Mammalian splicing factor SF1 is encoded by variant cDNAs and binds to RNA. RNA 2: 794–810

    PubMed  CAS  Google Scholar 

  • Ashiya M, Grabowski PJ (1997) A neuron-specific splicing switch mediated by an array of premRNA repressor sites: evidence of a regulatory role for the polypyrimidine tract binding protein and a brain-specific PTB counterpart. RNA 3: 996–1015

    PubMed  CAS  Google Scholar 

  • Bai Y, Lee D, Yu T, Chasin LA (1999) Control of 3’ splice site choice in vivo by ASF/SF2 and hnRNP Al. Nucleic Acids Res 27: 1126–1134

    PubMed  CAS  Google Scholar 

  • Bell LR, Maine EM, Schedl P, Cline TW (1988) Sex-lethal, a Drosophila sex determination switch gene, exhibits sex-specific RNA splicing and sequence similarity to RNA binding proteins. Cell 55: 1037–1046

    PubMed  CAS  Google Scholar 

  • Bell LR, Horabin JI, Schedl P, Cline TW (1991) Positive autoregulation of sex-lethal by alternative splicing maintains the female determined state in Drosophila. Cell 65: 229–239

    PubMed  CAS  Google Scholar 

  • Ben-David Y, Bani MR, Chabot B, De Koven A, Bernstein A (1992) Retroviral insertions downstream of the heterogeneous nuclear ribonucleoprotein Al gene in erythroleukemia cells: evidence that Al is not essential for cell growth. Mol Cell Biol 12: 4449–4455

    PubMed  CAS  Google Scholar 

  • Bennett M, Pinol-Roma S, Staknis D, Dreyfuss G, Reed R (1992) Differential binding of heterogeneous nuclear ribonucleoproteins to mRNA precursors prior to spliceosome assembly in vitro. Mol Cell Biol 12: 3165–3175

    PubMed  CAS  Google Scholar 

  • Berglund JA, Chua K, Abovich N, Reed R, Rosbash M (1997) The splicing factor BBP interacts specifically with the pre-mRNA branchpoint sequence UACUAAC. Cell 89: 781–787

    PubMed  CAS  Google Scholar 

  • Beyer AL, Christensen ME, Walker BW, LeStourgeon WM (1977) Identification and characterization of the packaging proteins of core 40S hnRNP particles. Cell 11: 127–138

    PubMed  CAS  Google Scholar 

  • Bilodeau PS, Domsic JK, Mayeda A, Krainer AR, Stoltzfus CM (2001) RNA splicing at human immunodeficiency virus type 1 3’ splice site A2 is regulated by binding of hnRNP A/B proteins to an exonic splicing silencer element. J Virol 75: 8487–8497

    PubMed  CAS  Google Scholar 

  • Blanchette M, Chabot B (1997) A highly stable duplex structure sequesters the 5’ splice site region of hnRNP Al alternative exon 7B. RNA 3: 405–419

    PubMed  CAS  Google Scholar 

  • Blanchette M, Chabot B (1999) Modulation of exon skip** by high-affinity hnRNP Al-binding sites and by intron elements that repress splice site utilization. EMBO J 18: 1939–1952

    PubMed  CAS  Google Scholar 

  • Burd CG, Dreyfuss G (1994) RNA binding specificity of hnRNP Al: significance of hnRNP Al high-affinity binding sites in pre-mRNA splicing. EMBO J 13: 1197–1204

    PubMed  CAS  Google Scholar 

  • Buvoli M, Cobianchi F, Bestagno MG, Mangiarotti A, Bassi MT, Biamonti G, Riva S (1990) Alternative splicing in the human gene for the core protein Al generates another hnRNP protein. EMBO J 9: 1229–1235

    PubMed  CAS  Google Scholar 

  • Buvoli M, Cobianchi F, Riva S (1992) Interaction of hnRNP Al with snRNPs and pre-mRNAs: evidence for a possible role of Al RNA annealing activity in the first steps of spliceosome assembly. Nucleic Acids Res 20: 5017–5025

    PubMed  CAS  Google Scholar 

  • Caceres JF, Stamm S, Helfman DM, Krainer AR (1994) Regulation of alternative splicing in vivo by overexpression of antagonistic splicing factors. Science 265: 1706–1709

    PubMed  CAS  Google Scholar 

  • Caputi M, Zahler AM (2001) Determination of the RNA binding specificity of the heterogeneous nuclear ribonucleoprotein (hnRNP) H/H’/F/2H9 family. J Biol Chem 276: 43850–43859

    PubMed  CAS  Google Scholar 

  • Caputi M, Zahler AM (2002) SR proteins and hnRNP H regulate the splicing of the HIV-1 tev-specific exon 6D. EMBO J 21: 845–855

    PubMed  CAS  Google Scholar 

  • Caputi M, Mayeda A, Krainer AR, Zahler AM (1999) hnRNP A/B proteins are required for inhibition of HIV-1 pre-mRNA splicing. EMBO J 18: 4060–4067

    Google Scholar 

  • Carstens RP, Wagner EJ, Garcia-Blanco MA (2000) An intronic splicing silencer causes skip** of the IIIb exon of fibroblast growth factor receptor 2 through involvement of polypyrimidine tract binding protein. Mol Cell Biol 20: 7388–7400

    PubMed  CAS  Google Scholar 

  • Cartegni L, Maconi M, Morandi E, Cobianchi F, Riva S, Biamonti G (1996) hnRNP Al selectively interacts through its Gly-rich domain with different RNA-binding proteins. J Mol Biol 259: 337–348

    Google Scholar 

  • Casas-Finet JR, Smith JD Jr, Kumar A, Kim JG, Wilson SH, Karpel RL (1993) Mammalian heterogeneous ribonucleoprotein Al and its constituent domains. Nucleic acid interaction, structural stability and self-association. J Mol Biol 229: 873–889

    Google Scholar 

  • Chabot B, Blanchette M, Lapierre I, La Branche H (1997) An intron element modulating 5’ splice site selection in the hnRNP Al pre-mRNA interacts with hnRNP Al. Mol Cell Biol 17: 1776–1786

    PubMed  CAS  Google Scholar 

  • Chan RC, Black DL (1997) The polypyrimidine tract binding protein binds upstream of neural cell-specific c-src exon Ni to repress the splicing of the intron downstream. Mol Cell Biol 17: 4667–4676

    PubMed  CAS  Google Scholar 

  • Charpentier B, Rosbash M (1996) Intramolecular structure in yeast introns aids the early steps of in vitro spliceosome assembly. RNA 2: 509–522

    PubMed  CAS  Google Scholar 

  • Chebli K, Gattoni R, Schmitt P, Hildwein G, Stevenin J (1989) The 216-nucleotide intron of the El A pre-mRNA contains a hairpin structure that permits utilization of unusually distant branch acceptors. Mol Cell Biol 9: 4852–4861

    PubMed  CAS  Google Scholar 

  • Chen CD, Kobayashi R, Helfman DM (1999) Binding of hnRNP H to an exonic splicing silencer is involved in the regulation of alternative splicing of the rat beta-tropomyosin gene. Genes Dev 13: 593–606

    PubMed  CAS  Google Scholar 

  • Choi YD, Grabowski PJ, Sharp PA, Dreyfuss G (1986) Heterogeneous nuclear ribonucleoproteins: role in RNA splicing. Science 231: 1534–1539

    PubMed  CAS  Google Scholar 

  • Chou MY, Rooke N, Turck CW, Black DL (1999) hnRNP H is a component of a splicing enhancer complex that activates a c-src alternative exon in neuronal cells. Mol Cell Biol 19: 69–77

    Google Scholar 

  • Chou MY, Underwood JG, Nikolic J, Luu MH, Black DL (2000) Multisite RNA binding and release of polypyrimidine tract binding protein during the regulation of c-src neural-specific splicing. Mol Cell 5: 949–957

    PubMed  CAS  Google Scholar 

  • Clouet d’Orval B, d’Aubenton Carafa Y, Sirand-Pugnet P, Gallego M, Brody E, Marie J (1991) RNA secondary structure repression of a muscle-specific exon in HeLa cell nuclear extracts. Science 252: 1823–1828

    Google Scholar 

  • Cobianchi F, Karpel RL, Williams KR, Notario V, Wilson SH (1988) Mammalian heterogeneous nuclear ribonucleoprotein complex protein Al. Large-scale overproduction in Escherichia coli and cooperative binding to single-stranded nucleic acids. J Biol Chem 263: 1063–1071

    PubMed  CAS  Google Scholar 

  • Conway G, Wooley J, Bibring T, LeStourgeon WM (1988) Ribonucleoproteins package 700 nucleotides of pre-mRNA into a repeating array of regular particles. Mol Cell Biol 8: 28842895

    Google Scholar 

  • Côté J, Simard MJ, Chabot B (1999) An element in the 5’ common exon of the NCAM alternative splicing unit interacts with SR proteins and modulates 5’ splice site selection. Nucleic Acids Res 27: 2529–2537

    PubMed  Google Scholar 

  • Dallaire F, Dupuis S, Fiset S, Chabot B (2000) Heterogeneous nuclear ribonucleoprotein Al and UP1 protect mammalian telomeric repeats and modulate telomere replication in vitro. J Biol Chem 275: 14509–14516

    PubMed  CAS  Google Scholar 

  • Del Gatto-Konczak F, Olive M, Gesnel MC, Breathnach R (1999) hnRNP Al recruited to an exon in vivo can function as an exon splicing silencer. Mol Cell Biol 19: 251–260

    Google Scholar 

  • Ding J, Hayashi MK, Zhang Y, Manche L, Krainer AR, Xu RM (1999) Crystal structure of the two-RRM domain of hnRNP Al (UP1) complexed with single-stranded telomeric DNA. Genes Dev 13: 1102–1115

    PubMed  CAS  Google Scholar 

  • Domenjoud L, Gallinaro H, Kister L, Meyer S, Jacob M (1991) Identification of specific exon sequence that is a major determinant in the selection between a natural and a cryptic 5’ splice site. Mol Cell Biol 11: 4581–4590

    PubMed  CAS  Google Scholar 

  • Dreyfuss G, Matunis MJ, Pinol-Roma S, Burd CG (1993) hnRNP proteins and the biogenesis of mRNA. Annu Rev Biochem 62: 289–321

    Google Scholar 

  • Eperon IC, Makarova OV, Mayeda A, Munroe SH, Caceres JF, Hayward DG, Krainer AR (2000) Selection of alternative 5’ splice sites: role of Ul snRNP and models for the antagonistic effects of SF2/ASF and hnRNP Al. Mol Cell Biol 20: 8303–8318

    PubMed  CAS  Google Scholar 

  • Eperon LP, Estibeiro JP, Eperon IC (1986) The role of nucleotide sequences in splice site selection in eukaryotic pre-messenger RNA. Nature 324: 280–282

    PubMed  CAS  Google Scholar 

  • Eperon LP, Graham IR, Griffiths AD, Eperon IC (1988) Effects of RNA secondary structure on alternative splicing of pre-mRNA: is folding limited to a region behind the transcribing RNA polymerase? Cell 54: 393–401

    PubMed  CAS  Google Scholar 

  • Estes PA, Cooke NE, Liebhaber SA (1992) A native RNA secondary structure controls alternative splice-site selection and generates two human growth hormone isoforms. J Biol Chem 267: 14902–14908

    PubMed  CAS  Google Scholar 

  • Fogel BL, McNally MT (2000) A cellular protein, hnRNP H, binds to the negative regulator of splicing element from Rous sarcoma virus. J Biol Chem 275: 32371–32378

    PubMed  CAS  Google Scholar 

  • Forné T, Rossi F, Labourier E, Antoine E, Cathala G, Brunel C, Tazi J (1995) Disruption of base-paired U4.U6 small nuclear RNAs induced by mammalian heterogeneous nuclear ribonucleoprotein C protein. J Biol Chem 270: 16476–16481

    PubMed  Google Scholar 

  • Gamberi C, Izaurralde E, Beisel C, Mattaj IW (1997) Interaction between the human nuclear cap-binding protein complex and hnRNP E Mol Cell Biol 17: 2587–2597

    CAS  Google Scholar 

  • Gattoni R, Mahe D, Mahl P, Fischer N, Mattei MG, Stevenin J, Fuchs JP (1996) The human hnRNPM proteins: structure and relation with early heat shock-induced splicing arrest and chromosome map**. Nucleic Acids Res 24: 2535–2542

    PubMed  CAS  Google Scholar 

  • Goguel V, Wang Y, Rosbash M (1993) Short artificial hairpins sequester splicing signals and inhibit yeast pre-mRNA splicing. Mol Cell Biol 13: 6841–6848

    PubMed  CAS  Google Scholar 

  • Gontarek RR, McNally MT, Beemon K (1993) Mutation of an RSV intronic element abolishes both Ull/U12 snRNP binding and negative regulation of splicing. Genes Dev 7: 1926–1936

    PubMed  CAS  Google Scholar 

  • Gooding C, Roberts GC, Moreau G, Nadal-Ginard B, Smith CW (1994) Smooth muscle-specific switching of alpha-tropomyosin mutually exclusive exon selection by specific inhibition of the strong default exon. EMBO J 13: 3861–3872

    PubMed  CAS  Google Scholar 

  • Gooding C, Roberts GC, Smith CW (1998) Role of an inhibitory pyrimidine element and polypyrimidine tract binding protein in repression of a regulated alpha-tropomyosin exon. RNA 4: 85–100

    PubMed  CAS  Google Scholar 

  • Grossman JS, Meyer MI, Wang YC, Mulligan GJ, Kobayashi R, Helfman DM (1998) The use of antibodies to the polypyrimidine tract binding protein ( PTB) to analyze the protein components that assemble on alternatively spliced pre-mRNAs that use distant branch points. RNA 4: 613–625

    Google Scholar 

  • Hamilton BJ, Nagy E, Malter JS, Arrick BA, Rigby WF (1993) Association of heterogeneous nuclear ribonucleoprotein Al and C proteins with reiterated AUUUA sequences. J Biol Chem 268: 8881–8887

    PubMed  CAS  Google Scholar 

  • Hamilton BJ, Burns CM, Nichols RC, Rigby WFC (1997) Modulation of AUUUA response element binding by heterogeneous nuclear ribonucleoprotein Al in human T lymphocytes. The roles of cytoplasmic location, transcription, phosphorylation. J Biol Chem 272: 28732–28741

    Google Scholar 

  • Hammond LE, Rudner DZ, Kanaar R, Rio DC (1997) Mutations in the hrp48 gene, which encodes a Drosophila heterogeneous nuclear ribonucleoprotein particle protein, cause lethality and developmental defects and affect P-element third-intron splicing in vivo. Mol Cell Biol 17: 7260–7267

    PubMed  CAS  Google Scholar 

  • Hanamura A, Caceres JF, Mayeda A, Franza BR Jr, Krainer AR (1998) Regulated tissue-specific expression of antagonistic pre-mRNA splicing factors. RNA 4: 430–444

    PubMed  CAS  Google Scholar 

  • Hay DC, Kemp GD, Dargemont C, Hay RT (2001) Interaction between hnRNPA1 and IkappaBalpha is required for maximal activation of NF-kappaB-dependent transcription. Mol Cell Biol 21: 3482–3490

    PubMed  CAS  Google Scholar 

  • Hibbert CS, Gontarek RR, Beemon KL (1999) The role of overlap** Ul and Ull 5’ splice site sequences in a negative regulator of splicing. RNA 5: 333–343

    PubMed  CAS  Google Scholar 

  • Howe KJ, Ares M Jr (1997) Intron self-complementarity enforces exon inclusion in a yeast premRNA. Proc Natl Acad Sci 94: 12467–12472

    PubMed  CAS  Google Scholar 

  • Hutchison S, LeBel C, Blanchette M, Chabot B (2002) Distinct sets of multiple Al binding sites control 5’ splice site selection in the hnRNP Al pre-mRNA. J Biol Chem 277: (in press)

    Google Scholar 

  • Hutton M, Lendon CL, Rizzu P, Baker M, Froelich S, Houlden H, Pickering-Brown S, Chakraverty S, Isaacs A, Grover A et al. (1998) Association of missense and 5’-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393: 702–705

    PubMed  CAS  Google Scholar 

  • Izaurralde E, Jarmolowski A, Beisel C, Mattaj IW, Dreyfuss G, Fischer U (1997) A role for the M9 transport signal of hnRNP Al in mRNA nuclear export. J Cell Biol 137: 27–35

    PubMed  CAS  Google Scholar 

  • Jacquenet S, Mereau A, Bilodeau PS, Damier L, Stoltzfus CM, Branlant C (2001) A second exon splicing silencer within human immunodeficiency virus type 1 tat exon 2 represses splicing of Tat mRNA and binds protein hnRNP H. J Biol Chem 276: 40464–40475

    PubMed  CAS  Google Scholar 

  • Jiang Z, Côté J, Kwon JM, Goate AM, Wu JY (2000) Aberrant splicing of tau pre-mRNA caused by intronic mutations associated with the inherited dementia frontotemporal dementia with parkinsonism linked to chromosome 17. Mol Cell Biol 20: 4036–4048

    PubMed  CAS  Google Scholar 

  • Jiang ZH, Zhang WJ, Rao Y, Wu JY (1998) Regulation of Ich-1 pre-mRNA alternative splicing and apoptosis by mammalian splicing factors. Proc Natl Acad Sci 95: 9155–9160

    PubMed  CAS  Google Scholar 

  • Jumaa H, Nielsen PJ (1997) The splicing factor SRp20 modifies splicing of its own mRNA and ASF/SF2 antagonizes this regulation. EMBO J 16: 5077–5085

    PubMed  CAS  Google Scholar 

  • Kadener S, Cramer P, Nogues G, Cazalla D, de la Mata M, Fededa JP, Werbajh SE, Srebrow A, Kornblihtt AR (2001) Antagonistic effects of T-Ag and VP16 reveal a role for RNA pol II elongation on alternative splicing. EMBO J 20: 5759–5768

    PubMed  CAS  Google Scholar 

  • Kanopka A, Mühlemann O, Aküsjarvi G (1996) Inhibition by SR proteins of splicing of a regulated adenovirus pre-mRNA. Nature 381: 535–538

    PubMed  CAS  Google Scholar 

  • Kiledjian M, Burd CG, Gorlach M, Portman DS, Dreyfuss G (1994) Structure and function of hnRNP proteins. In: Mattaj IW, Nagai K (eds) RNA protein interactions. Oxford University Press, Oxford, pp 127–149

    Google Scholar 

  • Konig H, Ponta, H, Herrlich P (1998) Coupling of signal transduction to alternative pre-mRNA splicing by a composite splice regulator. EMBO J 17: 2904–2913

    PubMed  CAS  Google Scholar 

  • LaBranche H, Dupuis S, Ben-David Y, Bani MR, Wellinger RJ, Chabot B (1998) Telomere elongation by hnRNP Al and a derivative that interacts with telomeric repeats and telomerase. Nat Genet 19: 199–202

    PubMed  CAS  Google Scholar 

  • Lamb MM, Daneholt B (1979) Characterization of active transcription units in Balbiani rings of Chironomus tentans. Cell 17: 835–848

    PubMed  CAS  Google Scholar 

  • Lavigueur A, La Branche H, Kornblihtt AR, Chabot B (1993) A splicing enhancer in the human fibronectin alternate ED1 exon interacts with SR proteins and stimulates U2 snRNP binding. Genes Dev 7: 2405–2417

    PubMed  CAS  Google Scholar 

  • Le Guiner C, Lejeune F, Galiana D, Kister L, Breathnach R, Stevenin J, Del Gatto-Konczak F (2001) TIA-1 and TIAR activate splicing of alternative exons with weak 5’ splice sites followed by a U-rich stretch on their own pre-mRNAs. J Biol Chem 276: 40638–40646

    PubMed  Google Scholar 

  • LeStourgeon WM, Barnett SF, Northington SJ (1990) Tetramers of the core proteins of 40 S nuclear ribonucleoprotein particles assemble to package nascent transcripts into a repeating array of regular particles. In: Strauss PR, Wilson SH (eds) The eukaryotic nucleus: molecular biochemistry and macromolecular assemblies. The Telford Press, Caldwell, NJ, pp 477–502

    Google Scholar 

  • Libri D, Stutz F, McCarthy T, Rosbash M(1995) RNA structural patterns and splicing: molecular basis for an RNA-based enhancer. RNA 1: 425–436

    Google Scholar 

  • Lin CH, Patton JG (1995) Regulation of alternative 3’ splice site selection by constitutive splicing factors. RNA 1: 234–245

    PubMed  CAS  Google Scholar 

  • Lothstein L, Arenstorf HP, Chung SY, Walker BW, Wooley JC, LeStourgeon WM (1985) General organization of protein in HeLa 40S nuclear ribonucleoprotein particles. J Cell Biol 100: 1570–1581

    PubMed  CAS  Google Scholar 

  • Lou H, Helfman DM, Gagel RF, Berget SM (1999) Polypyrimidine tract-binding protein positively regulates inclusion of an alternative 3’-terminal exon. Mol Cell Biol 19: 78–85

    PubMed  CAS  Google Scholar 

  • Markovtsov V, Nikolic JM, Goldman JA, Turck CW, Chou MY, Black DL (2000) Cooperative assembly of an hnRNP complex induced by a tissue-specific homolog of polypyrimidine tract binding protein. Mol Cell Biol 20: 7463–7479

    PubMed  CAS  Google Scholar 

  • Matter N, Marx M, Weg-Remers S, Ponta H, Herrlich P, Konig H (2000) Heterogeneous ribonucleoprotein Al is part of an exon-specific splice-silencing complex controlled by oncogenic signaling pathways. J Biol Chem 275: 35353–35360

    PubMed  CAS  Google Scholar 

  • Matunis EL, Matunis MJ, Dreyfuss G (1993) Association of individual hnRNP proteins and snRNPs with nascent transcripts. J Cell Biol 121: 219–228

    PubMed  CAS  Google Scholar 

  • Mayeda A, Krainer AR (1992) Regulation of alternative pre-mRNA splicing by hnRNP Al and splicing factor SF2. Cell 68: 365–375

    PubMed  CAS  Google Scholar 

  • Mayeda A, Helfman DM, Krainer AR (1993) Modulation of exon skip** and inclusion by heterogeneous nuclear ribonucleoprotein Al and pre-mRNA splicing factor SF2/ASF [published erratum appears in Mol Cell Biol 1993 Jul; 13(7):4458]. Mol Cell Biol 13: 2993–3001

    PubMed  CAS  Google Scholar 

  • Mayeda A, Munroe SH, Caceres JF, Krainer AR (1994) Function of conserved domains of hnRNP Al and other hnRNP A/B proteins. EMBO J 13: 5483–5495

    PubMed  CAS  Google Scholar 

  • McAfee JG, Huang M, Soltaninassab S, Rech JE, Iyengar S, LeStourgeon WN (1997) The packaging of pre-mRNA. In: Krainer AR (ed) Eukaryotic mRNA processing. Oxford University Press, Oxford pp 68–102

    Google Scholar 

  • McCullough AJ, Berget SM (1997) G triplets located throughout a class of small vertebrate introns enforce intron borders and regulate splice site selection. Mol Cell Biol 17: 4562–4571

    PubMed  CAS  Google Scholar 

  • McKnight SL, Miller OL Jr (1979) Post-replicative nonribosomal transcription units in D. melanogaster embryos. Cell 17: 551–563

    PubMed  CAS  Google Scholar 

  • McNally LM, McNally MT (1998) An RNA splicing enhancer-like sequence is a component of a splicing inhibitor element from Rous sarcoma virus. Mol Cell Biol 18: 3103–3111

    PubMed  CAS  Google Scholar 

  • Michael WM, Choi M, Dreyfuss G (1995) A nuclear export signal in hnRNP Al: a signalmediated, temperature-dependent nuclear protein export pathway. Cell 83: 415–422

    PubMed  CAS  Google Scholar 

  • Michelotti EF, Michelotti GA, Aronsohn AI, Levens D (1996) Heterogeneous nuclear ribonucleoprotein K is a transcription factor. Mol Cell Biol 16: 2350–2360

    PubMed  CAS  Google Scholar 

  • Min H, Chan RC, Black DL (1995) The generally expressed hnRNP F is involved in a neural-specific pre-mRNA splicing event. Genes Dev 9: 2659–2671

    PubMed  CAS  Google Scholar 

  • Min H, Turck CW, Nikolic JM, Black DL (1997) A new regulatory protein, KSRP, mediates exon inclusion through an intronic splicing enhancer. Genes Dev 11: 1023–1036

    Google Scholar 

  • Mougin A, Gregoire A, Banroques J, Segault V, Fournier R, Brule F, Chevrier-Miller M, Branlant C (1996) Secondary structure of the yeast Saccharomyces cerevisiae pre-U3A snoRNA and its implication for splicing efficiency. RNA 2: 1079–1093

    PubMed  CAS  Google Scholar 

  • Mourelatos Z, Abel L, Yong J, Kataoka N, Dreyfuss G (2001) SMN interacts with a novel family of hnRNP and spliceosomal proteins. EMBO J 20: 5443–5452

    PubMed  CAS  Google Scholar 

  • Nasim FH, Hutchison S, Cordeau M, Chabot B (2002) High-affinity hnRNP Al binding sites and duplex-forming inverted repeats have similar effects on 5’ splice site selection in support of a common loo** out and repression mechanism. RNA 8: (in press)

    Google Scholar 

  • Newman A (1987) Specific accessory sequences in Saccharomyces cerevisiae introns control assembly of pre-mRNAs into spliceosomes. EMBO J 6: 3833–3839

    PubMed  CAS  Google Scholar 

  • Paca RE, Hibbert CS, O’Sullivan CT, Beemon KL (2001) Retroviral splicing suppressor requires three nonconsensus uridines in a 5’ splice site-like sequence. J Virol 75: 7763–7768

    PubMed  CAS  Google Scholar 

  • Perez I, McAfee JG, Patton JG (1997) Multiple RRMs contribute to RNA binding specificity and affinity for polypyrimidine tract binding protein. Biochemistry 36: 11881–11890

    PubMed  CAS  Google Scholar 

  • Petersen-Mahrt SK, Estmer C, Ohrmalm C, Matthews DA, Russell WC, Aküsjarvi G (1999) The splicing factor-associated protein, p32, regulates RNA splicing by inhibiting ASF/SF2 RNA binding and phosphorylation. EMBO J 18: 1014–1024

    PubMed  CAS  Google Scholar 

  • Pinol-Roma S, Choi YD, Matunis MJ, Dreyfuss G (1988) Immunopurification of heterogeneous nuclear ribonucleoprotein particles reveals an assortment of RNA-binding proteins [published erratum appears in Genes Dev 1988 Apr; 2(4):4901. Genes Dev 2: 215–227

    CAS  Google Scholar 

  • Pinol-Roma S, Swanson MS, Gall JG, Dreyfuss G (1989) A novel heterogeneous nuclear RNP protein with a unique distribution on nascent transcripts. J Cell Biol 109: 2575–2587

    PubMed  CAS  Google Scholar 

  • Polydorides AD, Okano HJ, Yang YY, Stefani G, Darnell RB (2000) A brain-enriched poly-pyrimidine tract-binding protein antagonizes the ability of Nova to regulate neuron-specific alternative splicing. Proc Natl Acad Sci 97: 6350–6355

    PubMed  CAS  Google Scholar 

  • Pullman JM, Martin TE (1983) Reconstitution of nucleoprotein complexes with mammalian heterogeneous nuclear ribonucleoprotein (hnRNP) core proteins. J Cell Biol 97: 99–111

    PubMed  CAS  Google Scholar 

  • Roberts GC, Gooding C, Mak HY, Proudfoot NJ, Smith CW (1998) Co-transcriptional commitment to alternative splice site selection. Nucleic Acids Res 26: 5568–5572

    PubMed  CAS  Google Scholar 

  • Screaton GR, Caceres JF, Mayeda A, Bell MV, Plebanski M, Jackson DG, Bell JI, Krainer AR (1995) Identification and characterization of three members of the human SR family of pre-mRNA splicing factors. EMBO J 14: 4336–4349

    PubMed  CAS  Google Scholar 

  • Sebillon P, Beldjord C, Kaplan JC, Brody E, Marie J (1995) A T to G mutation in the polypyrimidine tract of the second intron of the human beta-globin gene reduces in vitro splicing efficiency: evidence for an increased hnRNP C interaction. Nucleic Acids Res 23: 3419–3425

    PubMed  CAS  Google Scholar 

  • Shnyreva M, Schullery DS, Suzuki H, Higaki Y, Bomsztyk K(2000) Interaction of two multifunctional proteins. Heterogeneous nuclear ribonucleoprotein K and Y-box-binding protein. J Biol Chem 275: 15498–15503

    Google Scholar 

  • Siebel CW, Kanaar R, Rio DC (1994) Regulation of tissue-specific P-element pre-mRNA splicing requires the RNA-binding protein PSI. Genes Dev 8: 1713–1725

    PubMed  CAS  Google Scholar 

  • Siebel CW, Admon A, Rio DC (1995) Soma-specific expression and cloning of PSI, a negative regulator of P element pre-mRNA splicing. Genes Dev 9: 269–283

    PubMed  CAS  Google Scholar 

  • Sierakowska H, Szer W, Furdon PJ, Kole R (1986) Antibodies to hnRNP core proteins inhibit in vitro splicing of human beta-globin pre-mRNA. Nucleic Acids Res 14: 5241–5254

    PubMed  CAS  Google Scholar 

  • Simard MJ, Chabot B (2000) Control of hnRNP Al alternative splicing: an intron element represses use of the common 3’ splice site. Mol Cell Biol 20: 7353–7362

    PubMed  CAS  Google Scholar 

  • Simard MJ, Chabot B (2002) SRp30c is a repressor of 3’ splice site utilization. Mol Cell Biol 22: 4001–4010

    PubMed  CAS  Google Scholar 

  • Singh R, Valcarel J, Green MR (1995) Distinct binding specificities and functions of higher eukaryotic polypyrimidine tract-binding proteins. Science 268: 1173–1176

    PubMed  CAS  Google Scholar 

  • Solnick D (1985) Alternative splicing caused by RNA secondary structure. Cell 43: 667–676

    PubMed  CAS  Google Scholar 

  • Solnick D, Lees SI (1987) Amount of RNA secondary structure required to induce an alternative splice. Mol Cell Biol 7: 3194–3198

    PubMed  CAS  Google Scholar 

  • Swanson MS, Dreyfuss G (1988) RNA binding specificity of hnRNP proteins: a subset bind to the 3’ end of introns. EMBO J 7: 3519–3529

    PubMed  CAS  Google Scholar 

  • Tacke R, Manley JL (1999) Determinants of SR protein specificity, Curr Opin Cell Biol 11:358–362 Tange TO, Damgaard CK, Guth S, Valcârcel J, Kjems J (2001) The hnRNP Al protein regulates HIV-1 tat splicing via a novel intron silencer element. EMBO J 20: 5748–5758

    Google Scholar 

  • Temsamani J, Pederson T (1996) The C-group heterogeneous nuclear ribonucleoprotein proteins bind to the 5’ stem-loop of the U2 small nuclear ribonucleoprotein particle. J Biol Chem 271: 24922–24926

    PubMed  CAS  Google Scholar 

  • Thomas JO, Glowacka SK, Szer W (1983) Structure of complexes between a major protein of heterogeneous nuclear ribonucleoprotein particles and polyribonucleotides, J Mol Biol 171: 439–55

    PubMed  CAS  Google Scholar 

  • Tomonaga T, Levens D(1995) Heterogeneous nuclear ribonucleoprotein K is a DNA-binding transactivator. J Biol Chem 270: 4875–4881

    Google Scholar 

  • Valcârcel J, Gebauer F (1997) Post-transcriptional regulation: the dawn of PTB. Curr Biol 7: R705 - R708

    PubMed  Google Scholar 

  • van der Houven van Oordt W, Diaz-Meco MT, Lozano J, Krainer AR, Moscat J, Caceres JE (2000) The MKK(3/6)-p38-signaling cascade alters the subcellular distribution of hnRNP Al and modulates alternative splicing regulation. J Cell Biol 149: 307–316

    Google Scholar 

  • Venables JP, Elliott DJ, Makarova OV, Makarov EM, Cooke HJ, Eperon IC (2000) RBMY, a probable human spermatogenesis factor, other hnRNP G proteins interact with Tra2beta and affect splicing. Hum Mol Genet 9: 685–694

    PubMed  CAS  Google Scholar 

  • Wagner EJ, Garcia-Blanco MA (2001) Polypyrimidine tract binding protein antagonizes exon definition. Mol Cell Biol 21: 3281–3288

    PubMed  CAS  Google Scholar 

  • Wilk HE, Angeli G, Schafer KP (1983) In vitro reconstitution of 35 S ribonucleoprotein complexes. Biochemistry 22: 4592–4600

    PubMed  CAS  Google Scholar 

  • Williamson DJ, Banik-Maiti S, DeGregori J, Ruley HE (2000) hnRNP C is required for post-implantation mouse development but is dispensable for cell viability. Mol Cell Biol 20:40944105

    Google Scholar 

  • Wurtz T, Kiseleva E, Nacheva G, Alzhanova-Ericcson A, Rosen A, Daneholt B (1996) Identification of two RNA-binding proteins in Balbiani ring premessenger ribonucleoprotein granules and presence of these proteins in specific subsets of heterogeneous nuclear ribonucleoprotein particles. Mol Cell Biol 16: 1425–1435

    CAS  Google Scholar 

  • Yang X, Bani MR, Lu SJ, Rowan S, Ben-David Y, Chabot B (1994) The Al and AlB proteins of heterogeneous nuclear ribonucleoparticles modulate 5’ splice site selection in vivo. Proc Natl Acad Sci 91: 6924–6928

    PubMed  CAS  Google Scholar 

  • Zhang L, Liu W, Grabowski PJ (1999) Coordinate repression of a trio of neuron-specific splicing events by the splicing regulator PTB. RNA 5: 117–130

    PubMed  CAS  Google Scholar 

  • Zhu J, Mayeda A, Krainer AR (2001) Exon identity established through differential antagonism between exonic splicing silencer-bound hnRNP Al and enhancer-bound SR proteins. Mol Cell 8: 1351–1361

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chabot, B., LeBel, C., Hutchison, S., Nasim, F.H., Simard, M.J. (2003). Heterogeneous Nuclear Ribonucleoprotein Particle A/B Proteins and the Control of Alternative Splicing of the Mammalian Heterogeneous Nuclear Ribonucleoprotein Particle A1 Pre-mRNA. In: Jeanteur, P. (eds) Regulation of Alternative Splicing. Progress in Molecular and Subcellular Biology, vol 31. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09728-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-09728-1_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07858-3

  • Online ISBN: 978-3-662-09728-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation