Metabolic Status and Reaction to Heat of Normal and Tumor Tissue

  • Chapter
Thermoradiotherapy and Thermochemotherapy

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

Abstract

The occurrence of differential heating and differential thermal sensitivity between malignant tumors and normal tissues is thought to be due to limited heat dissipation and energy depletion in many solid tumors which in turn results from an inadequately functioning tumor microcirculation (Jain and Ward-Hartley 1984; Song 1984, 1991; Vaupel and Kallinowski 1987; Reinhold 1988; Vaupel et al. 1988a; Vaupel 1990). As a consequence of the latter pathophysiological condition, supply and drainage function are restricted in many solid tumors or, at least, in some tumor areas, thus creating a hostile metabolic microenvironment characterized by tissue hypoxia, acidosis, and energy depletion. Thermal sensitivity has been shown to depend greatly on tumor pH, and on energy and nutritional status of the tumors treated. Although no conclusive evidence is so far available concerning the ranking of these pivotal factors, there is no doubt that the rate and homogeneity of blood perfusion plays a paramount role in determining the metabolic and energy status.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Anderstam B, Vaca C, Harms-Ringdahl M (1992) Lipid peroxide levels in a murine adenocarcinoma exposed to hyperthermia: the role of glutathione depletion. Radiat Res 132: 296–300

    Article  PubMed  CAS  Google Scholar 

  • Ausmus PL, Wilke AV, Frazier DL (1992) Effects of hyperthermia on blood flow and cis-diamminedichloroplatinum (II) pharmacokinetics in murine mammary adenocarcinomas. Cancer Res 52: 4965–4968

    PubMed  CAS  Google Scholar 

  • Bowman HF, Martin GT, Newman WH, Kumar S, Welch C, Bornstein B, Herman TS (1992) Human tumor perfusion measurements during hyperthermia therapy. In: Gerner EW (ed) Hyperthermic oncology 1992, vol 1. Arizona Board of Regents, Tucson, p A17

    Google Scholar 

  • Busse M, Vaupel P (1994) Accumulation of purine catabolites in rat tumors exposed to hyperthermia. 14th Conf Europ Soc Hyperthermic Oncol, Amsterdam, Book of Abstracts

    Google Scholar 

  • Dellian M, Walenta S, Kuhnle GEH, Gamarra F, Mueller-Klieser W, Goetz AE (1993) Relation between autoradiographically measured blood flow and ATP concentrations obtained from imaging bioluminescence in tumors following hyperthermia. Int J Cancer 53: 785–791

    Article  PubMed  CAS  Google Scholar 

  • Dewey WC (1989) The search for critical cellular targets damaged by heat. Radiat Res 120: 191–204

    Article  PubMed  CAS  Google Scholar 

  • Dewhirst MW, Charles HC, Sostman HD, Leopold KA, Oleson JR (1991) MRI and MRS for prognostic evaluation and therapy monitoring in soft tissue sarcomas treated with hyperthermia and radiotherapy. In: Dewey WC, Edington M, Fry RJM, Hall EJ, Whitmore GF (eds) Radiation research: a twentieth century perspective, vol II. Academic Press, San Diego, pp 957–961

    Google Scholar 

  • Gerweck LE (1988) Modifiers of thermal effects: environmental factors. In: Urano M, Douple E (eds) Hyperthermia and oncology, vol I. VSP, Utrecht, pp 83–98

    Google Scholar 

  • Gerweck LE, Jennings M, Richards B (1980) Influence of pH on the response of cells to single and split dose of hyperthermia. Cancer Res 40: 4019–4024

    PubMed  CAS  Google Scholar 

  • Gerweck LE, Dahlberg WK, Epstein LF, Shimm D (1984) Influence of nutrient and energy deprivation on cellular response to single and fractionated heat treatments. Radiat Res 99: 573–581

    Article  PubMed  CAS  Google Scholar 

  • Gerweck LE, Urano M, Koutcher J, Feilenz MP, Kahn J (1989) Relationship between energy status, hypoxic cell fraction, and hyperthermic sensitivity in a murine fibrosarcoma. Radiat Res 117: 448–458

    Article  PubMed  CAS  Google Scholar 

  • Griffiths JR (1991) Are cancer cells acidic? Br J Cancer 64: 425–427

    Article  PubMed  CAS  Google Scholar 

  • Hetzel FW, Chopp M (1990) Changes in muscle pH following hyperthermia. Radiat Res 122: 229–233

    Article  PubMed  CAS  Google Scholar 

  • Hetzel FW, Avery K, Chopp M (1989) Hyperthermic “dose“ dependent changes in intralesional pH. Int J Radiat Oncol Biol Phys 16: 183–186

    Article  PubMed  CAS  Google Scholar 

  • Hetzel FW, Chopp M, Dereski MO (1992) Variations in pO2 and pH response to hyperthermia: dependence on transplant site and duration of treatment. Radiat Res 131: 152–156

    Article  PubMed  CAS  Google Scholar 

  • Huch R, Huch A (1985) Transkutaner pO2. Prinzip, Handhabung, klinische Erfahrung und Grenzen der Methode. In: Ehrly AM, Hauss J, Huch R (eds) Klinische Sauerstoffdruckmessung: Gewebesauerstoffdruck und transkutaner Sauerstoffdruck bei Erwachsenen. Münchner Wissenschaftliche Publikationen, München, pp 53–59

    Google Scholar 

  • Jain RK, Ward-Hartley K (1984) Tumor blood flow — characterization, modifications, and role in hyperthermia. IEEE Trans Sonics Ultrasonics SU-31: 504–526

    Article  Google Scholar 

  • Kallinowski F, Vaupel P (1989) Factors governing hyperthermia-induced pH changes in Yoshida sarcoma. Int J Hyperthermia 5: 641–652

    Article  PubMed  CAS  Google Scholar 

  • Kavanagh BD, Coffey BE, Needham D, Hochmuth RM, Dewhirst MW (1993) The effect of flunarizine on erythrocyte suspension viscosity under conditions of extreme hypoxia, low pH, and lactate treatment. Br J Cancer 67: 734–741

    Article  PubMed  CAS  Google Scholar 

  • Kelleher DK, Engel T, Vaupel P (1995) Changes in microregional perfusion, oxygénation, ATP and lactate distribution in subcutaneous rat tumours upon waterfiltered IR-A hyperthermia. Int J Hyperthermia 11: 241–255

    Article  PubMed  CAS  Google Scholar 

  • Koutcher JA, Barnett D, Kornblith AB, Cowburn D, Brady TJ, Gerweck LE (1990) Relationship of changes in pH and energy status to hypoxic cell fraction and hyperthermia sensitivity. Int J Radiat Oncol Biol Phys 18: 1429–1435

    Article  PubMed  CAS  Google Scholar 

  • Krüger W, Mayer WK, Schaefer C, Stohrer M, Vaupel P (1991) Acute changes of systemic parameters in tumourbearing rats, and of tumour glucose, lactate, and ATP levels upon local hyperthermia and/or hyperglycaemia. J Cancer Res Clin Oncol 117: 409–415

    Article  PubMed  Google Scholar 

  • Krüger W, Gersing E, Vaupel P (1993) Electrical impedance spectroscopy (1 Hz-10 MHz) of experimental tumors in vivo upon local hyperthermia. 13th Conf Europ Soc Hyperthermic Oncol, Brüssel, Book of Abstractsts

    Google Scholar 

  • Lammertsma AA, Wilson CB, Jones T (1991) In vivo physiological studies in human tumors using positron emission tomography. Funktionsanalyse biologischer Systeme 20: 319–325

    Google Scholar 

  • Lin JC, Levitt SH, Song CW (1991) Relationship between vascular thermotolerance and intratumor pH. Int J Radiat Oncol Biol Phys 22: 123–129

    Article  Google Scholar 

  • Liu FF, Diep K, Hill RP (1992) Intracellular pH regulation and heat sensitivity in vitro. In: Gerner EW (ed) Hyperthermic oncology 1992, vol 1. Arizona Board of Regents, Tucson, p 132

    Google Scholar 

  • Lyons JC, Kim GE, Song CW (1992) Modification of intracellular pH and thermosensitivity. Radiat Res 129: 79–87

    Article  PubMed  CAS  Google Scholar 

  • Mayer WK, Stohrer M, Krüger W, Vaupel P (1992) Laser Doppler flux and tissue oxygénation of experimental tumours upon local hyperthermia and/or hyperglycaemia. J Cancer Res Clin Oncol 118: 523–528

    Article  PubMed  CAS  Google Scholar 

  • Molls M, Feldmann HJ (1991) Clinical investigations of blood flow in malignant tumors of the pelvis and the abdomen in patients undergoing thermoradiotherapy. Funktionsanalyse biologischer Systeme 20: 143–153

    Google Scholar 

  • Newell K, Tannock I (1991) Regulation of intracellular pH and viability of tumor cells. Funktionsanalyse biologischer Systeme 20: 219–234

    Google Scholar 

  • Osinsky SP, Bubnovskaja LN, Ganusevich II (1993) Tumor energy status upon induced hyperglycemia and antitumor effect of local hyperthermia. Exp Oncol 15: 60–65

    Google Scholar 

  • Reinhold HS (1988) Physiological effects of hyperthermia. Recent Results Cancer Res 107: 32–43

    Article  PubMed  CAS  Google Scholar 

  • Roszinski S, Wiedemann G, Jiang SZ, Baretton G, Wagner T, Weiss C (1991) Effects of hyperthermia and/or hyperglycemia on pH and pO2 in well oxygenated xenotransplanted human sarcoma. Int J Radiat Oncol Biol Phys 20: 1273–1280

    Article  PubMed  CAS  Google Scholar 

  • Schaefer C, Mayer WK, Krüger W, Vaupel P (1993) Microregional distributions of glucose, lactate, ATP and tissue pH in experimental tumours upon local hyperthermia and/or hyperglycaemia. J Cancer Res Clin Oncol 119: 599–608

    Article  PubMed  CAS  Google Scholar 

  • Skibba JL, Quebbeman EJ, Kalbafleisch JH (1986) Nitrogen metabolism and lipid peroxidation during hyperthermic perfusion of human livers with cancer. Cancer Res 46: 6000–6003

    PubMed  CAS  Google Scholar 

  • Song CW (1984) Effect of hyperthermia on blood flow and microenvironment. Cancer Res (Suppl) 44: 4721s–4730s

    PubMed  CAS  Google Scholar 

  • Song CW (1991) Tumor blood flow response to heat. Funktionsanalyse biologischer Systeme 20: 123–141

    Google Scholar 

  • Stohrer M, Fleckenstein W, Vaupel P (1992) Effect of localized hyperthermia on tissue oxygen tension in superficial tumours. In: Ehrly AM, Fleckenstein W, Landgraf M (eds) Clinical oxygen pressure measurement III. Blackwell Wissenschaft, Berlin, pp 121–128

    Google Scholar 

  • Streffer C (1982) Aspects of biochemical effects by hyperthermia. Natl Cancer Inst Monogr 61: 11–17

    PubMed  CAS  Google Scholar 

  • Streffer C (1984) Mechanisms of heat injury. In: Overgaard J (ed) Hyperthermic oncology, 1984, vol 2. Taylor and Francis, London, pp 213–222

    Google Scholar 

  • Streffer C (1988) Aspects of metabolic change after hyperthermia. Recent Results Cancer Res 107: 7–16

    Article  PubMed  CAS  Google Scholar 

  • Streffer C (1990) Biological basis of thermotherapy. In: Gautherie M (ed) Biological basis of oncologic thermotherapy. Springer, Berlin Heidelberg New York, pp 1–71

    Chapter  Google Scholar 

  • Streffer C, van Beuningen D (1987) The biological basis for tumour therapy by hyperthermia and radiation. Recent Results Cancer Res 104: 24–70

    Article  PubMed  CAS  Google Scholar 

  • Tannock IF, Rotin D (1989) Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res 49: 4373–4384

    PubMed  CAS  Google Scholar 

  • Van den Berg AP, Wike-Hooley JL, Broekmeyer-Reurink P, van der Zee J, Reinhold HS (1989) The relationship between the unmodified initial tissue pH of human tumours and the response to combined radiotherapy and local hyperthermia treatment. Eur J Cancer Clin Oncol 25: 73–78

    Article  PubMed  Google Scholar 

  • Van den Berg AP, van de Merwe SA, van der Zee J (1991) Prognostic value of tumor tissue pH for tumor response to hyperthermia. In: Dewey WC, Edington M, Fry RJM, Hall EJ, Whitmore GF (eds) Radiation research: a twentieth century perspective, vol II. Academic Press, San Diego, pp 951–956

    Google Scholar 

  • Van de Merwe S, van den Berg AP, van der Zee J, Reinhold HS (1990) Measurement of tumor pH during microwave induced experimental and clinical hyperthermia with a fiber optic pH measurement system. Int J Radiat Oncol Biol Phys 18: 51–57

    Article  PubMed  Google Scholar 

  • Van der Zee J, Broekmeyer-Reurink MP, van den Berg AP, van Geel BN, Jansen RFM, Kroon BBR, van Wjik J, Hagenbeek A (1989) Temperature distribution and pH changes during hyperthermic regional isolation perfusion. Eur J Cancer Clin Oncol 25: 1157–1163

    Article  PubMed  Google Scholar 

  • Vaupel P (1990) Pathophysiological mechanisms of hyperthermia in cancer therapy. In: Gautherie M (ed) Biological basis of oncologic thermotherapy. Springer, Berlin Heidelberg New York, pp 73–134

    Chapter  Google Scholar 

  • Vaupel P (1992) Physiological properties of malignant tumours. NMR Biomed 5: 220–225

    Article  PubMed  CAS  Google Scholar 

  • Vaupel PW (1993a) Effects of physiological parameters on tissue response to hyperthermia: new experimental facts and their relevance to clinical problems. In: Gerner EW, Cetas TC (eds) Hyperthermic oncology, 1992, vol 2. Arizona Board of Regents, Tucson, pp 17–23

    Google Scholar 

  • Vaupel P (1993b) Oxygénation of solid tumors. In: Teicher BA (ed) Drug resistance in oncology. Marcel Dekker, New York, pp 53–85

    Google Scholar 

  • Vaupel P, Kallinowski F (1987) Physiological effects of hyperthermia. Recent Results Cancer Res 104: 71–109

    Article  PubMed  CAS  Google Scholar 

  • Vaupel P, Mueller-Klieser W (1983) Interstitieller Raum und Mikromilieu in malignen Tumoren. Mikrozirk Forsch Klin 2: 78–90

    Google Scholar 

  • Vaupel P, Kallinowski F, Kluge M (1988a) Pathophysiology of tumors in hyperthermia. Recent Results Cancer Res 107: 65–75

    Article  PubMed  CAS  Google Scholar 

  • Vaupel P, Kluge M, Ambroz MC (1988b) Laser Doppler flowmetry in subepidermal tumours and in normal skin of rats during localized ultrasound hyperthermia. Int J Hyperthermia 4: 307–321

    Article  PubMed  CAS  Google Scholar 

  • Vaupel P, Kallinowski F, Okunieff P (1989a) Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 49: 6449–6465

    PubMed  CAS  Google Scholar 

  • Vaupel P, Okunieff P, Kallinowski F, Neuringer LJ (1989b) Correlation between 31P-NMR spectroscopy and tissue O2 tension measurements in a murine fibrosarcoma. Radiat Res 120: 477–493

    Article  PubMed  CAS  Google Scholar 

  • Vaupel P, Okunieff P, Kluge M (1989c) Response of tumour red blood cell flux to hyperthermia and/or hyperglycaemia. Int J Hyperthermia 5: 199–210

    Article  PubMed  CAS  Google Scholar 

  • Vaupel P, Okunieff P, Neuringer LJ (1990) In vivo 31P-NMR spectroscopy of murine tumors before and after localized hyperthermia. Int J Hyperthermia 6: 15–31

    Article  PubMed  CAS  Google Scholar 

  • Vaupel P, Schienger K, Höckel M (1991) Blood flow and oxygénation of human tumors. Funktionsanalyse biologischer Systeme 20: 165–185

    Google Scholar 

  • Vaupel P, Kelleher DK, Krüger W (1992) Water-filtered infrared-A radiation: a novel technique to heat superficial tumors. Strahlenther Onkol 168: 633–639

    PubMed  CAS  Google Scholar 

  • Waterman FM, Tupchong L, Nerlinger RE, Matthews J (1991) Blood flow in human tumors during local hyperthermia. Int J Radiat Oncol Biol Phys 20: 1255–1262

    Article  PubMed  CAS  Google Scholar 

  • Wiedemann G, Roszinski S, Biersack A, Weiss C, Wagner T (1992) Local hyperthermia enhances cyclophosphamide, ifosfamide and cis-diamminedichloroplatinum cytotoxicity on human-derived breast carcinoma and sarcoma xenografts in nude mice. J Cancer Res Clin Oncol 118: 129–135

    Article  PubMed  CAS  Google Scholar 

  • Wike-Hooley JL, van der Zee J, van Rhoon GC, van den Berg AP, Reinhold HS (1984) Human tumour pH changes following hyperthermia and radiation therapy. Eur J Cancer Clin Oncol 20: 619–623

    Article  PubMed  CAS  Google Scholar 

  • Yoshikawa T, Kokura S, Tainaka K, Itani K, Oyamada H, Kaneko T, Naito Y, Kondo M (1993) The role of active oxygen species and lipid peroxidation in the antitumor effect of hyperthermia. Cancer Res 53: 2326–2329

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vaupel, P.W., Kelleher, D.K. (1995). Metabolic Status and Reaction to Heat of Normal and Tumor Tissue. In: Seegenschmiedt, M.H., Fessenden, P., Vernon, C.C. (eds) Thermoradiotherapy and Thermochemotherapy. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-57858-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-57858-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-63382-9

  • Online ISBN: 978-3-642-57858-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation