Pathophysiological Mechanisms of Hyperthermia in Cancer Therapy

  • Chapter
Biological Basis of Oncologic Thermotherapy

Part of the book series: Clinical Thermology ((1289))

  • 77 Accesses

Abstract

Increasing evidence supports the notion that malignant tumors can be damaged by a thermal dose which is innoxious to normal tissues. This preferential damage in tumors by hyperthermia is believed to be related to properties such as tumor blood flow (XBF), tissue oxygenation, pH distribution, and energy status — factors which generally go hand in hand, and in turn define the cellular microenvironment. Whether or not normal and malignant cells have different inherent thermosensitivities is still a controversial subject (Dethlefsen and Dewey 1982; Hahn 1982; Storm 1983).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 9.99
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Acker JC, Dewhirst MW, Honoré GM, Samulski TV, Tucker JA, Oleson JR (1990) Blood perfusion measurements in human tumours: evaluation of laser Doppler methods. Int J Hyperthermia 6:287–304

    PubMed  CAS  Google Scholar 

  • Ackerman NB, Hechmer PA (1978) Studies on the capillary permeability of experimental liver metastases. Surg Gynecol Obstet 146:884–888

    PubMed  CAS  Google Scholar 

  • Albers C, van den Kerckhoff W, Vaupel P, Mueller-Klieser W (1981) Effect of CO2 and lactic acid on intracellular pH of ascites tumor cells. Respir Physiol 45:273–285

    PubMed  CAS  Google Scholar 

  • Algire GH, Legallais FY (1951) Vascular reactions of normal and malignant tissues in vivo. IV. The effect of peripheral hypotension on transplanted tumors. JNCI 12:399–408

    PubMed  CAS  Google Scholar 

  • Anderson RL, Hahn GM (1985) Differential effects of hyperthermia on the Na+, K+-ATPase of Chinese hamster ovary cells. Radiat Res 102:314–323

    PubMed  CAS  Google Scholar 

  • Anghilieri LJ, Marchai C, Crone-Escanyé MC, Robert J (1985 a) Effects of extracellular calcium on calcium transport during hyperthermia of tumor cells. Eur J Cancer Clin Oncol 21:981–984

    Google Scholar 

  • Anghilieri LJ, Escanyé MC, Marchai C, Robert J (1985 b) Calcium, calcium-ATPase and cyclic AMP changes in Ehrlich ascites cells submitted to hyperthermia. Arch Geschwulstforsch 55:171–175

    Google Scholar 

  • Babbs CF, DeWitt DP, Voorhees WD, McCaw JS, Chan RC (1982) Theoretical feasibility of vasodilator-enhanced local tumor heating. Eur J Cancer Clin Oncol 18:1137–1146

    PubMed  CAS  Google Scholar 

  • Bagshaw MA, Taylor MA, Knapp DS, Meyer JL, Samulski TV, Lee ER, Fessenden P (1984) Anatomical site-specific modalities for hyperthermia. Cancer Res [Suppl] 44:4842s-4852s

    CAS  Google Scholar 

  • Barnikol WKR (1989) Temperatur, pH-Wert, Säurebelastung und Filtrierbarkeit normaler menschlicher Erythrozyten: In-vitro-Untersuchungen. Mögliche Methoden für die hyperther-me hyperazidotische Tumortherapie. Arch Geschwulstforsch 59:11–17

    PubMed  CAS  Google Scholar 

  • Barnikol WKR, Burkhard O (1984) Die Abhängigkeit der Ery-throzyten-Deformierbarkeit von der Glukosekonzentration bei Gesunden und Diabetikern. Funkt Biol Med 3:249–252

    Google Scholar 

  • Barnikol WKR, Burkhard O (1985) Die Abhängigkeit der Ery-throzyten-Deformierbarkeit von der Osmolarität, dem pH-Wert, der Temperatur und der Proteinkonzentration. Funkt Biol Med 4:55–60

    Google Scholar 

  • Bates DA, MacKillip WJ (1985) The effect of hyperthermia on the sodium-potassium pump in Chinese hamster ovary cells. Radiat Res 103:441–451

    PubMed  CAS  Google Scholar 

  • Bates DA, MacKillop WJ (1987) The effect of hyperthermia on intracellular K+ in Chinese hamster ovary cells. Cancer Lett 37:181–187

    PubMed  CAS  Google Scholar 

  • Baumgardner JE, Graves DJ, Neufeld GR, Quinn JA (1985) Gas flux through human skin: effect of temperature, strip**, and inspired tension. J Appl Physiol 58:1536–1545

    PubMed  CAS  Google Scholar 

  • Bicher HI, Mitagvaria NP (1984) Changes in tumor tissue oxygenation during microwave hyperthermia-clinical relevance. In: Overgaard J (ed) Hyperthermic oncology 1984. Taylor and Francis, London, pp 169–172

    Google Scholar 

  • Bicher HI, Vaupel PW (1980) Physiological mechanisms of localized microwave hyperthermia. In: Arcangeli G, Mauro F (eds) Hyperthermia in radiation oncology. Masson, Milan, pp 95–99

    Google Scholar 

  • Bicher HI, Hetzel FW, Sandhu TS, Frinak S, Vaupel P, O’Hara MD, O’Brien T (1980) Effects of hyperthermia on normal and tumor microenvironment. Radiology 137:523–530

    PubMed  CAS  Google Scholar 

  • Bicher HI, Sandhu TS, Vaupel P, Hetzel FW (1982) Effect of localized microwave hyperthermia on physiological responses. NCI Monogr 61:217–219

    Google Scholar 

  • Bieri VG, Wallach DFH (1975) Variations of lipid-protein interactions in erythrocyte ghosts as a function of temperature and pH in physiological and non-physiological ranges. Biochim Biophys Acta 406:415–423

    PubMed  CAS  Google Scholar 

  • Blendstrup K, Kluge M, Vaupel P (1985) Dynamic temperature map** of tumors. Strahlentherapie 161:525

    Google Scholar 

  • Blendstrup K, Kluge M, Kallinowski F, Vaupel P (1986) Inho-mogeneous temperature distribution in malignant tumors during ultrasound hyperthermia. Int J Hyperthermia 2:394

    Google Scholar 

  • Boonstra J, Schamhart DHJ, de Laat SW, van Wijk R (1984) Analysis of K+ and Na+ transport and intracellular contents during and after heat shock and their role in protein synthesis in rat hepatoma cells. Cancer Res 44:955–960

    PubMed  CAS  Google Scholar 

  • Borrelli MJ, Carlini WG, Ransom BR, Dewey WC (1986) Ion-sensitive microelectrode measurements of free intracellular chloride and potassium concentrations in hyperthermia-treated neuroblastoma cells. J Cell Physiol 129:175–184

    PubMed  CAS  Google Scholar 

  • Bowen JW, Levinson C (1984) H+ transport and the regulation of intracellular pH in Ehrlich ascites tumor cells. J Membr Biol 79:7–18

    PubMed  CAS  Google Scholar 

  • Burdon RH, Cutmore CMM (1982) Human heat shock gene expression and the modulation of plasma membrane Na+, K+-ATPase activity. FEBS Lett 140:45–48

    PubMed  CAS  Google Scholar 

  • Burdon RH, Kerr SM, Cutmore CMM, Munro J, Gill V (1984) Hyperthermia, Na+K+-ATPase and lactic acid promotion in some human tumor cells. Br J Cancer 49:437–445

    PubMed  CAS  Google Scholar 

  • Calderwood SK, Dickson JA (1980) Effect of hyperglycemia on blood flow, pH, and response to hyperthermia (42°) of the Yoshida sarcoma in the rat. Cancer Res 40:4728–4733

    PubMed  CAS  Google Scholar 

  • Calderwood SK, Dickson JA (1982) Inhibition of tumor blood flow at high blood sugar levels: effects on tumor pH and hyperthermia. NCI Monogr 61:221–223

    Google Scholar 

  • Calderwood SK, Bump EA, Stevenson MA, van Kersen I, Hahn GM (1985) Investigation of adenylate energy charge, phosphorylation potential, and ATP concentration in cells stressed with starvation and heat. J Cell Physiol 124:261–268

    PubMed  CAS  Google Scholar 

  • Cater DB, Silver IA (1960) Quantitative measurements of oxygen tension in normal tissues and in the tumours of patients before and after radiotherapy. Acta Radiol 53:233–256

    PubMed  CAS  Google Scholar 

  • Cavaliere R, Ciocatto EC, Giovanella BC, Heidelberger C, Johnson RO, Margottini M, Mondovi B, Moricca G, Rossi-Fanelli A (1967) Selective heat sensitivity of cancer cells. Cancer 20:1351–1381

    PubMed  CAS  Google Scholar 

  • Chaplin DJ (1989) Hydralazine-induced tumor hypoxia: A potential target for cancer chemotherapy. JNCI 81.618–622

    PubMed  CAS  Google Scholar 

  • Chu GL, Dewey WC (1987) Effect of hyperthermia on intracellular pH in Chinese hamster ovary cells. Radiat Res 110:439–449

    PubMed  CAS  Google Scholar 

  • Chu GL, Dewey WC (1988) The role of low intracellular or extracellular pH in sensitization to hyperthermia. Radiat Res 114:154–167

    PubMed  CAS  Google Scholar 

  • Cook JA, Fox MH (1988a) Effects of acute pH 6.6 and 42°C heating on the intracellular pH of Chinese hamster ovary cells. Cancer Res 48:496–502

    Google Scholar 

  • Cook JA, Fox MH (1988 b) Intracellular pH of Chinese hamster ovary cells heated at 45.0°C at pH 6.6. Radiat Res 115:96–105

    PubMed  CAS  Google Scholar 

  • Copley AL (1980) Fibrinogen gel clotting, pH and cancer therapy. Thromb Res 18:1–6

    PubMed  CAS  Google Scholar 

  • Copley AL, King RG (1984) A survey of surface hemor-rheological experiments on the inhibition of fibrinogenin formation employing surface layers of fibrinogen systems with heparins and other substances. A contribution on antithrom-bogenic action. Thromb Res 35:237–256

    PubMed  CAS  Google Scholar 

  • Dave S, Vaupel P, Mueller-Klieser W, Blendstrup K (1984) Temperature distribution in peripheral s.c. tumors in rats. In: Overgaard J (ed) Hyperthermic oncology 1984. Taylor and Francis, London, pp 503–506

    Google Scholar 

  • Dethlefsen LA, Dewey WC (1982) Cancer therapy by hyperthermia, drugs, and radiation. NCI Monogr 61:3–550

    Google Scholar 

  • Dewey WC (1959) Vascular-extravascular exchange of 131I plasma proteins in the rat. Am J Physiol 197:423–431

    PubMed  CAS  Google Scholar 

  • Dewey WC (1989) The search for critical cellular targets damaged by heat. Radiat Res 120:191–204

    PubMed  CAS  Google Scholar 

  • Dewhirst M, Gross JF, Sim D, Arnold P, Boyer D (1984 a) The effect of rate of heating or cooling prior to heating on tumor and normal tissue microcirculatory blood flow. Biorheology 21:539–558

    PubMed  CAS  Google Scholar 

  • Dewhirst M, Sim DA, Gross JF, Kundrat MA (1984b) Effect of heating rate on tumour and normal tissue microcirculatory function. In: Overgaard J (ed) Hyperthermic oncology 1984. Taylor and Francis, London, pp 177–180

    Google Scholar 

  • Dewhirst MW, Sim DA, Sapareto S, Connor WG (1984 c) Importance of minimum tumor temperature in determining early and long-term responses of spontaneous canine and feline tumors to heat and radiation. Cancer Res 44:43 – 50

    PubMed  CAS  Google Scholar 

  • Dickson JA, Calderwood SK (1979) Effects of hyperglycemia and hyperthermia on the pH, glycolysis, and respiration of the Yoshida sarcoma in vivo. JNCI 63:1371–1381

    PubMed  CAS  Google Scholar 

  • Dickson JA, Calderwood SK (1980) Temperature range and selective sensitivity of tumors to hyperthermia: a critical review. Ann NY Acad Sci 335:180–205

    PubMed  CAS  Google Scholar 

  • Dickson JA, Muckle DS (1972) Total-body hyperthermia versus primary tumor hyperthermia in the treatment of the rabbit VX-2 carcinoma. Cancer Res 32:1916–1923

    PubMed  CAS  Google Scholar 

  • Dickson JA, Oswald BE (1976) The sensitivity of a malignant cell line to hyperthermia (42 °C) at low intracellular pH. Br J Cancer 34:262–271

    PubMed  CAS  Google Scholar 

  • Dickson JA, Shah DM (1972) The effects of hyperthermia (42°C) on the biochemistry and growth of a malignant cell line. Eur J Cancer 8:561–571

    PubMed  CAS  Google Scholar 

  • Dickson JA, Suzangar M (1974) In vitro-in vivo studies on the susceptibility of the solid Yoshida sarcoma to drugs and hyperthermia (42°C). Cancer Res 34:1263–1274

    PubMed  CAS  Google Scholar 

  • Dikomey E, Eickhoff J, Jung H (1981) The effect of extracellular pH on heat-sensitivity and thermotolerance of CHO and R1H cells. Strahlentherapie 157:617

    Google Scholar 

  • DiPette DJ, Ward-Hartley KS, Jain RK (1986) Effect of glucose on systemic hemodynamics and blood flow in normal and tumor tissues in rats. Cancer Res 46:6299–6304

    PubMed  CAS  Google Scholar 

  • Dudar TE (1982) Flow modifications in normal and neoplastic tissues during growth and hyperthermia. PhD thesis, Faculty of Carnegie Institute of Technology, Carnegie-Mellon University, Pittsburgh, PA

    Google Scholar 

  • Dudar TE, Jain RK (1984) Differential response of normal and tumor microcirculation to hyperthermia. Cancer Res 44:605–612

    PubMed  CAS  Google Scholar 

  • Durand RE (1978) Potentiation of radiation lethality by hyperthermia in a tumor model: effects of sequence, degree, and duration of heating. Int J Radiat Oncol Biol Phys 4:401– 405

    PubMed  CAS  Google Scholar 

  • Eddy HA (1980) Alterations in tumor microvasculature during hyperthermia. Radiology 137:515–521

    PubMed  CAS  Google Scholar 

  • Eddy HA, Chmielewski G (1982) Effect of hyperthermia, radiation and adriamycin combinations on tumor vascular function. Int J Radiat Oncol Biol Phys 8:1167–1175

    PubMed  CAS  Google Scholar 

  • Eddy HA, Sutherland RM, Chmielewski G (1982) Tumor microvascular response: hyperthermia and radiation combinations. NCI Monogr 61:225–229

    Google Scholar 

  • Eigenbrodt E, Fister P, Reinacher M (1985) New perspectives on carbohydrate metabolism in tumor cells. In: Beitner R (ed) Regulation of carbohydrate metabolism, vol IL CRC, Boca Raton, pp 141–179

    Google Scholar 

  • Eltaki A, Milligan AJ, Selman SH (1987) Changes in canine prostatic blood flow during intraoperative interstitial hyperthermia. In: Proceedings of the 35th annual meeting of the Radiation Research Society, Atlanta (abstr Co-14)

    Google Scholar 

  • Eltaki A, Proctor M, Wright RJ, Milligan AJ (1988) Effects of fractionated hyperthermia on normal canine prostatic blood flow. In: Proceedings of the 36th annual meeting of the Radiation Research Society, Philadelphia (abstr Ck-6)

    Google Scholar 

  • Emami B, Song CW (1984) Physiological mechanisms in hyperthermia: a review. Int J Radiat Oncol Biol Phys 10:289–295

    PubMed  CAS  Google Scholar 

  • Emami B, Nussbaum GH, Ten Haken RK, Hughes WL (1980) Physiological effects of hyperthermia: response of capillary blood flow and structure to local tumor heating. Radiology 137:805–809

    PubMed  CAS  Google Scholar 

  • Emami B, Nussbaum GH, Hahn N, Piro A, Dritschilo A, Quim-by F (1981) Histopathological study on the effects of hyperthermia on microvasculature. Int J Radiat Oncol Biol Phys 7:343–348

    PubMed  CAS  Google Scholar 

  • Endrich B (1988) Hyperthermie und Tumormikrozirkulation. Eine kritische Wertung experimenteller und klinischer Befunde. Beiträge Onkol 31:1–138

    Google Scholar 

  • Endrich B, Hammersen F (1986) Morphologic and hemodynamic alterations in capillaries during hyperthermia. In: Anghilieri LJ, Robert J (eds) Hyperthermia in cancer treatment, vol IL CRC, Boca Raton, pp 17–47

    Google Scholar 

  • Endrich B, Zweifach BW, Reinhold HS, Intaglietta M (1979) Quantitative studies of microcirculatory function in malignant tissue: influence of temperature on microvascular hemodynamics during the early growth of the BA1112 rat sarcoma. Int J Radiat Oncol Biol Phys 5:2021–2030

    PubMed  CAS  Google Scholar 

  • Endrich B, Voges J, Lehmann A (1984) The microcirculation of the amelanotic melanoma A-Mel-3 during hyperthermia. In: Overgaard J (ed) Hyperthermic oncology 1984. Taylor and Francis, London, pp 137–140

    Google Scholar 

  • Enkema L, Holloway GA, Piraino DW, Harry D, Zick GL, Kenny MA (1981) Laser Doppler velocimetry vs heater power as indicators of skin perfusion during transcutaneous O2 monitoring. Clin Chem 27:391–396

    PubMed  CAS  Google Scholar 

  • Evanochko WT, Ng TC, Lilly MB, Lawson AJ, Corbett TH, Durant JR, Glickson JD (1983) In vivo 31P NMR study of the metabolism of murine mammary 16/C adenocarcinoma and its response to chemotherapy, x-radiation, and hyperthermia. Proc Natl Acad Sci USA 80:334–338

    PubMed  CAS  Google Scholar 

  • Evanochko WT, Ng TC, Glickson JD (1984) Application of in vivo NMR spectroscopy to cancer. Magn Reson Med 1:508–534

    PubMed  CAS  Google Scholar 

  • Fajardo LF, Prionas SD, Kowalski J, Kwan HH (1988) Hyperthermia inhibits angiogenesis. Radiat Res 114:297–306

    PubMed  CAS  Google Scholar 

  • Fessenden P, Lee ER, Samulski TV (1984) Direct temperature measurements. Cancer Res [Suppl] 44:4799s-4804s

    CAS  Google Scholar 

  • Field SB, Morris CC (1984) Application of the relationship between heating time and temperature for use as a measure of thermal dose. In: Overgaard J (ed) Hyperthermic oncology 1984. Taylor and Francis, London, pp 183–186

    Google Scholar 

  • Freeman ML, Dewey WC, Hopwood LE (1977) Effect of pH on hyperthermic cell survival. JNCI 58:1837–1839

    PubMed  CAS  Google Scholar 

  • Gerlowski LE, Jain RK (1985) Effect of hyperthermia on microvascular permeability of normal and neoplastic tissues. Int J Microcirc Clin Exp 4:336–372

    Google Scholar 

  • Gerlowski LE, Jain RK (1986) Microvascular permeability of normal and neoplastic tissues. Microvasc Res 31:288–305

    PubMed  CAS  Google Scholar 

  • Gerweck LE, Richards B (1981) Influence of pH on the thermal sensitivity of cultured human glioblastoma cells. Cancer Res 41:845–849

    PubMed  CAS  Google Scholar 

  • Gerweck LE, Gillette EL, Dewey WC (1974) Killing of Chinese hamster cells in vitro by heating under hypoxic and aerobic conditions. Eur J Cancer 10:691–693

    PubMed  CAS  Google Scholar 

  • Gerweck LE, Dahlberg WK, Epstein LF, Shimm DS (1984) Influence of nutrient and energy deprivation on cellular response to single and fractionated heat treatments. Radiat Res 99:573–581

    PubMed  CAS  Google Scholar 

  • Gerweck LE, Urano M, Koutcher J, Fellenz MP, Kahn J (1989) Relationship between energy status, hypoxic cell fraction, and hyperthermic sensitivity in a murine fibrosarcoma. Radiat Res 117:448–458

    PubMed  CAS  Google Scholar 

  • Gibbs FA, Peck JW, Dethlefsen LA (1981) The importance of intratumor temperature uniformity in the study of radiosensi-tizing effects of hyperthermia in vivo. Radiat Res 87:187–197

    PubMed  Google Scholar 

  • Gillies RJ, Ogino T, Shulman RG, Ward DC (1982) 31P Nuclear magnetic resonance evidence for the regulation of intracellular pH by Ehrlich ascites tumor cells. J Cell Biol 95:24–28

    PubMed  CAS  Google Scholar 

  • Goldin EM, Leeper DB (1981) The effect of reduced pH on the induction of thermotolerance. Radiology 141:505–508

    PubMed  CAS  Google Scholar 

  • Groebe K, Kallinowski F, Vaupel P (1987) Is the division of heated tissue into temperature equivalent zones suitable for estimation of tumor blood flow from thermal clearance curves? Int J Radiat Oncol Biol Phys 13:917–920

    PubMed  CAS  Google Scholar 

  • Gullino PM (1980) Influence of blood supply on thermal properties and metabolism of mammary carcinomas. Ann NY Acad Sci 335:1–21

    PubMed  CAS  Google Scholar 

  • Gullino PM, Yi PN, Grantham FH (1978) Relationship between temperature and blood supply or consumption of oxygen and glucose by rat mammary carcinomas. JNCI 60:835–847

    PubMed  CAS  Google Scholar 

  • Gullino PM, Jain RK, Grantham FH (1982) Temperature gradients and local perfusion in a mammary carcinoma. JNCI 68:519–533

    PubMed  CAS  Google Scholar 

  • Hahn GM (1982) Hyperthermia and cancer. Plenum, New York

    Google Scholar 

  • Hahn GM, Shiu EC (1986) Adaptation to low pH modifies thermal and thermo-chemical responses of mammalian cells. Int J Hyperthermia 2:379–387

    PubMed  CAS  Google Scholar 

  • Harrison DK, Walker WF (1979) Micro-electrode measurement of skin pH in humans during ischemia, hypoxia and local hypothermia. J Physiol 291:339–350

    PubMed  CAS  Google Scholar 

  • Hetzel FW, O’Hara MD, Frinak S (1984) Comparison of temperature distributions between microwave and waterbath heated murine tumours. In: Overgaard J (ed) Hyperthermic oncology 1984. Taylor and Francis, London, pp 565–567

    Google Scholar 

  • Hetzel FW, Avery K, Chopp M (1989) Hyperthermic “dose” dependent changes in intralesional pH. Int J Radiat Oncol Biol Phys 16:183–186

    PubMed  CAS  Google Scholar 

  • Hill SA, Denekamp J (1979) The response of six mouse tumours to combined heat and X rays: implications for therapy. Br J Radiol 52:209–218

    PubMed  CAS  Google Scholar 

  • Hill SA, Denekamp J (1982) Site dependent response of tumours to combined heat and radiation. Br J Radiol 55:905–912

    PubMed  CAS  Google Scholar 

  • Hill SA, Denekamp J, Travis EL (1980) Temperature nonunifor-mity in waterbath-heated tumours. In: Arcangeli G, Mauro F (eds) Hyperthermia in radiation oncology. Masson, Milan, pp 45–51

    Google Scholar 

  • Hill SA, Smith KA, Denekamp J (1989) Reduced thermal sensitivity of the vasculature in a slowly growing tumour. Int J Hyperthermia 5:359–370

    PubMed  CAS  Google Scholar 

  • Hiraoka M, Hahn GM (1989) Comparison between tumor pH and cell sensitivity to heat in RIF-1 tumors. Cancer Res 49:3734–3736

    PubMed  CAS  Google Scholar 

  • Hiraoka M, Hahn GM (1990) Changes in pH and blood flow induced by glucose, and their effects on hyperthermia with or without BCNU in RIF-1 tumours. Int J Hyperthermia 6:97–103

    PubMed  CAS  Google Scholar 

  • Hofer KG, Mivechi NF (1980) Tumor cell sensitivity to hyperthermia as a function of extracellular and intracellular pH. JNCI 65:621–625

    PubMed  CAS  Google Scholar 

  • Horsman MR, Christensen KL, Overgaard J (1989) Hydrala-zine-induced enhancement of hyperthermic damage in a C3H mammary carcinoma in vivo. Int J Hyperthermia 5, 123–136

    PubMed  CAS  Google Scholar 

  • Intaglietta M, Myers RK, Gross JF, Reinhold HS (1977) Dynamics of microvascular flow in implanted mouse mammary tumours. Bibl Anat 15:273–276

    PubMed  Google Scholar 

  • Jain RK (1980) Temperature distributions in normal and neoplastic tissues during normothermia and hyperthermia. Ann NY Acad Sci 335:48–66

    PubMed  CAS  Google Scholar 

  • Jain RK (1987 a) Transport of molecules across tumor vasculature. Cancer Metastasis Rev 6:559–593

    PubMed  CAS  Google Scholar 

  • Jain RK (1987 b) Tumor blood flow response to hyperthermia and pharmacological agents. In: Fielden EM, Fowler JF, Hendry JH, Scott D (eds) Radiation research. Taylor and Francis, London, pp 813–818

    Google Scholar 

  • Jain RK, Ward-Hartley K (1984) Tumor blood flow-characterization, modifications, and role in hyperthermia. IEEE Trans Sonics Ultrasonics SU-31:504–526

    Google Scholar 

  • Johnson RJR (1978) Radiation and hyperthermia. In: Streffer C, van Beuningen D, Dietzel F, Röttinger E, Robinson JE, Scherer E, Seeber S, Trott KR (eds) Cancer therapy by hyperthermia and radiation. Urban and Schwarzenberg, Baltimore, pp 89–95

    Google Scholar 

  • Kallinowski F, Vaupel P (1989) Factors governing hyperthermia-induced pH changes in malignant tumors. Int J Hyperthermia 5:641–652

    PubMed  CAS  Google Scholar 

  • Kallinowski F, Vaupel P, Schaefer C, Benzing H, Mueller-Schauenburg W, Fortmeyer HP (1984) Hyperthermia-induced blood flow changes in human mammary carcinomas transplanted into nude (rnu/rnu) rats. In: Overgaard J (ed) Hyperthermic oncology 1984. Taylor and Francis, London, pp 133–136

    Google Scholar 

  • Kallinowski F, Schaefer C, Vaupel P (1987) Recombinant human tumor necrosis factor: Effects on tumor blood flow. 11th Ann Meeting German Microcircul Society, Heidelberg

    Google Scholar 

  • Kallinowski F, Schaefer C, Tyler G, Vaupel P (1989a) In vivo targets of recombinant human tumour necrosis factor-a: blood flow, oxygen consumption and growth of isotransplanted rat tumours. Br J Cancer 60:555–560

    PubMed  CAS  Google Scholar 

  • Kallinowski F, Moehle R, Schaefer C, Vaupel P (1989b) Effects of tumor necrosis factor-a on tumor blood flow and hyperthermic treatment. Onkologie 12:131–135

    PubMed  CAS  Google Scholar 

  • Kallinowski F, Schaefer C, Tyler G, Moehle R, Vaupel P (1989 c) Wirkungen von rekombinantem humanem Tumor-Nekro-se-Faktor-a auf bösartige Tumoren in vivo. Drug Res 39:410–414

    CAS  Google Scholar 

  • Kalmus J, Okunieff P, Vaupel P (1989) Effect of intraperitoneal versus intravenous glucose administration on laser Doppler flow in murine FSall tumors and normal skin. Cancer Res 49:6313–6317

    PubMed  CAS  Google Scholar 

  • Kalmus J, Okunieff P, Vaupel P (1990) Dose-dependent effects of hydralazine on microcirculatory function and hyperthermic response of murine FSall tumors. Cancer Res 50:15–19

    PubMed  CAS  Google Scholar 

  • Karino T, Koga S, Maeta M, Hamazoe R, Yamane T, Oda M (1984) Experimental and clinical studies on effects of hyperthermia on tumor blood flow. In: Overgaard J (ed) Hyperthermic oncology 1984. Taylor and Francis, London, pp 173–176

    Google Scholar 

  • Kawei T, Satomi N, Sato N, Sakurai A, Haranaka K, Goto T, Suzuki M (1987) Effects of tumor necrosis factor (TNF) on transplanted tumors induced by methylcholanthrene in mice. Virchows Arch [B] 52:489–500

    Google Scholar 

  • Kim JH, Hahn EW (1979) Clinical and biological studies of localized hyperthermia. Cancer Res 39:2258–2261

    PubMed  CAS  Google Scholar 

  • Knapp WH, Debatin J, Layer K, Helus F, Altmann A, Sinn H-J, Ostertag H (1985) Selective drug induced reduction of blood flow in tumor transplants. Int J Radiat Oncol Biol Phys 11:1357–1366

    PubMed  CAS  Google Scholar 

  • Knapp WH, Debatin J, Helus F, Sinn H-J, Ostertag H (1989) Increased thermal response to ultrasound in the Walker carcinosarcoma treated with vasoactive drugs. Cancer Res 49:1768–1772

    PubMed  CAS  Google Scholar 

  • Lefor AT, Makohon S, Ackerman NB (1985) The effects of hyperthermia on vascular permeability in experimental liver metastasis. J Surg Oncol 28:297–300

    PubMed  CAS  Google Scholar 

  • Lepock JR (1982) Involvement of membranes in cellular responses to hyperthermia. Radiat Res 92:433–438

    PubMed  CAS  Google Scholar 

  • Lilly MB, Ng TC, Evanochko WT, Katholi CR, Kumar NG, Elgavish GA, Durant JR, Hiramoto R, Ghanta V, Glickson JD (1984) Loss of high-energy phosphate following hyperthermia demonstrated by in vivo 31-nuclear magnetic resonance spectroscopy. Cancer Res 44:633–638

    PubMed  CAS  Google Scholar 

  • Lilly MB, Katholi CR, Ng TC (1985) Direct relationship between high-energy phosphate content and blood flow in thermally treated murine tumors. JNCI 75:885–889

    PubMed  CAS  Google Scholar 

  • Lokshina AM, Song CW, Rhee JG, Levitt SH (1985) Effect of fractionated heating on the blood flow in normal tissues. Int J Hyperthermia 1:117–129

    PubMed  CAS  Google Scholar 

  • Manz R, Otte J, Thews G, Vaupel P (1983) Relationship between size and oxygenation status of malignant tumors. Adv Exp Med Biol 159:391–398

    PubMed  CAS  Google Scholar 

  • Marmor JB, Pounds D, Hahn N, Hahn GM (1978) Treating spontaneous tumors in dogs and cats by ultrasound-induced hyperthermia. Int J Radiat Oncol Biol Phys 4:967–973

    PubMed  CAS  Google Scholar 

  • Marmor JB, Hilerio FJ, Hahn GM (1979) Tumor eradication and cell survival after localized hyperthermia induced by ultrasound. Cancer Res 39:2166–2171

    PubMed  CAS  Google Scholar 

  • Matsuda H, Sugimachi K, Kuwano H, Mori M (1989) Hyperthermia, tissue microcirculation, and temporarily increased thermosensitivity in VX2 carcinoma in rabbit liver. Cancer Res 49:2777–2782

    PubMed  CAS  Google Scholar 

  • Mayer WK, Stohrer M, Walenta S, Schaefer C, Krüger W, Mueller-Klieser W, Vaupel P (1990 a) Microcirculatory function and energy status of rat tumors upon hyperthermia and/or hyperglycemia. 38th Ann Meeting, Radiat Res Soc, New Orleans

    Google Scholar 

  • Mayer WK, Schlenger K, Stohrer M, Reibold R, Vaupel P (1990 b) Microcirculatory function and tissue oxygen distribution in rat tumors upon hyperthermia and/or hyperglycemia. 15th Int Cancer Congress, Hamburg

    Google Scholar 

  • Milligan AJ (1987) Canine muscle blood flow during fractionated hyperthermia. Int J Hyperthermia 3:353–359

    PubMed  CAS  Google Scholar 

  • Milligan AJ, Panjehpour M (1983) Canine normal and tumor tissue blood flow during fractionated hyperthermia. In: Broerse JJ, Barendsen GW, Kal HB, van der Kogel AJ (eds) Proceedings of the 7th ICRR. Martinus Nijhoff Boston, Nr D6–35

    Google Scholar 

  • Milligan AJ, Panjehpour M (1985) Canine normal and tumor tissue estimated blood flow during fractionated hyperthermia. Int J Radiat Oncol Biol Phys 11:1679–1684

    PubMed  CAS  Google Scholar 

  • Milligan AJ, Conran PB, Ropar MA, McCulloch HA, Ahuja RK, Dobelbower RR (1983) Predictions of blood flow from thermal clearance during regional hyperthermia. Int J Radiat Oncol Biol Phys 9:1335–1343

    PubMed  CAS  Google Scholar 

  • Mondovi B, Strom R, Rotilio G, Agro AF, Cavaliere R, Fanelli AR (1969) The biochemical mechanism of selective heat sensitivity of cancer cells. I. Studies on cellular respiration. Eur J Cancer 5:129–136

    PubMed  CAS  Google Scholar 

  • Moon RB, Richards JH (1973) Determination of intracellular pH by 31P magnetic resonance. J Biol Chem 248:7276–7278

    PubMed  CAS  Google Scholar 

  • Mueller-Klieser W, Vaupel P (1983 a) Oxygen availability as the main determinant of O2 consumption in tumors during hyperthermia. In: Proceedings of the 3rd annual meeting of the North American Hyperthermia Group, San Antonio, pp 38–39

    Google Scholar 

  • Mueller-Klieser W, Vaupel P (1983 b) Tumor oxygenation under normobaric and hyperbaric conditions. Br J Radiol 56: 559–564

    PubMed  CAS  Google Scholar 

  • Mueller-Klieser W, Vaupel P (1984) Effect of hyperthermia on tumor blood flow. Biorheology 21:529–538

    Google Scholar 

  • Mueller-Klieser W, Vaupel P, Manz R, Grunewald WA (1980) In-tracapillary oxyhemoglobin saturation in malignant tumors with central or peripheral blood supply. Eur J Cancer 16:195–201

    CAS  Google Scholar 

  • Mueller-Klieser W, Vaupel P, Manz R, Schmidseder R (1981) In-tracapillary oxyhemoglobin saturation of malignant tumors in humans. Int J Radiat Oncol Biol Phys 7:1397–1404

    PubMed  CAS  Google Scholar 

  • Mueller-Klieser W, Vaupel P, Sutherland RM (1983) Impact of hyperthermia on the oxygen consumption of single tumor cells, multicellular tumor spheroids, and of solid tumors. Strahlentherapie 159:380–381

    Google Scholar 

  • Mueller-Klieser W, Manz R, Otte J, Vaupel P (1984) Effect of localized hyperthermia on tumor blood flow and oxygenation. In: Francis E, Ring J, Phillips B (eds) Recent advances in medical thermology. Plenum, New York, pp 669–676

    Google Scholar 

  • Mueller-Klieser W, Walenta S, Paschen W, Kallinowski F, Vaupel P (1988) Metabolic imaging in microregions of tumors and normal tissues with bioluminescence and photon counting. JNCI 80:842–848

    PubMed  CAS  Google Scholar 

  • Nagaska T, Hirata K, Nunomura T (1987 a) Contribution of arteriovenous anastomoses to vasoconstriction induced by local heating of the human finger. Jpn J Physiol 37:425–433

    Google Scholar 

  • Nagasaka T, Hirata K, Nunomura T, Cabanac M (1987 b) The effect of local heating on blood flow in the finger and the forearm skin. Can J Physiol Pharmacol 65:1329–1332

    PubMed  CAS  Google Scholar 

  • Nakajima T, Tsumura M, Onoyama Y (1984) Clinical experience with hyperthermia in cancer radiotherapy: special reference to in vivo thermometry. In: Sato H (ed) Modification of radiosensitivity in cancer treatment. Academic, Tokyo

    Google Scholar 

  • Naruse S, Higuchi T, Horikawa Y, Tanaka C, Nakamura K, Hirakawa K (1986) Radiofrequency hyperthermia with successive monitoring of its effects on tumors using NMR spectroscopy. Proc Natl Acad Sci USA 83:8343–8347

    PubMed  CAS  Google Scholar 

  • Navon G, Ogawa S, Shulman RG, Yamane T (1977) 31P Nuclear magnetic resonance studies of Ehrlich ascites tumor cells. Proc Natl Acad Sci USA 74:87–91

    PubMed  CAS  Google Scholar 

  • Neufeld GR, Reilly CA, Galante SR, Roberts AB, Baumgardner JE, Graves DJ, Quinn JA (1987) Response of cutaneous laser velocimetry to a temperature change: normal and dysvascular patients compared. Vase Surg 21:331–338

    Google Scholar 

  • Neufeld GR, Galante SR, Whang JM, de Vries D, Baumgardner JE, Graves DJ, Quinn JA (1988) Skin blood flow from gas transport: helium, xenon and laser Doppler compared. Microvasc Res 35:143–152

    PubMed  CAS  Google Scholar 

  • Ng TC, Evanochko WT, Hiramoto RN, Ghanta VK, Lilly MB, Lawson AJ, Corbett TH, Durant JR, Glickson JD (1982) 31P NMR spectroscopy of in vivo tumors. J Magnet Res 49:271–286

    CAS  Google Scholar 

  • Nielsen OS, Overgaard J (1979) Effect of extracellular pH on thermotolerance and recovery of hyperthermic damage in vitro. Cancer Res 39:2772–2778

    PubMed  CAS  Google Scholar 

  • Nishimura Y, Hiraoka M, Jo S, Akuta K, Yukawa Y, Shibamoto Y, Takahashi M, Abe M (1988 a) Microangiographic and histologic analysis of the effects of hyperthermia on murine tumor vasculature. Int J Radiat Oncol Biol Phys 15:411–420

    PubMed  CAS  Google Scholar 

  • Nishimura Y, Shibamoto Y, Jo S, Akuta K, Hiraoka M, Takahashi M, Abe M (1988 b) Relationship between heat-induced vascular damage and thermosensitivity in four mouse tumors. Cancer Res 48:7226–7230

    PubMed  CAS  Google Scholar 

  • O’Connor SW, Bale WF (1984) Accessibility of circulating immunoglobulin G to the extravascular compartment of solid rat tumors. Cancer Res 44:3719–3723

    PubMed  Google Scholar 

  • O’Hara M, Hetzel FW, Avery K (1985 a) Mild (40°C) microwave hyperthermia and tumor oxygenation. In: 33rd annual meeting of the Radiation Research Society, Los Angeles (abstr No Fa-35)

    Google Scholar 

  • O’Hara M, Hetzel FW, Frinak S (1985 b) Thermal distributions in a water bath heated mouse tumor. Int J Radiat Oncol Biol Phys 11:817–822

    PubMed  Google Scholar 

  • Okunieff PG, Koutcher JA, Gerweck L, McFarland E, Hitzig B, Urano M, Brady T, Neuringer L, Suit HD (1986) Tumor size dependent changes in a murine fibrosarcoma: use of in vivo 31P NMR for non-invasive evaluation of tumor metabolic status. Int J Radiat Oncol Biol Phys 12:793–799

    PubMed  CAS  Google Scholar 

  • Okunieff P, Kallinowski F, Vaupel P, Neuringer LJ (1988) Effects of hydralazine-induced vasodilation on the energy metabolism of murine tumors studied by in vivo 31-nuclear magnetic resonance spectroscopy. JNCI 80:745–750

    PubMed  CAS  Google Scholar 

  • Okunieff P, Vaupel P, Sedlacek R, Neuringer LJ (1989) Evaluation of tumor energy metabolism and microvascular blood flow after glucose or mannitol administration using 31P nuclear magnetic resonance spectroscopy and laser Doppler flowmetry. Int J Radiat Oncol Biol Phys 16:1493–1500

    PubMed  CAS  Google Scholar 

  • Olch AJ, Kaiser LR, Silberman AW, Storm FK, Graham LS, Morton DL (1983) Blood flow in human tumors during hyperthermia therapy: demonstration of vasoregulation and an applicable physiological model. J Surg Oncol 23:125–132

    PubMed  CAS  Google Scholar 

  • Osinsky SP, Sidorenko MV, Nikolaev VG (1985) Local blood flow in the tumour during induced hyperglycemia. Exp Oncol 7:51–53

    Google Scholar 

  • Overgaard J (1976) Influence of extracellular pH on the viability and morphology of tumor cells exposed to hyperthermia. J N C I 56:1243–1250

    Google Scholar 

  • Overgaard J (1980) Simultaneous and sequential hyperthermia and radiation treatment of an experimental tumor and its surrounding normal tissue in vivo. Int J Radiat Oncol Biol Phys 6:1507–1517

    PubMed  CAS  Google Scholar 

  • Overgaard J (1983) Histopathologic effects of hyperthermia. In: Storm FK (ed) Hyperthermia in cancer therapy. Hall Medical, Boston, pp 163–185

    Google Scholar 

  • Overgaard J, Bichel P (1977) The influence of hypoxia and acidity on the hyperthermic response of malignant cells in vitro. Radiology 123:511–514

    PubMed  CAS  Google Scholar 

  • Ozimek EJ, Cetas TC (1982) Thermal dosimetry during hyperthermia. NCJ Monogr 61:509–512

    Google Scholar 

  • Papadimitriou JM, Woods AE (1975) Structural and functional characteristics of the microcirculation in neoplasms. J Pathol 116:65–72

    Google Scholar 

  • Peck JW, Gibbs FA (1983) Capillary blood flow in murine tumors, feet, and intestines during localized hyperthermia. Radiat Res 96:65–81

    PubMed  CAS  Google Scholar 

  • Pence DM, Song CW (1986) Effects of heat on blood flow. In: Anghilieri LJ, Robert J (eds) Hyperthermia in cancer treatment, vol IL CRC, Boca Raton, pp 1–16

    Google Scholar 

  • Peterson HI (1979) Tumor blood circulation: angiogenesis, vascular morphology and blood flow of experimental and human tumors. CRC, Boca Raton

    Google Scholar 

  • Peterson HI, Applegren L, Lundborg G, Rosengren B (1973) Capillary permeability of two transplantable rat tumors as compared with various normal organs of the rat. Bibl Anat 12:511–518

    PubMed  CAS  Google Scholar 

  • Podo F, Carpinelli G, De Vito M, Giannini M, Proietti E, Fiers W, Gresser I, Belardelli F (1987) NMR analyses of early metabolic alterations induced by tumor necrosis factor in murine tumors. In: 6th annual meeting of the Society for Magnetic Resonance Medicine, New York

    Google Scholar 

  • Poole DT, Butler TC, Waddell WJ (1964) Intracellular pH of the Ehrlich ascites tumor cell. JNCI 32:939–946

    CAS  Google Scholar 

  • Rahn H, Reeves RB, Howell BJ (1974) Intra- and extracellular pH as a function of body temperature. Proc Int Union Physiol Sci 10:56–57

    Google Scholar 

  • Rapoport S, Nieradt-Hiebsch C, Thamm R (1971) Über den Einfluß der Hyperthermie auf die Verwertung von Substraten in Ehrlich-Ascites-Tumorzellen und Kaninchenretikulozyten. Acta Biol Med Ger 26:483–500

    PubMed  CAS  Google Scholar 

  • Rappaport DS, Song CW (1983) Blood flow and intravascular volume of mammary adenocarcinoma 13726A and normal tissues of rat during and following hyperthermia. Int J Radiat Oncol Biol Phys 9:539–547

    PubMed  CAS  Google Scholar 

  • Reinhold HS (1987) Effects of hyperthermia on tumour microcirculation. In: Field SB, Franconi C (eds) Physics and technology of hyperthermia. Martinus Nijhoff Publishers, Dordrecht, Boston, Lan caster, pp 458–469

    Google Scholar 

  • Reinhold HS (1988) Physiological effects of hyperthermia. Rec Res Cancer Res 107:32–43

    CAS  Google Scholar 

  • Reinhold HS, Endrich B (1986) Tumour microcirculation as a target for hyperthermia. Int J Hyperthermia 2:111–137

    PubMed  CAS  Google Scholar 

  • Reinhold HS, van den Berg-Blok A (1980) Enhancement of thermal damage to “sandwich” tumours by additional treatment. In: Arcangeli G, Mauro F (eds) Hyperthermia in radiation oncology. Masson, Milan, pp 179–183

    Google Scholar 

  • Reinhold HS, van den Berg-Blok A (1981) Enhancement of thermal damage to the microcirculation of “sandwich” tumours by additional treatment. Eur J Cancer Clin Oncol 17:781–795

    PubMed  CAS  Google Scholar 

  • Reinhold HS, van den Berg-Blok AE (1983) Hyperthermia-in-duced alteration in erythrocyte velocity in tumors. Int J Microcirc Clin Exp 2:285–295

    PubMed  CAS  Google Scholar 

  • Reinhold HS, van den Berg-Blok AE (1984) Heat-induced microcirculatory stoppage strongly enhances tumour control by radiation. In: Overgaard J (ed) Hyperthermic oncology, vol I. Taylor and Francis, London, pp 149–152

    Google Scholar 

  • Reinhold HS, van den Berg-Blok AE (1985) Microcirculation response of a human colon carcinoma xenograft in sandwich observation chambers. Strahlentherapie 161:547

    Google Scholar 

  • Reinhold HS, van den Berg-Blok AE (1989) Differences in the response of the microcirculation to hyperthermia in five different tumours. Eur J Cancer Clin Oncol 25:611–618

    PubMed  CAS  Google Scholar 

  • Reinhold HS, Blachiewitz B, van den Berg-Blok A (1977) Oxygenation and reoxygenation in “sandwich” tumors. Bibl Anat 15:270–272

    PubMed  Google Scholar 

  • Reinhold HS, Wike-Hooley JL, van den Berg AP, van den Berg-Blok A (1984) Environmental factors, blood flow and microcirculation. In: Overgaard J (ed) Hyperthermic oncology, vol II. Taylor and Francis, London

    Google Scholar 

  • Reneman RS, van der Vusse GJ, Borgers M (1987) Calcium entry blockers in ischemia and reperfusion. In: 4th World congress for microcirculation. Tokyo (abstr No 068)

    Google Scholar 

  • Rhee JG, Kim TH, Levitt SH, Song CW (1984) Changes in acidity of mouse tumor by hyperthermia. Int J Radiat Oncol Biol Phys 10:393–399

    PubMed  CAS  Google Scholar 

  • Robert J, Escanye JM, Marchai C, Thouvenot P (1982) Blood flow and temperature evolution of rhabdomyosarcoma-bear-ing mice during normal growth and during sequential hyperthermia treatment. In: Gautherie M, Albert E (eds) Biomedical thermology. Liss, New York, pp 85–95

    Google Scholar 

  • Robinson JE, Harrison GH, McCready WA, Samarar GM (1978) Good thermal dosimetry is essential to good hyperthermia research. Br J Radiol 51:532–534

    PubMed  CAS  Google Scholar 

  • Robinson JE, McCulloch D, McCready WA (1982) Blood perfusion of murine tumors at normal and hyperthermal temperatures. NCI Monogr 61:211–215

    Google Scholar 

  • Roemer RB, Forsyth K, Oleson JR, Clegg ST, Sim DA (1988) The effect of hydralazine dose on blood perfusion changes during hyperthermia. Int J Hyperthermia 4:401–415

    PubMed  CAS  Google Scholar 

  • Rosenthal TB (1948) The effect of temperature on the pH of blood and plasma in vitro. J Biol Chem 173:25–30

    PubMed  CAS  Google Scholar 

  • Ruifrock ACC, Kanon B, Konings AWT (1985) Correlation between cellular survival and potassium loss in mouse fibroblasts after hyperthermia alone and after combined treatment with X rays. Radiat Res 101:326–331

    Google Scholar 

  • Ruifrock ACC, Kanon B, Konings AWT (1986) Na+/K+ ATPase activity in mouse lung fibroblasts and HeLa S3 cells during and after hyperthermia. Int J Hyperthermia 2:51–59

    Google Scholar 

  • Ruifrock ACC, Kanon B, Konings AWT (1987) Heat-induced K+ loss, Trypan blue uptake, and cell lysis in different cell lines: effect of serum. Radiat Res 109:303–309

    Google Scholar 

  • Ryu HL, Song CW, Kang MS, Levitt SH (1982) Changes in lactic acid content in tumors by hyperthermia. In: Proceedings of the 2nd annual meeting of the North American Hyperthermia Group, Salt Lake City

    Google Scholar 

  • Sandhu TS (1986) Measurement of blood flow using temperature decay: effect of thermal conduction. Int J Radiat Oncol Biol Phys 12:373–378

    PubMed  CAS  Google Scholar 

  • Sands H, Shah SA, Gallagher BM (1985) Vascular volume and permeability of human and murine tumors grown in athymic mice. Cancer Lett 27:15–21

    PubMed  CAS  Google Scholar 

  • Sapareto SA, Dewey WC (1984) Thermal dose determination in cancer therapy. Int J Radiat Oncol Biol Phys 10:787–800

    PubMed  CAS  Google Scholar 

  • Schaefer C, Mayer WK, Reibold R, Schlenger KH, Stohrer M, Walenta S, Mueller-Klieser W, Vaupel P (1990) Energy status and tissue oxygenation of rat tumors upon hyperthermia and/or hyperglycemia. XVIth Eur Conf Microcirc, Zürich

    Google Scholar 

  • Scheid P (1961) Funktionale Besonderheiten der Mikrozirkulation im Karzinom. Bibl Anat 1:327–335

    Google Scholar 

  • Schiffner G, Zywietz F, Lierse W (1988) Histologische und mor-phometrische Untersuchungen am Rhabdomyosarkom der Ratte nach Bestrahlung und Mikrowellen-Hyperthermie. Strahlenther Onkol 164:94–104

    PubMed  CAS  Google Scholar 

  • Schloerb PR, Blackburn GL, Grantham JJ, Mallard DS, Cage GK (1965) Intracellular pH and buffering capacity of the Walker-256 carcinoma. Surgery 58:5–11

    PubMed  CAS  Google Scholar 

  • Schmid-Schoenbein H, Singh M, Malotta H, Leschke D, Teitel P, Driessen G, Scheidt-Bleichert H (1984) Subpopulations of rigid red cells in hyperthermia and acidosis: effect on filter-ability in vitro and on nutritive capillary perfusion in the mesenteric microcirculation. Int J Microcirc Clin Exp 3:497

    Google Scholar 

  • Sekins M, Dundore D, Emery A, Lehmann J, McGrath P, Nelp W (1980) Muscle blood flow changes in response to 915 MHz diathermy with surface cooling as measured by Xe133 clearance. Arch Phys Med Rehabil 61:105–113

    PubMed  CAS  Google Scholar 

  • Sevick EM, Jain RK (1988) Blood flow and venous pH of tissue-isolated Walker 256 carcinoma during hyperglycemia. Cancer Res 48:1201–1207

    PubMed  CAS  Google Scholar 

  • Shapot VS (1980) Biochemical aspects of tumour growth. MIR, Moscow

    Google Scholar 

  • Shine NJ, Palladino M, Deisseroth A, Karczmar G, Matson G, Weiner MW (1987) Effects of tumor necrosis factor on high-energy phosphates of an experimental mouse tumor. In: 6th annual meeting of the Society of Magnetic Resonance Medicine, New York

    Google Scholar 

  • Shrivastav S, Kaelin WG, Joines WT, Jirtle RL (1983) Microwave hyperthermia and its effect on tumor blood flow in rats. Cancer Res 43:4665–4669

    PubMed  CAS  Google Scholar 

  • Shrivastav S, Joines WT, Jirtle RL (1985) Effect of 5-Hydroxy-tryptamine on tissue blood flow and microwave heating of rat tumors. Cancer Res 45:3203–3208

    PubMed  CAS  Google Scholar 

  • Siegel G (1986) Membranphysiologische Grundlagen der peripheren Gefäßregulation. In: Bromm B, Luebbers DW (eds) Physiologie aktuell I. Fischer, Stuttgart, pp 31–52

    Google Scholar 

  • Sijens PE, Bovée WMMJ, Seijkens D, Koole P, Los G, van Rijs-sel RH (1987) Murine mammary tumor response to hyperthermia and radiotherapy evaluated by in vivo 31-nuclear magnetic resonance spectroscopy. Cancer Res 47:6467–6473

    PubMed  CAS  Google Scholar 

  • Sijens PE, Boveé WMMJ, Koole P, Schipper J (1989) Phosphorus NMR study of the response of a murine tumour to hyperthermia as a function of treatment time and temperature. Int J Hyperthermia 5:351–357

    PubMed  CAS  Google Scholar 

  • Smits GJ, Roman RJ, Lombard JH (1986) Evaluation of laser-Doppler flowmetry as a measure of tissue blood flow. J Appl Physiol 61:666–672

    PubMed  CAS  Google Scholar 

  • Song CW (1978) Effect of hyperthermia on vascular functions of normal tissues and experimental tumors. JNCI 60:711–713

    PubMed  CAS  Google Scholar 

  • Song CW (1982) Physiological factors in hyperthermia of tumors. In: Nussbaum GH (ed) Physical aspects of hyperthermia. Med Phys Monogr 8:43–62

    Google Scholar 

  • Song CW (1984) Effect of local hyperthermia on blood flow and microenvironment. Cancer Res [Suppl] 44:4721s-4730s

    Google Scholar 

  • Song CW, Rhee JG, Levitt SH (1980a) Blood flow in normal tissues and tumors during hyperthermia. JNCI 64:119–124

    PubMed  CAS  Google Scholar 

  • Song CW, Kang MS, Rhee JG, Levitt SH (1980b) Effect of hyperthermia on vascular function in normal and neoplastic tissues. Ann NY Acad Sci 335:35–47

    PubMed  CAS  Google Scholar 

  • Song CW, Kang MS, Rhee JG, Levitt SH (1980c) The effect of hyperthermia on vascular function, pH, and cell survival. Radiology 137:795–803

    PubMed  CAS  Google Scholar 

  • Song CW, Kang MS, Rhee JG, Levitt SH (1980d) Vascular damage and delayed cell death in tumours after hyperthermia. Br J Cancer 41:309–312

    PubMed  CAS  Google Scholar 

  • Song CW, Kim JH, Rhee JG, Levitt SH (1983) Effect of X irradiation and hyperthermia on vascular function in skin and muscle. Radiat Res 94:404–415

    PubMed  CAS  Google Scholar 

  • Song CW, Pattan MS, Rhee JG, Schuman VL, Levitt SH (1984) Role of blood flow in the response of RIF-1 tumors to combined treatment of hyperthermia and radiotherapy. In: Overgaard J (ed) Hyperthermic oncology 1984. Taylor and Francis, London, pp 293–296

    Google Scholar 

  • Song CW, Rhee JG, Haumschild DJ (1987 a) Continuous and non-invasive quantification of heat-induced changes in blood flow in the skin and RIF-1 tumour of mice by laser Doppler flowmetry. Int J Hyperthermia 3:71–77

    PubMed  CAS  Google Scholar 

  • Song CW, Pattan MS, Chelstrom LM, Rhee JG, Levitt SH (1987 b) Effect of multiple heatings on the blood flow in RIF-1 tumours, skin and muscle of C3H mice. Int J Hyperthermia 3:535–545

    PubMed  CAS  Google Scholar 

  • Song CW, Chelstrom LM, Levitt SH, Haumschild DJ (1989) Effects of temperature on blood circulation measured with the laser Doppler method. Int J Radiat Oncol Biol Phys 17:1041–1047

    PubMed  CAS  Google Scholar 

  • Song CW, Chelstrom LM, Sung JH (1990) Effects of a second heating on blood flow in tumors. Radiat Res 122:66–71

    PubMed  CAS  Google Scholar 

  • Stadie WC, Martin KA (1924) The thermodynamic relations of the oxygen and base combining properties of blood. J Biol Chem 60:191–235

    CAS  Google Scholar 

  • Stevenson AP, Galey WR, Tobey RA (1983) Hyperthermia-in-duced increase in potassium transport in Chinese hamster cells. J Cell Physiol 115:75–86

    PubMed  CAS  Google Scholar 

  • Stevenson MA, Calderwood SK, Hahn GM (1987) Effect of hyperthermia (45 °C) on calcium flux in Chinese hamster ovary HA-1 fibroblasts and its potential role in cytotoxicity and heat resistance. Cancer Res 47:3712–3717

    PubMed  CAS  Google Scholar 

  • Stewart F, Begg A (1983) Blood flow changes in transplanted mouse tumours and skin after mild hyperthermia. Br J Radiol 56:477–482

    PubMed  CAS  Google Scholar 

  • Stewart FA, Denekamp J (1978) The therapeutic advantage of combined heat and X rays on a mouse fibrosarcoma. Br J Radiol 51:307–316

    PubMed  CAS  Google Scholar 

  • Storm FK (1983) Hyperthermia in cancer therapy. Hall, Boston

    Google Scholar 

  • Streffer C (1982) Aspects of biochemical effects by hyperthermia. NCI Monogr 61:11–17

    CAS  Google Scholar 

  • Streffer C (1984) Mechanism of heat injury. In: Overgaard J (ed) Hyperthermic oncology, vol II. Taylor and Francis, London, pp 213–222

    Google Scholar 

  • Suit HD, Gerweck LE (1979) Potential for hyperthermia and radiation therapy. Cancer Res 39:2290–2298

    PubMed  CAS  Google Scholar 

  • Sutton CH (1980) Discussion. Ann NY Acad Sci 335:35–47

    Google Scholar 

  • Szmigtelski S, Janiak M (1978) Membrane injury in cells exposed in vitro to 43°C hyperthermia. In: Streffer C, van Beuningen D, Dietzel F, Röttinger E, Robinson JE, Scherer E, Seeber S, Trott KR (eds) Cancer therapy by hyperthermia and radiation. Urban and Schwarzenberg, Baltimore, pp 169–171

    Google Scholar 

  • Tanaka Y, Hasegawa T, Murata T (1984) Effect of irradiation and hyperthermia on vascular function in normal and tumor tissue. In: Overgaard J (ed) Hyperthermic oncology. Taylor and Francis, London, pp 145–148

    Google Scholar 

  • Tannock IF, Rotin D (1989) Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res 49:4373–4384

    PubMed  CAS  Google Scholar 

  • Tenland T (1982) On laser Doppler flowmetry. Methods and microvascular applications. In: Linkö** studies in science and technology dissertations No 83. Medical Dissertations no 136, Linkö** University

    Google Scholar 

  • Thews G, Vaupel P (1985) Autonomic functions in human physiology. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Thistlethwaite AJ, Leeper DB, Moylan DJ, Nerlinger RE (1984) pH distribution in human tumors. In: Proceedings of the 4th annual meeting of the North American Hyperthermia Group, Orlando

    Google Scholar 

  • Trotter MJ, Acker BD, Chaplin DJ (1989) Histological evidence for nonperfused vasculature in a murine tumor following hydralazine administration. Int J Radiat Oncol Biol Phys 17:785–789

    PubMed  CAS  Google Scholar 

  • van den Berg-Blok AE, Reinhold HS (1984) Time-temperature relationship for hyperthermia induced stoppage of the microcirculation in tumors. Int J Radiat Oncol Biol Phys 10:737–740

    Google Scholar 

  • van den Berg-Blok AE, Reinhold HS (1987) Experimental hyperthermic treatment of a human colon carcinoma xenograft. The thermal sensitivity of the tumour microcirculation. Eur J Cancer Clin Oncol 23:1177–1180

    PubMed  Google Scholar 

  • van de Merwe S, van den Berg A, van der Zee J, Reinhold HS (1990) Measurement of tumor pH during microwave induced experimental and clinical hyperthermia with a fiber optic pH measurement system. Int J Radiat Oncol Biol Phys 18:51–57

    PubMed  Google Scholar 

  • van der Zee J, Broekmeyer-Reurink MP, van den Berg AP, van Geel BN, Jansen RFM, Kroon BBR, van Wyk J, Hagenbeek A (1989) Temperature distribution and pH changes during hyperthermic regional isolation perfusion. Eur J Cancer Clin Oncol 25:1157–1163

    PubMed  Google Scholar 

  • Vaupel P (1974) Atemgaswechsel und Glucosestoffwechsel von Implantationstumoren (DS-Carcinosarkom) in vivo. Funktionsanalyse Biol Systeme 1:1–138

    Google Scholar 

  • Vaupel P (1977) Hypoxia in neoplastic tissue. Microvasc Res 13:399–408

    PubMed  CAS  Google Scholar 

  • Vaupel P (1979) Oxygen supply to malignant tumors. In: Peterson HI (ed) Tumor blood circulation: angiogenesis, vascular morphology, and blood flow of experimental and human tumors. CRC, Boca Raton, pp 143–168

    Google Scholar 

  • Vaupel P (1982 a) Einfluß einer lokalisierten Mikrowellenhyperthermie auf die pH-Verteilung in bösartigen Tumoren. Strahlentherapie 158:168–173

    PubMed  CAS  Google Scholar 

  • Vaupel P (1982 b) Pathophysiologic der Durchblutung maligner Tumoren. Funktionsanalyse Biol Systeme 8:155–170

    Google Scholar 

  • Vaupel P (1986) Durchblutung, Oxygenierung und pH-Verteilung in malignen Tumoren: biologische und therapeutische Aspekte. In: Bromm B, Luebbers DW (eds) Physiologie aktuell I. Fischer, Stuttgart, pp 53–67

    Google Scholar 

  • Vaupel P (1987) Peculiarities of intratumor pharmacokinetics of antineoplastic agents. In: Kallman RF (ed) Rodent tumor models in experimental cancer therapy. Pergamon, Elmsford, pp 258–260

    Google Scholar 

  • Vaupel P, Gabbert H (1986) Evidence for and against a tumor type-specific vascularity. Strahlenther Onkol 162:633–638

    PubMed  CAS  Google Scholar 

  • Vaupel P, Hammersen F (1983) Mikrozirkulation in malignen Tumoren. Karger, Basel

    Google Scholar 

  • Vaupel P, Kallinowski F (1987 a) Tissue oxygenation of primary and xenotransplanted human tumors. In: Fielden EM, Fowler JF, Hendry JH, Scott D (eds) Proceedings of the 8th international congress on radiation research, vol II. Taylor and Francis, London, pp 707–712

    Google Scholar 

  • Vaupel P, Kallinowski F (1987 b) Physiological effects of hyperthermia. In: Streffer C (ed) Hyperthermia and the therapy of malignant tumors. Springer, Berlin Heidelberg New York, pp 71–109 (Recent results in cancer research, vol 104)

    Google Scholar 

  • Vaupel P, Kallinowski F (1988) Microcirculation and metabolic micromilieu in malignant tumors. Funktionsanalyse Biol Systeme 18:265–271

    Google Scholar 

  • Vaupel P, Menke H (1989) Effect of various calcium antagonists on blood flow and red blood cell flux in malignant tumors. Prog Appl Microcirc 14:88–103

    Google Scholar 

  • Vaupel P, Mueller-Klieser W (1983 a) Heat susceptibility of tumor blood flow. In: Proceedings of the 31st annual meeting of the Radiation Research Society, San Antonio, pp 68–69

    Google Scholar 

  • Vaupel P, Mueller-Klieser W (1983 b) Interstitieller Raum und Mikromilieu in malignen Tumoren. Mikrozirk Forsch Klin 2:78–90

    Google Scholar 

  • Vaupel PW, Okunieff PG (1988) Role of hypovolemic hemocon-centration in dose-dependent flow decline observed in murine tumors after intraperitoneal administration of glucose or mannitol. Cancer Res 48:7102–7106

    PubMed  CAS  Google Scholar 

  • Vaupel P, Guenther H, Grote J (1972) Einfluß einer Hyperglykä-mie auf die Sauerstoff- und Glucoseaufnahme von Implantationstumoren (DS-Carcinosarkom) in vivo. Z Krebsforsch 77:17–25

    CAS  Google Scholar 

  • Vaupel P, Ostheimer K, Thomé H (1977) Blood flow, vascular resistance, and oxygen consumption of malignant tumors during normothermia and hyperthermia. Microvasc Res 13:272

    Google Scholar 

  • Vaupel P, Manz R, Mueller-Klieser W, Grunewald WA (1979) In-tracapillary HbO2 saturation in malignant tumors during normoxia and hyperoxia. Microvasc Res 17:181–191

    PubMed  CAS  Google Scholar 

  • Vaupel P, Ostheimer K, Mueller-Klieser W (1980) Circulatory and metabolic responses of malignant tumors during localized hyperthermia. J Cancer Res Clin Oncol 98:15–29

    PubMed  CAS  Google Scholar 

  • Vaupel P, Frinak S, Bicher HI (1981) Heterogeneous oxygen partial pressure and pH distribution in C3H mouse mammary adenocarcinoma. Cancer Res 41:2008–2013

    PubMed  CAS  Google Scholar 

  • Vaupel P, Frinak S, Mueller-Klieser W, Bicher HI (1982a) Impact of localized hyperthermia on the cellular microenviron-ment in solid tumors. NCI Monogr 61:207–209

    Google Scholar 

  • Vaupel P, Otte J, Manz R (1982 b) Changes in tumor oxygenation after localized microwave hyperthermia. In: Gautherie M, Albert E (eds) Biomedical thermology. Liss, New York, pp 65–74

    Google Scholar 

  • Vaupel P, Otte J, Manz R (1982 c) Oxygenation of malignant tumors after localized microwave hyperthermia. Radiat Environ Biophys 20:289–300

    PubMed  CAS  Google Scholar 

  • Vaupel P, Benzing H, Egelhof E, Mueller-Klieser W, Mueller-Schauenburg W (1983 a) The effect of various thermal doses on the regional tumor blood flow measured by heat clearance. Strahlentherapie 159:384

    Google Scholar 

  • Vaupel P, Mueller-Klieser W, Gabbert H (1983 b) Experimental evidence for a hyperthermia-induced breakdown of tumor blood flow during normoglycemia. J Cancer Res Clin Oncol 105:303–304

    PubMed  CAS  Google Scholar 

  • Vaupel P, Mueller-Klieser W, Manz R, Wendling P, Strube HD, Schmidseder R (1983 c) Heterogeneous oxygenation of malignant tumors in humans. Verh Dtsch Krebsges 4:153

    Google Scholar 

  • Vaupel P, Mueller-Klieser W, Otte J, Manz R, Kallinowski F (1983 d) Blood flow, tissue oxygenation, and pH distribution in malignant tumors upon localized hyperthermia. Strahlentherapie 159:73–81

    PubMed  CAS  Google Scholar 

  • Vaupel P, Kallinowski F, Kluge M (1986) Pathophysiologische Aspekte der Hyperthermiewirkung in malignen Tumoren: Durchblutungsänderungen in Xenotransplantaten menschlicher Mammacarcinome. In: Streffer C, Herbst M, Schwabe HW (eds) Lokale Hyperthermie. Deutscher Ärzte-Verlag, Cologne, pp 39–46

    Google Scholar 

  • Vaupel P, Fortmeyer HP, Runkel S, Kallinowski F (1987) Blood flow, oxygen consumption, and tissue oxygenation of human breast cancer xenografts in nude rats. Cancer Res 47:3496–3503

    PubMed  CAS  Google Scholar 

  • Vaupel P, Kluge M, Ambroz M (1988 a) Laser Doppler flow-metry in subepidermal tumours and in normal skin of rats during localized ultrasound hyperthermia. Int J Hyperthermia 4:307–321

    PubMed  CAS  Google Scholar 

  • Vaupel P, Kallinowski F, Kluge M (1988 b) Pathophysiology of tumors in hyperthermia. In: Issels RD, Wilmanns W (eds) Application of hyperthermia in the treatment of cancer. Springer, Berlin Heidelberg New York, pp 65 – 75 (Recent results in cancer research, vol 107)

    Google Scholar 

  • Vaupel P, Kallinowski F, Kluge M, Egelhof E, Fortmeyer HP (1988 c) Microcirculatory and pH alterations in isotrans-planted rat and xenotransplanted human tumors associated with hyperthermia. In: Hinkelbein W et al. (eds) Preclinical hyperthermia. Springer, Berlin Heidelberg New York, pp 173–182 (Recent results in cancer research, vol 109)

    Google Scholar 

  • Vaupel P, Okunieff P, Kluge M (1988d) Response of tumour red blood cell flux to hyperthermia and/or hyperglycemia. Int J Hyperthermia 5:199–210

    Google Scholar 

  • Vaupel P, Okunieff P, Rummeny E, Neuringer LJ (1988e) Murine tumor response to hyperthermia evaluated by in vivo 31P-NMR spectroscopy. In: 5th international symposium on hyperthermic oncology, Kyoto

    Google Scholar 

  • Vaupel P, Kallinowski F, Okunieff P (1989a) Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: A review. Cancer Res 49:6449–6465

    PubMed  CAS  Google Scholar 

  • Vaupel P, Okunieff P, Kallinowski F (1989 b) Response of tumor blood flow, tissue oxygenation, pH and high-energy phosphates to local hyperthermia. In: Sugahara T, Saito M (eds) Hyperthermic oncology 1988, vol 2. Taylor and Francis, London New York Philadelphia, pp 197–200

    Google Scholar 

  • Vaupel P, Okunieff P, Neuringer LJ (1990) In vivo 31P-NMR spectroscopy of murine tumours before and after localized hyperthermia. Int J Hyperthermia 6:15–31

    PubMed  CAS  Google Scholar 

  • Verma SP, Wallach DFA (1976) Erythrocyte membranes undergo cooperative, pH-sensitive state transitions in the physiological temperature range: evidence from Raman spectroscopy. Proc Natl Acad Sci USA 73:3558–3561

    PubMed  CAS  Google Scholar 

  • Vexler AM, Litinskaya LL (1986) Changes in intracellular pH induced by hyperthermia and hypoxia. Int J Hyperthermia 2:75–81

    PubMed  CAS  Google Scholar 

  • Vidair CA, Dewey WC (1986) Evaluation of a role for intracellular Na+, K+, Ca2+, and Mg2+ in hyperthermic cell killing. Radiat Res 105:187–200

    PubMed  CAS  Google Scholar 

  • Vogel AW (1965) Intratumoral vascular changes with increased size of a mammary adenocarcinoma. New method and results. JNCI 34:571–578

    PubMed  CAS  Google Scholar 

  • von Ardenne M (1971) Theoretische und experimentelle Grundlagen der Krebs-Mehrschritt-Therapie, 2nd edn. Volk und Gesundheit, Berlin

    Google Scholar 

  • von Ardenne M, Krüger W (1966) Messungen zur irreversiblen Schädigung der Atmung von Krebszellen durch Extremhy-perthermie. Z Naturforsch 21b:836–840

    Google Scholar 

  • von Ardenne M, Reitnauer PG (1968) Selektive Krebszellenschädigung durch Proteindenaturation. Dtsch Gesundheitswes 23:1681–1685

    Google Scholar 

  • von Ardenne M, Reitnauer PG (1978) Amplification of the selective tumor acidification by local hyperthermia. Naturwissenschaften 65:159

    Google Scholar 

  • von Ardenne M, Reitnauer PG (1979) Verstärkung der mit Glukoseinfusion erzielbaren Tumorübersäuerung durch lokale Hyperthermie. Res Exp Med (Berl) 175:7–18

    Google Scholar 

  • von Ardenne M, Reitnauer PG (1980) Selective occlusion of cancer tissue capillaries as the central mechanism of the cancer multistep therapy. Jpn J Clin Oncol 10:31–48

    Google Scholar 

  • von Ardenne M, Reitnauer PG (1982) Die manipulierte selektive Hemmung der Mikrozirkulation im Krebsgewebe. J Cancer Res Clin Oncol 103:269–279

    Google Scholar 

  • Voorhees WD, Babbs CF (1982) Hydralazine-enhanced selective heating of transmissible venereal tumor implants in dogs. Eur J Cancer Clin Oncol 18:1027–1033

    PubMed  CAS  Google Scholar 

  • Ward KA, Jain RK (1988) Response of tumours to hyperglycemia: characterization, significance and role in hyperthermia. Int J Hyperthermia 4:223–250

    PubMed  CAS  Google Scholar 

  • Ward-Hartley K, Jain RK (1987) Effect of glucose and galactose on microcirculatory flow in normal and neoplastic tissues in rabbits. Cancer Res 47:371–377

    PubMed  CAS  Google Scholar 

  • Waterman FM, Fazekas J, Nerlinger RE, Leeper DB (1982) Blood flow rates in human tumors during hyperthermia treatments as indicated by thermal washout. In: Proceedings of the 2nd annual meeting of the North American Hyperthermia Group, Salt Lake City

    Google Scholar 

  • Waterman FM, Nerlinger RE, Moylan DJ, Leeper DB (1987) Response of human tumor blood flow to local hyperthermia. Int J Radiat Oncol Biol Phys 13:75–82

    PubMed  CAS  Google Scholar 

  • Waterman FM, Tupchong L, Matthews J, Nerlinger R (1989) Mechanisms of heat removal during local hyperthermia. Int J Radiat Oncol Biol Phys 17:1049–1055

    PubMed  CAS  Google Scholar 

  • Wendling P, Manz R, Thews G, Vaupel P (1984) Inhomogeneous oxygenation of rectal carcinomas in humans. A critical parameter for perioperative irradiation? Adv Exp Med Biol 180:293–300

    PubMed  CAS  Google Scholar 

  • Westermark N (1927) The effect of heat upon rat tumors. Scand Arch 52:257–318

    Google Scholar 

  • Wike-Hooley JL, Haveman J, Reinhold HS (1984a) The relevance of tumour pH to the treatment of malignant disease. Radiother Oncol 2:343–366

    PubMed  CAS  Google Scholar 

  • Wike-Hooley JL, van der Zee J, van Rhoon GC, van den Berg AP, Reinhold HS (1984b) Human tumour pH changes following hyperthermia and radiation therapy. Eur J Cancer Clin Oncol 20:619–623

    PubMed  CAS  Google Scholar 

  • Wilkin JK (1986) Periodic cutaneous blood flow during postocclusive reactive hyperthermia. Am J Physiol 250:H765-H768

    PubMed  CAS  Google Scholar 

  • Willett CG, Urano M, Suit HD, Strauss HW, Kahn J, Okunieff PG (1987) Resident award essay: Effect of temperature on blood flow and hypoxic fraction in a murine fibrosarcoma. Int J Radiat Oncol Biol Phys 13:1309–1312

    PubMed  CAS  Google Scholar 

  • Wright RJ, Eltaki A, Proctor M, Milligan AJ (1988) Prolonged effect of hyperthermia on canine muscle blood flow. In: 36th annual meeting of the Radiation Research Society, Philadelphia

    Google Scholar 

  • Yi PN (1979) Cellular ion content changes during and after hyperthermia. Biochem Biophys Res Commun 91:177–181

    PubMed  CAS  Google Scholar 

  • Yi PN, Chang CS, Tallen M, Ball S (1983) Hyperthermia-in-duced intracellular ionic level changes in tumor cells. Radiat Res 93:534–544

    PubMed  CAS  Google Scholar 

  • Yi PN, Fenn JO, Jarrett JH (1985) Hyperthermia and osmoregulation. In: Proceedings of the 33rd annual meeting of the Radiation Research Society, Los Angeles

    Google Scholar 

  • Yi PN, Alexander CR, Fenn JO, Jarrett JH, Lung B, Wallace KM, Cho C (1987) Swelling of multicellular spheroids induced by hyperthermia. Int J Hyperthermia 3:217–233

    PubMed  CAS  Google Scholar 

  • Zywietz F, Knöchel R (1985) The role of dielectric properties by heating a rat tumor. Strahlentherapie 161:556

    Google Scholar 

  • Zywietz F, Knöchel R (1986) Dielectric properties of Co-y-irra-diated and microwave-heated rat tumour and skin measured in vivo between 0.2 and 2.4GHz. Phys Med Biol 31: 1021–1029

    PubMed  CAS  Google Scholar 

  • Zywietz F, Lierse W (1988) Changes in tumor vasculature under fractionated radiation-hyperthermia treatment. In: Issels RD, Wilmanns W (eds) Application of hyperthermia in the treatment of cancer. Springer, Berlin Heidelberg New York, pp 60–64 (Recent results in cancer research, vol 107)

    Google Scholar 

  • Zywietz F, Knöchel R, Kordts J (1986) Heating of a rhabdomyosarcoma of the rat by 2450 MHz microwaves — technical aspects and temperature distributions. In: Bruggmoser G et al. (eds) Locoregional high-frequency hyperthermia and temperature measurement. Springer, Berlin Heidelberg New York, pp 36–46 (Recent results in cancer research, vol 101)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vaupel, P. (1990). Pathophysiological Mechanisms of Hyperthermia in Cancer Therapy. In: Gautherie, M. (eds) Biological Basis of Oncologic Thermotherapy. Clinical Thermology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-74939-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-74939-1_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-74941-4

  • Online ISBN: 978-3-642-74939-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation