Interactively Illustrating the Context-Sensitivity of Aristotelian Diagrams

  • Conference paper
  • First Online:
Modeling and Using Context (CONTEXT 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9405))

  • 941 Accesses

Abstract

This paper studies the logical context-sensitivity of Aristotelian diagrams. I propose a new account of measuring this type of context-sensitivity, and illustrate it by means of a small-scale example. Next, I turn toward a more large-scale case study, based on Aristotelian diagrams for the categorical statements with subject negation. On the practical side, I describe an interactive application that can help to explain and illustrate the phenomenon of context-sensitivity in this particular case study. On the theoretical side, I show that applying the proposed measure of context-sensitivity leads to a number of precise yet highly intuitive results.

Thanks to Hans Smessaert, Margaux Smets and three anonymous referees for their feedback on earlier versions of this paper. The author holds a Postdoctoral Scholarship from the Research Foundation–Flanders (FWO).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Strictly speaking, the term ‘context-sensitive’ does not apply to the Aristotelian diagram itself, but to the fragment of formulas occurring in that diagram. Throughout this paper, however, I will be using this term both in a strict sense (as applying to fragments of formulas) and in a looser sense (as applying to Aristotelian diagrams).

  2. 2.

    So for all distinct \(\varphi ,\psi \in \mathcal {F}\), it holds that \(\mathsf {S} \not \models \varphi \), \(\mathsf {S} \not \models \lnot \varphi \), \(\mathsf {S}\not \models \varphi \leftrightarrow \psi \), and there exists a \(\varphi '\in \mathcal {F}\) such that \(\mathsf {S}\models \varphi '\leftrightarrow \lnot \varphi \).

  3. 3.

    The set \(\varPi _\mathsf {S}(\mathcal {F})\) is called a ‘partition’ because its elements are (i) jointly exhaustive (\(\mathsf {S}\models \bigvee \varPi _\mathsf {S}(\mathcal {F})\)), and (ii) mutually exclusive (\(\mathsf {S}\models \lnot (\alpha \wedge \beta )\) for distinct \(\alpha ,\beta \in \varPi _\mathsf {S}(\mathcal {F})\)).

  4. 4.

    The bitstring representation of \(\varphi \) is meant to keep track which formulas of \(\varPi _\mathsf {S}(\mathcal {F})\) enter into this disjunction. For example, if \(\varPi _\mathsf {S}(\mathcal {F}) = \{\alpha _1,\alpha _2,\alpha _3,\alpha _4\}\), then \(\varphi \) is represented by the bitstring 1011 iff \(\varphi \equiv _\mathsf {S} \alpha _1 \vee \alpha _3 \vee \alpha _4\).

  5. 5.

    Note the subtly different quantification patterns corresponding to these two limiting cases: minimal context-sensitivity corresponds to \(\exists \ell \in R_{|\mathcal {F}|}:\forall \mathsf {S}\in \mathcal {S}: |\varPi _\mathsf {S}(\mathcal {F})| = \ell \), while maximal context-sensitivity corresponds to \(\forall \ell \in R_{|\mathcal {F}|}:\exists \mathsf {S}\in \mathcal {S}: |\varPi _\mathsf {S}(\mathcal {F})| = \ell \).

  6. 6.

    As is well-known, in the language of first-order logic, these formulas can be formalized as \(\forall x(Ax\rightarrow Bx)\), \(\exists x (Ax\wedge Bx)\), \(\forall x(Ax\rightarrow \lnot Bx)\) and \(\exists x(Ax\wedge \lnot Bx)\), respectively.

  7. 7.

    Later in the paper, I will have more to say about when exactly a logical system can be considered ‘reasonable’ for a given fragment.

  8. 8.

    For example, in this system, the sentence ‘there are at least two As’ would not be formalized as \(\exists x \exists y (Ax \wedge Ay \wedge x\ne y)\), but simply as \(\exists x\exists y (Ax\wedge Ay)\): the syntactic difference between the variables x and y suffices to indicate that there is also a semantic difference between them, i.e. that they have distinct values.

  9. 9.

    We already encountered a similar situation in Sect. 2, where it was shown that each system in \(\mathcal {F}^\dag \) gives rise to a different Aristotelian square for \(\mathcal {F}^\dag \); see Fig. 2.

  10. 10.

    An Aristotelian octagon can be seen as consisting of 4 pairs of contradictory formulas (PCDs), and a square as 2 PCDs. The number of squares inside an octagon thus equals the number of ways in which one can select 2 PCDs out of 4 (without replacement), which is \(\left( {\begin{array}{c}4\\ 2\end{array}}\right) = \frac{4!}{2!2!} = 6\).

  11. 11.

    For reasons of space, a logical system such as \(\mathsf {FOL}(\{A1,A2,A3\})\) is abbreviated as ‘123’, and the bitstring length \(|\varPi _\mathsf {S}(\mathcal {F}^\ddag )|\) as \(\ell _\mathsf {S}\).

  12. 12.

    There certainly do exist systems \(\mathsf {S}\) such that \(|\varPi _{\mathsf {S}}(\mathcal {F}^\ddag )| = 4\). This is the case, for example, for the system \(\mathsf {S}^*\) that is obtained by adding to \(\mathsf {FOL}(\mathcal {AX})\) the additional axiom \(all(A,B)\vee all(A,\lnot B) \vee all(\lnot A,B) \vee all(\lnot A,\lnot B)\). Note, however, that \(\mathsf {S}^* \notin \mathcal {S}^\ddag \), and, more importantly, \(\mathsf {S}^*\) is far less reasonable than any of the systems in \(\mathcal {S}^\ddag \).

References

  1. van der Auwera, J.: Modality: the three-layered scalar square. J. Seman. 13, 181–195 (1996)

    Article  Google Scholar 

  2. Beller, S.: Deontic reasoning reviewed: psychological questions, empirical findings, and current theories. Cogn. Process. 11, 123–132 (2010)

    Article  Google Scholar 

  3. Béziau, J.Y., Payette, G.: Preface. In: Béziau, J.Y., Payette, G. (eds.) The Square of Opposition: A General Framework for Cognition, pp. 9–22. Peter Lang, Bern (2012)

    Chapter  Google Scholar 

  4. Carnielli, W., Pizzi, C.: Modalities and Multimodalities. Logic, Epistemology, and the Unity of Science, vol. 12. Springer, The Netherlands (2008)

    Book  MATH  Google Scholar 

  5. Chatti, S., Schang, F.: The cube, the square and the problem of existential import. Hist. Philos. Logic 32, 101–132 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Clark, E.V.: On the pragmatics of contrast. J. Child Lang. 17, 417–431 (1990)

    Article  Google Scholar 

  7. De Morgan, A.: On the Syllogism, and Other Logical Writings. Routledge and Kegan Paul, London (1966)

    MATH  Google Scholar 

  8. Dekker, P.: Not only Barbara. J. Logic Lang. Inf. 24, 95–129 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Demey, L.: Structures of oppositions for public announcement logic. In: Béziau, J.Y., Jacquette, D. (eds.) Around and Beyond the Square of Opposition. Studies in Universal Logic, pp. 313–339. Springer, Basel (2012)

    Chapter  Google Scholar 

  10. Demey, L., Smessaert, H.: The relationship between Aristotelian and Hasse diagrams. In: Delaney, A., Dwyer, T., Purchase, H. (eds.) Diagrams 2014. LNCS, vol. 8578, pp. 213–227. Springer, Heidelberg (2014)

    Google Scholar 

  11. Demey, L., Smessaert, H.: Combinatorial bitstring semantics for arbitrary logical fragments. Ms. (2015)

    Google Scholar 

  12. Demey, L., Smessaert, H.: Metalogical decorations of logical diagrams. Ms. (2015)

    Google Scholar 

  13. Dubois, D., Prade, H.: From Blanché’s hexagonal organization of concepts to formal concept analysis and possibility theory. Logica Univ. 6, 149–169 (2012)

    Article  MATH  Google Scholar 

  14. Frijters, S., Demey, L.: The context-sensitivity of epistemic-logical diagrams (in Dutch), internal report, KU Leuven (2015)

    Google Scholar 

  15. Gottfried, B.: The diamond of contraries. J. Vis. Lang. Comput. 26, 29–41 (2015)

    Article  Google Scholar 

  16. Hacker, E.A.: The octagon of opposition. Notre Dame J. Formal Logic 16, 352–353 (1975)

    Article  MATH  Google Scholar 

  17. Horn, L.R.: A Natural History of Negation. University of Chicago Press, Chicago/London (1989)

    Google Scholar 

  18. Hurford, J.R.: Why synonymy is rare: fitness is in the speaker. In: Ziegler, J., Dittrich, P., Kim, J.T., Christaller, T., Banzhaf, W. (eds.) ECAL 2003. LNCS (LNAI), vol. 2801, pp. 442–451. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  19. Jacquette, D.: Thinking outside the square of opposition box. In: Béziau, J.Y., Jacquette, D. (eds.) Around and Beyond the Square of Opposition, pp. 73–92. Springer, Basel (2012)

    Chapter  Google Scholar 

  20. Joerden, J.C.: Logik im Recht. Springer-Lehrbuch. Springer, Heidelberg (2010)

    Book  Google Scholar 

  21. Johnson, W.: Logic: Part I. Cambridge University Press, Cambridge (1921)

    Google Scholar 

  22. Keynes, J.N.: Studies and Exercises in Formal Logic. MacMillan, London (1884)

    Google Scholar 

  23. Khomskii, Y.: William of Sherwood, singular propositions and the hexagon of opposition. In: Béziau, J.Y., Payette, G. (eds.) The Square of Opposition: A General Framework for Cognition, pp. 43–60. Peter Lang, Bern (2012)

    Google Scholar 

  24. Lenzen, W.: How to square knowledge and belief. In: Béziau, J.Y., Jacquette, D. (eds.) Around and Beyond the Square of Opposition. Studies in Universal Logic, pp. 305–311. Springer, Basel (2012)

    Chapter  Google Scholar 

  25. Libert, T.: Hypercubes of duality. In: Béziau, J.Y., Jacquette, D. (eds.) Around and Beyond the Square of Opposition. Studies in Universal Logic, pp. 293–301. Springer, Basel (2012)

    Chapter  Google Scholar 

  26. Manin, D.Y.: Zipf’s law and avoidance of excessive synonymy. Cogn. Sci. 32, 1075–1098 (2008)

    Article  Google Scholar 

  27. Massin, O.: Pleasure and its contraries. Rev. Phil. Psych. 5, 15–40 (2014)

    Article  Google Scholar 

  28. McNamara, P.: Deontic logic. In: Zalta, E.N. (ed.) Stanford Encyclopedia of Philosophy. CSLI, Stanford (2010)

    Google Scholar 

  29. Mélès, B.: No group of opposition for constructive logic: the intuitionistic and linear cases. In: Béziau, J.Y., Jacquette, D. (eds.) Around and Beyond the Square of Opposition. Studies in Universal Logic, pp. 201–217. Springer, Basel (2012)

    Chapter  Google Scholar 

  30. Mikhail, J.: Universal moral grammar: theory, evidence and the future. Trends Cogn. Sci. 11, 143–152 (2007)

    Article  Google Scholar 

  31. O’Reilly, D.: Using the square of opposition to illustrate the deontic and alethic relations constituting rights. Univ. Toronto Law J. 45, 279–310 (1995)

    Article  Google Scholar 

  32. Parsons, T.: The traditional square of opposition. In: Zalta, E.N. (ed.) Stanford Encyclopedia of Philosophy. CSLI, Stanford (2006)

    Google Scholar 

  33. Peckhaus, V.: Algebra of logic, quantification theory, and the square of opposition. In: Béziau, J.Y., Payette, G. (eds.) The Square of Opposition: A General Framework for Cognition, pp. 25–41. Peter Lang, Bern (2012)

    Google Scholar 

  34. Porcaro, C., et al.: Contradictory reasoning network: an EEG and FMRI study. PLOS One 9(3), e92835 (2014)

    Article  Google Scholar 

  35. Pratt-Hartmann, I., Moss, L.S.: Logics for the relational syllogistic. Rev. Symbolic Logic 2, 647–683 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. Read, S.: John Buridan’s theory of consequence and his octagons of opposition. In: Béziau, J.Y., Jacquette, D. (eds.) Around and Beyond the Square of Opposition. Studies in Universal Logic, pp. 93–110. Springer, Basel (2012)

    Chapter  Google Scholar 

  37. Reichenbach, H.: The syllogism revised. Philos. Sci. 19, 1–16 (1952)

    Article  Google Scholar 

  38. Rysiew, P.: Epistemic contextualism. In: Zalta, E.N. (ed.) Stanford Encyclopedia of Philosophy. CSLI, Stanford (2011)

    Google Scholar 

  39. Seuren, P.: The natural logic of language and cognition. Pragmatics 16, 103–138 (2006)

    Article  Google Scholar 

  40. Seuren, P.: The cognitive ontogenesis of predicate logic. Notre Dame J. Formal Logic 55, 499–532 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  41. Seuren, P., Jaspers, D.: Logico-cognitive structure in the lexicon. Language 90, 607–643 (2014)

    Article  Google Scholar 

  42. Smessaert, H., Demey, L.: Logical geometries and information in the square of opposition. J. Logic Lang. Inf. 23, 527–565 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  43. Smessaert, H., Demey, L.: Béziau’s contributions to the logical geometry of modalities and quantifiers. In: Koslow, A., Buchsbaum, A. (eds.) The Road to Universal Logic. Studies in Universal Logic, pp. 475–494. Springer, Switzerland (2015)

    Google Scholar 

  44. Sosa, E.: The analysis of ‘knowledge that P’. Analysis 25, 1–8 (1964)

    Article  Google Scholar 

  45. Vranes, E.: The definition of ‘norm conflict’ in international law and legal theory. Eur. J. Int. Law 17, 395–418 (2006)

    Article  Google Scholar 

  46. Wehmeier, K.: Wittgensteinian predicate logic. Notre Dame J. Formal Logic 45, 1–11 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  47. Williamson, T.: Knowledge and its Limits. Oxford University Press, Oxford (2000)

    Google Scholar 

  48. Wittgenstein, L.: Tractatus Logico-Philosophicus. Routledge/Kegan Paul, London (1922)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenz Demey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Demey, L. (2015). Interactively Illustrating the Context-Sensitivity of Aristotelian Diagrams. In: Christiansen, H., Stojanovic, I., Papadopoulos, G. (eds) Modeling and Using Context. CONTEXT 2015. Lecture Notes in Computer Science(), vol 9405. Springer, Cham. https://doi.org/10.1007/978-3-319-25591-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25591-0_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25590-3

  • Online ISBN: 978-3-319-25591-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation