Antimicrobial Drug Resistance

  • Chapter
  • First Online:
Comparative and Veterinary Pharmacology

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 199))

Abstract

This chapter provides an overview of our current understanding of the mechanisms associated with the development of antimicrobial drug resistance, international differences in definitions of resistance, ongoing efforts to track shifts in drug susceptibility, and factors that can influence the selection of therapeutic intervention. The latter presents a matrix of complex variables that includes the mechanism of drug action, the pharmacokinetics (PK) of the antimicrobial agent in the targeted patient population, the pharmacodynamics (PD) of the bacterial response to the antimicrobial agent, the PK/PD relationship that will influence dose selection, and the integrity of the host immune system. Finally, the differences between bacterial tolerance and bacterial resistance are considered, and the potential for non-traditional anti-infective therapies is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aarestrup F, Bager F, Jensen NE, Madsen M, Meyling A, Wegener HC (1998) Surveillance of antimicrobial resistance in bacteria isolates from food animals to antimicrobial growth promoters and related therapeutic agents in Denmark. Acta Pathol Microbiol Immunol Scand 106:606–622

    Google Scholar 

  • Asad S, Opal S (2008) Bench-to-bedside review: quorum sensing and the role of cell-to-cell communication during invasive bacterial infection. Crit Care (London) 12:236–247

    Google Scholar 

  • Bager F, Emborg H-D, Aarestrup FM, Wegener, HC (2002) DANMAP 2001: The Danish Experience Following the Ban of Antimicrobial Growth Promoters: Trends in Microbial Resistance and Antimicrobial Use. Proceedings of Alltech's 18th Annual Symposium: from niche markets to mainstream, Lexington, Kentucky, USA, 13–15 May

    Google Scholar 

  • Ball KR, Rubin JE, Chirino-Trejo M, Dowling PM (2008) Antimicrobial resistance and prevalence of canine uropathogens at the Western College of Veterinary Medicine Veterinary Teaching Hospital, 2002–2007. Can Vet J 49:985–990

    PubMed  Google Scholar 

  • Baquero F (1990) Resistance to quinolones in gram-negative microorganisms: mechanisms and prevention. Eur Urol 17(Suppl 1):3–12

    PubMed  Google Scholar 

  • Baquero F, Negri MC (1997) Strategies to minimize the development of antibiotic resistance. J Chemother 9(Suppl 3):29–37

    PubMed  Google Scholar 

  • Bedenic B, Vranes J, Suto S, Zagar Z (2005) Bactericidal activity of oral beta-lactam antibiotics in plasma and urine versus isogenic Escherichia coli strains producing broad- and extended-spectrum beta-lactamases. Int J Antimicrob Agents 25:479–487

    PubMed  Google Scholar 

  • Benitez de Cruz L (2008) Extreme bacteria, Scienceray at: http://www.scienceray.com/Biology/Microbiology/Extreme-Bacteria.211065

  • Blondeau JM, Hansen G, Metzler K, Hedlin P (2004) The role of PK/PD parameters to avoid selection and increase of resistance: Mutant prevention concentrations. J Chemother 16(Suppl 3):1–19

    PubMed  Google Scholar 

  • Boak LM, Li J, Rayner CR, Nation RL (2007) Pharmacokinetic/pharmacodynamic factors influencing emergence of resistance to linezolid in an in vitro model. Antimicrob Agents Chemother 51:1287–1292

    PubMed  Google Scholar 

  • Boy D, Well M, Kinzig-Schippers M, SÅ‘rgel F, Ankel-Fuchs D, Naber KG (2004) Urinary bactericidal activity, urinary excretion and plasma concentrations of gatifloxacin (400 mg) versus ciprofloxacin (500 mg) in healthy volunteers after a single oral dose. Int J Antimicrob Agents 23(Suppl 1):S6–S16

    PubMed  Google Scholar 

  • Boyen F, Eeckhaut V, Van Immerseel F, Pasmans F, Ducatelle R, Haesebrouck F (2009) Quorum sensing in veterinary pathogens: mechanisms, clinical importance and future perspectives. Vet Microbiol 135:187–195

    PubMed  Google Scholar 

  • Bronzwaer S (2008) Harmonised monitoring of antimicrobial resistance in Salmonella and Campylobacter isolates from food animals in the European Union. Clin Microbiol Infect 14:522–533

    Google Scholar 

  • Bywater R, Simjee S, Silley P (2006) Antimicrobial breakpoints - definitions and conflicting requirements. Vet Microbiol 118:158–159

    PubMed  Google Scholar 

  • Casewell M, Friis C, Marco E, McMullinP PI (2003) The European ban on growth-promoting antibiotics and emerging consequences for human and animal health. J Antimicrob Chemother 52:159–161

    PubMed  Google Scholar 

  • Cegelski L, Marshall GR, Eldridge GR, Hultgren SJ (2008) The biology and future prospects of antivirulence therapies. Nat Rev Microbiol 6:17–27

    PubMed  Google Scholar 

  • Chambers HF (2006) General Principles of Antimicrobial Therapy. In: Brunton LL, Lazo J, Parker K (eds) Goodman Gilman’s the pharmacological basis of therapeutics. McGraw-Hill, USA, pp 1095–1111

    Google Scholar 

  • Chiller TM, Barrett T, Angulo FJ (2004) CDC studies incorrectly summarized in ‘critical review’. J Antimicrob Chemother 54:275–276

    PubMed  Google Scholar 

  • Clatworthy AE, Pierson E, Hung DT (2007) Targeting virulence: A new paradigm for antimicrobial therapy. Nat Chem Biol 3:541–548

    PubMed  Google Scholar 

  • Clinical Laboratories Standards Institute (2007) Development of in vitro susceptibility testing criteria and quality control parameters for veterinary antimicrobial agents; approved guideline, 3rd edn. CLSI, PA, USA

    Google Scholar 

  • Collignon P (2004) Antibiotic growth promoters. J Antimicrob Chemother 54:272

    PubMed  Google Scholar 

  • Conway TB, Beck FM, Walters JD (2000) Gingival fluid ciprofloxacin levels at healthy and inflamed human periodontal sites. J Periodontol 71:1448–1452

    PubMed  Google Scholar 

  • Craig WA, Dalhoff A (1998) Pharmacodynamics of fluoroquinolones in experimental animals. In: Born GVR, Cuatrecas P, Ganten D, Herken H, Melmon KL, Starke K (eds) Handbook of experimental pharmacology. Springer, Berlin, pp 208–232

    Google Scholar 

  • Croisier D, Etienne M, Piroth L, Bergoin E, Lequeu C, Portier H, Chavanet P (2004) In vivo pharmacodynamic efficacy of gatifloxacin against Streptococcus pneumoniae in an experimental model of pneumonia: Impact of the low levels of fluoroquinolone resistance on the enrichment of resistant mutants. J Antimicrob Chemother 54:640–647

    PubMed  Google Scholar 

  • Dalhoff A, Shalit I (2003) Immunomodulatory effects of quinolones. Lancet Infect Dis 3:359–371

    PubMed  Google Scholar 

  • Davies J (1994) Inactivation of antibiotics and the dissemination of resistance genes. Science 264:375–382

    PubMed  Google Scholar 

  • Davison HC, Low JC, Woolhouse MEJ (2000) What is antibiotic resistance and how can we measure it? Trends Microbiol 8:554–559

    PubMed  Google Scholar 

  • De Leenheer P, Cogan NG (2008) Failure of antibiotic treatment in microbial populations. J Math Biol Dec 16 59:563–579

    Google Scholar 

  • del Pozo JL, Patel R (2007) The challenge of treating biofilm-associated bacterial infections. Clin Pharmacol Ther 82:204–209

    PubMed  Google Scholar 

  • del Pozo JL, Rouse MS, Mandrekar JN, Steckelberg JM, Patel R (2009) The electricidal effect: reduction of Staphylococcus and pseudomonas biofilms by prolonged exposure to low-intensity electrical current. Antimicrob Agents Chemother 53:41–45

    PubMed  Google Scholar 

  • Dong Y, Zhao X, Domagala J, Drlica K (1999) Effect of fluoroquinolone concentration on selection of resistant mutants of Mycobacterium bovis BCG and Staphylococcus aureus. Antimicrob Agents Chemother 43:1756–1758

    PubMed  Google Scholar 

  • Dong Y, Zhao X, Kreiswirth CN, Drlica K (2000) Mutation prevention concentration as a measure of antibiotic potency: studies with clinical isolates of Mycobacteriusm tuberculosis. Antimicrob Agents Chemother 44:2581–2584

    PubMed  Google Scholar 

  • Donlan RM, Costerton JW (2002) Biofilms: Survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193

    PubMed  Google Scholar 

  • Drlica K, Zhao X (2007) Mutation selection window hypothesis updated. Clin Infect Dis 44:681–688

    PubMed  Google Scholar 

  • Drlica K, Zhao X, Blondeau JM, Hesje C (2006) Low correlation between MIC and mutant prevention concentration. Antimicrob Agents Chemother 50:403–404

    PubMed  Google Scholar 

  • Drusano GL (2007) Pharmacokinetics and pharmacodynamics of antimicrobials. Clin Infect Dis 45(Suppl 1):S89–S95

    PubMed  Google Scholar 

  • Drusano GL, Johnson DE, Rosen M, Standiford HC (1993) Pharmacodynamics of a fluoroquinolone antimicrobial agent in a neutropenic rat model of Pseudomonas sepsis. Antimicrob Agents Chemother 37:483–490

    PubMed  Google Scholar 

  • Drusano GL, Liu W, Brown DL, Rice LB, Louie A (2009) Impact of short-course quinolone therapy on susceptible and resistant populations of Staphylococcus aureus. J Infect Dis 199:219–226

    PubMed  Google Scholar 

  • Duckworth DH, Gulig PA (2002) Bacteriophages: potential treatment for bacterial infections. BioDrugs 16:57–62

    PubMed  Google Scholar 

  • Duquette RA, Nuttall TJ (2004) Methicillin-resistant Staphylococcus aureus in dogs and cats: an emerging problem? J Small Anim Pract 45:591–597

    PubMed  Google Scholar 

  • EMEA (1999) Antibiotic resistance in the European union associated with therapeutic use of veterinary medicines, report and qualitative risk assessment by the Committee for Veterinary Medicinal Products. The European Agency for the Evaluation of Medicinal Products, Europe

    Google Scholar 

  • Eng RHK, Padberg FT, Smith SM, Tan EN, Cherubin CE (1991) Bactericidal effects of antibiotics on slowly growing and nongrowing bacteria. Antimicrob Agents Chemother 35:1824–1828

    PubMed  Google Scholar 

  • Epstein BJ, Gums JG, Drlica K (2004) The changing face of antibiotic prescribing: The mutant selection window. Ann Pharmacother 38:1675–1682

    PubMed  Google Scholar 

  • Escaich S (2008) Antivirulence as a new antibacterial approach for chemotherapy. Curr Opin Chem Biol 12:400–408

    PubMed  Google Scholar 

  • FDA/CVM Guidance for Industry (#152): Evaluating the safety of antimicrobial new animal drugs with regard to their microbiological effects on bacteria of human health concern, dated 10/23/2003. http://www.fda.gov/cvm/Documents/fguide152.pdf

  • Forrest A, Nix DE, Ballow CH, Goss TF, Birmingham MC, Schentag JJ (1993) Pharmacodynamics of intravenous ciprofloxacin in seriously ill patients. Antimicrob Agents Chemother 37:1073–1081

    PubMed  Google Scholar 

  • Franklin A, Acar J, Anthony F, Gupta R, Nicholls T, Tamura Y, Thompson S, Threlfall EJ, Vose D, Van Vuuren M, White DG, Wegener HC, Costarrica ML (2001) Antimicrobial resistance: Harmonisation of national antimicrobial resistance monitoring and surveillance programmes in animals and in animal-derived food. Rev Sci Tech (Off Int Epizoot) 20:859–870

    Google Scholar 

  • Gilberta P, Brown MRW (1998) Biofilms and -lactam activity. J Antimicrob Chemother 41:571–572

    Google Scholar 

  • Gunderson BW, Ross GH, Ibrahim KH, Rotschafer JS (2001) What do we really know about antibiotic pharmacodynamics. Pharmacotherapy 21(10 pt2):302S–318S

    PubMed  Google Scholar 

  • Hanlon GW (2007) Bacteriophages: An appraisal of their role in the treatment of bacterial infections. Int J Antimicrob Agents 30:118–128

    PubMed  Google Scholar 

  • Harrison PF, Lederberg J (1998) Antimicrobial resistance: issues and options workshop report. National Academy Press, Washington DC, pp 1–11

    Google Scholar 

  • Harrison JJ, Turner RJ, Ceri H (2005) Persister cells, the biofilm matrix and tolerance to metal cations in biofilm and planktonic Pseudomonas aeruginosa. Environ Microbiol 7:981–994

    PubMed  Google Scholar 

  • Hendriksen RS, Mevius DJ, Schroeter A, Teale C, Jouy E, Butaye P, Franco A, Utinane A, Amado A, Moreno M, Greko C, Stärk KDC, Berghold C, Myllyniemi AL, Hoszowski A, Sunde M, Aarestrup FM (2008a) Occurrence of antimicrobial resistance among bacterial pathogens and indicator bacteria in pigs in different European countries from year 2002–2004: the ARBAO_II study. Acta Vet Scand 50:19

    PubMed  Google Scholar 

  • Hendriksen RS, Mevius DJ, Schroeter A, Teale C, Meunier D, Butaye P, Franco A, Utinane A, Amado A, Moreno M, Greko C, Stärk K, Berghold C, Myllyniemi AL, Wasyl D, Sunde M, Aarestrup FM (2008b) Prevalence of antimicrobial resistance among bacterial pathogens isolated from cattle in different European countries: 2002–2004. Acta Vet Scand 50:28

    PubMed  Google Scholar 

  • Horswill AR, Nauseef WM (2008) Host interception of bacterial communication signals. Cell Host Microbe Prev 4:507–509

    Google Scholar 

  • Ibrahim KH, Hovde LB, Ross G, Gunderson B, Wright DH, Rotschafer JC (2002) Microbiologic effectiveness of time- or concentration-based dosing strategies in Streptococcus pneumoniae. Diagn Microbiol Infect Dis 44:265–271

    PubMed  Google Scholar 

  • Illambas JM, Potter T, Rycroft AN, Lees P (2009) Pharmacodynamics of tulathromycin in vitro and in vivo against calf pathogens. J Vet Pharmacol Ther 32(Suppl 1):62–63

    Google Scholar 

  • Jayaraman R (2008) Bacterial persistence: Some new insights into an old phenomenon. J Biosci 33:795–805

    PubMed  Google Scholar 

  • Jefferson KK (2004) What drives bacteria to produce a biofilm? FEMS Microbiol Lett 236:163–173

    PubMed  Google Scholar 

  • Jensen VF, Neimann J, Hammerum AM, Molbak K, Wegener HC (2004) Does the use of antibiotics in food animals pose a risk to human health? An unbiased review? J Antimicrob Chemother 54:274–275

    PubMed  Google Scholar 

  • Kaspar H (2006) Results of the antimicrobial agent susceptibility study raised in a representative, cross-sectional monitoring study on a national basis. Int J Med Microbiol 296(Suppl 41):69–79

    PubMed  Google Scholar 

  • Kaufmann GF, Park J, Janda KM (2008) Bacterial quorum sensing: A new target for anti-infective immunotherapy. Exp Opin Biol Ther 8:719–724

    Google Scholar 

  • Keren I, Shah D, Spoering A, Kaldalu N, Lewis K (2004) Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. J Bacteriol 186:8172–8180

    PubMed  Google Scholar 

  • Kong KF, Vuong C, Otto M (2006) Staphylococcus quorum sensing in biofilm formation and infection. Int J Med Microbiol 296:133–139

    PubMed  Google Scholar 

  • Körber B, Luhmer E, Wetzstein HG, Heisig P (2002) Abstracts 42nd ICAAC. San Diego, USA, Abstract F-567, p188

    Google Scholar 

  • Labro MT (1998) Anti-inflammatory activity of macrolides: a new therapeutic potential? J Antimicrob Chemother 41(Suppl B):37–46

    PubMed  Google Scholar 

  • Lavda M, Clausnitzer CE, Walters JD (2004) Distribution of systemic ciprofloxacin and doxycycline to gingiva and gingival crevicular fluid. J Periodontol 75:1663–1667

    PubMed  Google Scholar 

  • Lees P, Aliabadi FS, Toutain PL (2006) Minimising antimicrobial resistance through rational design of dosing schedules: A role for pre-clinical PK-PD modeling. J Vet Pharmacol Ther 29(Suppl 1):24–26

    Google Scholar 

  • Leslie G (2008) Surveying therapets for MRSA. Vet Rec 162:388

    PubMed  Google Scholar 

  • Lewis K (2007) Persister cells, dormancy and infectious disease. Nat Rev Microbiol 5:48–56

    PubMed  Google Scholar 

  • Lewis K (2008) Multidrug tolerance of biofilms and persister cells. Curr Top Microbiol Immunol 322:107–131

    PubMed  Google Scholar 

  • Liautard JP, Jubier-Maurin V, Boigegrain RA, Köhler S (2006) Antimicrobials: Targeting virulence genes necessary for intracellular multiplication. Trends Microbiol 14:109–113

    PubMed  Google Scholar 

  • Liu P, Müller M, Grant M, Webb AI, Obermann B, Derendorf H (2002) Interstitial tissue concentrations of cefpodoxime. J Antimicrob Chemother 50(Suppl 1):19–22

    PubMed  Google Scholar 

  • Long KS, Poehlsgaard J, Kehrenberg C, Schwarz S, Vester B (2006) The Cfr rRNA methyltransferase confers resistance to phenicols lincosamides oxazolidinones pleuromutilins and streptogramin A antibiotics. Antimicrob Agents Chemother 7:2500–2505

    Google Scholar 

  • Lynch SV, Wiener-Kronish JP (2008) Novel strategies to combat bacterial virulence. Curr Opin Crit Care 14:593–599

    PubMed  Google Scholar 

  • MacGowan A, Bowker K (2002) Development in PK/PD: Optimizing efficacy and prevention of resistance. A critical review of PK/PD in in vitro models. Int J Antimicrob Agents 19:291–298

    PubMed  Google Scholar 

  • Maldonado EN, Romero JR, Ochoa B, Aveldaño MI (2001) Lipid and fatty acid composition of canine lipoproteins. Comp Biochem Physiol B Biochem Mol Biol 128:719–729

    PubMed  Google Scholar 

  • Maldonado EN, Casanave EB, Aveldaño MI (2002) Major plasma lipids and fatty acids in four HDL mammals. Comp Biochem Physiol A Mol Integr Physiol 132:297–303

    PubMed  Google Scholar 

  • Malik M, Hussain S, Drlica K (2007) Effect of anaerobic growth on quinolone lethality with Escherichia coli. Antimicrob Agents Chemother 51:28–34

    PubMed  Google Scholar 

  • Marriott HM, Mitchell TJ, Dockrell DH (2008) Pneumolysin: A double-edged sword during the host-pathogen interaction. Curr Mol Med 8:497–509

    PubMed  Google Scholar 

  • Martinez M, Modric S (2010) J Vet Pharmacol Ther (Submitted)

    Google Scholar 

  • Martinez M, Toutain PL, Walker RD (2006) The pharmacokinetic-pharmacodynamic (PK/PD) relationship of antimicrobial agents. In: Giguère S, Prescott JF, Baggot JS, Walker RD, Dowling PM (eds) Antimicrobial therapy in veterinary medicine, 4th edn. Blackwell, Oxford, pp 81–106

    Google Scholar 

  • Masterton R (2008) The importance and future of antimicrobial surveillance studies. Clin Infect Dis 47(Suppl 1):S21–S31

    PubMed  Google Scholar 

  • McEwen SA, Fedorka-Cray PJ (2002) Antimicrobial use and resistance in animals. Clin Infect Dis 34(Suppl 3):S93–S106

    PubMed  Google Scholar 

  • Melchior MB, van Osch MH, Graat RM, van Duijkeren E, Mevius DJ, Nielen M, Gaastra W, Fink-Gremmels J (2009) Biofilm formation and genoty** of Staphylococcus aureus bovine mastitis isolates: Evidence for lack of penicillin-resistance in Agr-type II strains. Vet Microbiol 137:83–89

    PubMed  Google Scholar 

  • Merrikin DJ, Briant J, Rolinson GN (1983) Effect of protein binding on antibiotic activity in vivo. J Antimicrob Chemother 11:233–238

    PubMed  Google Scholar 

  • Moroni P, Pisoni G, Antonini M, Villa R, Boettcher P, Carli S (2006) Short communication: Antimicrobial drug susceptibility of Staphylococcus aureus from subclinical bovine mastitis in Italy. J Dairy Sci 89:2973–2976

    PubMed  Google Scholar 

  • Mouton JW, Dudley MN, Cars O, Derendorf H, Drusano GL (2005) Standardization of pharmacokinetic/pharmacodynamic (PK/PD) terminology for anti-infective drugs: an update. J Antimicrob Chemother 55:601–607

    PubMed  Google Scholar 

  • Naber KG (2001) Which fluoroquinolones are suitable for the treatment of urinary tract infections? Int J Antimicrob Agents 17:331–341

    PubMed  Google Scholar 

  • Nadell CD, Xavier JB, Foster KR (2009) The sociobiology of biofilms. FEMS Microbiol Rev 33:206–224

    PubMed  Google Scholar 

  • Nicolau DP (2001) Predicting antibacterial response from pharmacodynamic and pharmacokinetic profiles. Infection 29(Suppl 2):11–5

    PubMed  Google Scholar 

  • Noel AR, Bowker KE, MacGowan AP (2007) Variability in the size of the fluoroquinolone AUC/MIC for antibacterial effect in S. aureus: Impact for clinical breakpoints. Abstract 47th ICAAC, Chicago, USA, abstract A-23 pp5-6

    Google Scholar 

  • O'Brien TF (2002) Emergence, spread, and environmental effect of antimicrobial resistance: How use of an antimicrobial anywhere can increase resistance to any antimicrobial anywhere else. Clin Infect Dis 34(Suppl 3):S78–S84

    PubMed  Google Scholar 

  • Opal SM (2007) Communal living by bacteria and the pathogenesis of urinary tract infections. PLoS Med 4:e349

    PubMed  Google Scholar 

  • Owens RC, Ambrose PG (2007) Antimicrobial stewardship and the role of pharmacokinetics-pharmacodynamics in the modern antibiotic era. Diagn Microbiol Infect Dis 57(3 Suppl):77S–83S

    PubMed  Google Scholar 

  • Periti P, Mazzei T (1998) Antibiotic-induced release of bacterial cell wall components in the pathogenesis of sepsis and septic shock: A review. J Chemother 10:427–448

    PubMed  Google Scholar 

  • Peterson MM, Mack JL, Hall PR, Alsup AA, Alexander SM, Sully EK, Sawires YS, Cheung AL, Otto M, Gresham HD (2008) Apolipoprotein B is an innate barrier against invasive Staphylococcus aureus infection. Cell Host Microbe 4:555–566

    PubMed  Google Scholar 

  • Pfaller MA (2006) Flavophospholipol use in animals: Positive implications for antimicrobial resistance based on its microbiologic properties. Diagn Microbiol Infect Dis 56:115–121

    PubMed  Google Scholar 

  • Phillips I (2007) Withdrawal of growth-promoting antibiotics in Europe and its effects in relation to human health. Int J Antimicrob Agents 30:101–107

    PubMed  Google Scholar 

  • Phillips I, Casewell M, Cox T, De Groot B, Friis C, Jones R, Nightingale C, Preston R, Waddell J (2004a) Does the use of antibiotics in food animals pose a risk to human health? A critical review of published data. J Antimicrob Chemother 53:28–52

    PubMed  Google Scholar 

  • Phillips I, Casewell M, Cox T, De Groot B, Friis C, Jones R, Nightingale C, Preston R, Waddell J (2004b) Does the use of antibiotics in food animals pose a risk to human health? A reply to critics. J Antimicrob Chemother 54:276–278

    Google Scholar 

  • Potter T, Illambas J, Rycroft AN, Brentnall C, McKellar QA, Lees P (2009a) Integration and modeling of pharmacokinetic and pharmacodynamic data for oxytetracycline in calves. J Vet Pharmacol Ther 32(Suppl 1):66–67

    Google Scholar 

  • Potter T, Illambas J, Rycroft AN, Lees P (2009b) Integration and modeling of pharmacokinetic and pharmacodynamic data for marbofloxacin in calves. J Vet Pharmacol Ther 32(Suppl 1):142–143

    Google Scholar 

  • Prescott JF, Baggot JD (1993) Aminoglycosides and aminocyclitols. In: Prescott JF, Baggot JD (eds) Antimicrobial therapy in veterinary medicine, 2nd edn. Iowa State University Press, Ames, IA, pp 144–178

    Google Scholar 

  • Preston SL, Drusano GL, Berman AL, Fowler CL, Chow AT, Dornseif B, Reichl V, Natarajan J, Corrado M (1998) Pharmacodynamics of levofloxacin: a new paradigm for early clinical trials. J Am Med Assoc 279:125–129

    Google Scholar 

  • Projan SJ, Novick RP (1997) The molecular basis of pathogenicity. In: Crossley KB, Archer GL (eds) The Staphylococci in human diseases. Churchill Livingstone, New York, NY, pp 55–82

    Google Scholar 

  • Reato G, Cuffini AM, Tullio V, Mandras N, Roana J, Banche G, Foa R, Carlone NA (2004) Immunomodulating effect of antimicrobial agents on cytokine production by human polymorphonuclear neutrophils. Int J Antimicrob Agents 23:150–154

    PubMed  Google Scholar 

  • Rice KC, Bayles KW (2008) Molecular control of bacterial death and lysis. Microbiol Mol Biol Rev 72:85–109

    PubMed  Google Scholar 

  • Rybak MJ (2006) Pharmacodynamics: Relation to antimicrobial resistance. Am J Infect Control 34(Suppl 1):S38–S45

    PubMed  Google Scholar 

  • Safdar N, Andes D, Craig WA (2004) In vivo pharmacodynamic activity of daptomycin. Antimicrob Agents Chemother 48:63–68

    PubMed  Google Scholar 

  • Schrag SJ, Peña C, Fernández J, Sánchez J, Gómez V, Pérez E, Feris JM, Besser RE (2001) Effect of short-course, high-dose amoxicillin therapy on resistant pneumococcal carriage: A randomized trial. J Am Med Assoc 286:49–56

    Google Scholar 

  • Schwegmann A, Brombacher F (2008) Host-directed drug targeting of factors hijacked by pathogens. Sci Signal 1(29):re8

    PubMed  Google Scholar 

  • Shah PM, Zwischenbrugger H, Stille W (1976) Bactericidal dose–activity relationships with E. coli, K. pneumoniae and S. aureus (author’s translation). Dtsch Med Wochenschr 101:325–328

    PubMed  Google Scholar 

  • Shryock TR, Mortensen JE, Baumholtz M (1998) The effects of macrolides on the expression of bacterial virulence mechanisms. J Antimicrob Chemother 41:505–512

    PubMed  Google Scholar 

  • Siegel RE (2008) Emerging gram-negative antibiotic resistance: daunting challenges, declining sensitivities, and dire consequences. Respir Care 53:471–479

    PubMed  Google Scholar 

  • Silverman JA, Mortin LI, Vanpraagh AD, Li T, Alder J (2005) Inhibition of daptomycin by pulmonary surfactant: In vitro modeling and clinical impact. J Infect Dis 191:2149–2152

    PubMed  Google Scholar 

  • Simjee S, Silley P, Werling HO, Bywater R (2008) Potential confusion regarding the term ‘resistance’ in epidemiological surveys. J Antimicrob Chemother 61:228–229

    PubMed  Google Scholar 

  • Slocombe RF, Malark J, Ingersoll R, Derksen JF, Robinson NE (1985) Importance of neutrophils in the pathogenesis of acute pneumonia pasteurellosis in calves. Am J Vet Res 46:2253–2258

    PubMed  Google Scholar 

  • Smith K, Perez A, Ramage G, Gemmell CG, Lang S (2009) Comparison of biofilm-associated cell survival following in vitro exposure of meticillin-resistant Staphylococcus aureus biofilms to the antibiotics clindamycin, daptomycin, linezolid, tigecycline and vancomycin. Int J Antimicrob Agents 33:374–378

    PubMed  Google Scholar 

  • Soto SM, Smithson A, Horcajada JP, Martinez JA, Mensa JP, Vila J (2006) Implication of biofilm formation in the persistence of urinary tract infection caused by uropathogenic Escherichia coli. Clin Microbiol Infect 12:1034–1036

    PubMed  Google Scholar 

  • Steenbergen JN, Alder J, Thorne GM, Tally FP (2005) Daptomycin: A lipopeptide antibiotic for the treatment of serious Gram-positive infections. J Antimicrob Chemother 55:283–288

    PubMed  Google Scholar 

  • Stein RA (2008) When less is more: High-dose, short duration regimens and antibiotic resistance. Int J Clin Pract 62:1304–1305

    PubMed  Google Scholar 

  • Sung JM, Chantler PD, Lloyd DH (2006) Accessory gene regulator locus of Staphylococcus intermedius. Infect Immun 74:2947–2956

    PubMed  Google Scholar 

  • Tam VA, Louie A, Fritsche TR, Deziel M, Liu W, Brown DL, Deshpande L, Leary R, Jones RN, Drusano GL (2007) Impact of drug-exposure intensity and duration of therapy on the emergence of Staphylococcus aureus resistance to a quinolone antimicrobial. J Infect Dis 195:1818–1827

    PubMed  Google Scholar 

  • Tanaka G, Shigeta M, Komatsuzawa H, Sugai M, Suginaka H, Usui T (1999) Effect of the growth rate of Pseudomonas aeruginosa biofilms on the susceptibility to antimicrobial agents: Beta-lactams and fluoroquinolones. Chemotherapy 45:28–36

    PubMed  Google Scholar 

  • Tateda K, Standiford TJ, Pechere JC, Yamaguchi K (2004) Regulatory effects of macrolides on bacterial virulence: Potential role as quorum-sensing inhibitors. Curr Pharm Des 10:3055–3065

    PubMed  Google Scholar 

  • Threlfall EJ, Day M, de Pinna E, Charlett A, Goodyear KL (2006) Assessment of factors contributing to changes in the incidence of antimicrobial drug resistance in Salmonella enterica serotypes Enteritidis and Typhimurium from humans in England and Wales in 2000, 2002 and 2004. Int J Antimicrob Agents 28:389–395

    PubMed  Google Scholar 

  • Tollefson L (2004) Factual errors in review article. J Antimicrob Chemother 54:271

    PubMed  Google Scholar 

  • Toutain PL (2002) Pharmacokinetic/Pharmacodynamic integration in drug development and dosage-regimen optimization for veterinary medicine. AAPS Pharm Sci 4(4):160–188

    Google Scholar 

  • Turnidge J (2004) Antibiotic use in animals—prejudices, perceptions, and realities. J Antimicrob Chemother 53:26–27

    PubMed  Google Scholar 

  • Turnidge J, Paterson DL (2007) Setting and revising antibacterial susceptibility breakpoints. Clin Microbiol Rev 20:391–408

    PubMed  Google Scholar 

  • van den Broek PJ (1989) Antimicrobial drugs, microorganisms, and phagocytes. Rev Infect Dis 11:213–245

    PubMed  Google Scholar 

  • Wallmann J, Schröter K, Wieler LH, Kroker R (2003) National antibiotic resistance monitoring in veterinary pathogens from sick food-producing animals: The German programme and results from the 2001 pilot study. Int J Antimicrob Agents 22:420–428

    PubMed  Google Scholar 

  • Wassenaar TM (2005) Use of antimicrobial agents in veterinary medicine and implications for human health. Crit Rev Microbiol 31:155–169

    PubMed  Google Scholar 

  • Wassenaar TM, Silley P (2008) Antimicrobial resistance in zoonotic bacteria: Lessons learned from host-specific pathogens. Anim Health Res Rev 9:177–186

    PubMed  Google Scholar 

  • Wassenaar TM, Kist M, de Jong A (2007) Re-analysis of the risks attributed to ciprofloxacin-resistant Campylobacter jejuni infections. Int J Antimicrob Agents 30:195–201

    PubMed  Google Scholar 

  • Well M, Naber KG, Kinzig-Schippers M, SÅ‘rgel F (1998) Urinary bactericidal activity and pharmacokinetics of enoxacin versus norfloxacin and ciprofloxacin in healthy volunteers after a single oral dose. Int J Antimicrob Agents 10:31–38

    PubMed  Google Scholar 

  • WHO (2001) Surveillance standards for antimicrobial resistance, WHO, Who/CDS/CDSR/DRS/2001.5, see http://www.who.int/emc

  • Winstanley C, Fothergill JL (2009) The role of quorum sensing in chronic cystic fibrosis Pseudomonas aeruginosa infections. FEMS Microbiol Lett 290:1–9

    PubMed  Google Scholar 

  • Wright DH, Brown GH, Peterson ML, Rotschafer JC (2000) Application of fluoroquinolone pharmacodynamics. J Antimicrob Chemother 46:669–683

    PubMed  Google Scholar 

  • Yang Q, Nakkula RJ, Walters JD (2002) Accumulation of ciprofloxacin and minocycline by cultured human gingival fibroblasts. J Dent Res 81:836–840

    PubMed  Google Scholar 

  • Zelenitsky S, Ariano R, Harding G, Forrest A (2005) Evaluating ciprofloxacin dosing for Pseudomonas aeruginosa infection by using clinical outcome-based Monte Carlo simulations. Antimicrob Agents Chemother 49:4009–4014

    PubMed  Google Scholar 

  • Zhanel GG, Karlowsky JA, Davidson RJ, Hoban DJ (1991) Influence of human urine on the in vitro activity and postantibiotic effect of ciprofloxacin against Escherichia coli. Chemotherapy 37:218–223

    PubMed  Google Scholar 

  • Zhao X, Drlica K (2001) Restricting the selection of antibiotic-resistant mutants: a general strategy derived from fluoroquinolone studies. Clin Infect Dis 33(Suppl 3):S147–S156

    PubMed  Google Scholar 

  • Zhao X, Drlica K (2008) A unified anti-mutant dosing strategy. J Antimicrob Chemother 62:434–436

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marilyn Martinez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Martinez, M., Silley, P. (2010). Antimicrobial Drug Resistance. In: Cunningham, F., Elliott, J., Lees, P. (eds) Comparative and Veterinary Pharmacology. Handbook of Experimental Pharmacology, vol 199. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10324-7_10

Download citation

Publish with us

Policies and ethics

Navigation