Extrinsic Defects in Nanostructured Semiconductors

  • Chapter
  • First Online:
Nanostructured Photocatalyst via Defect Engineering
  • 515 Accesses

Abstract

The concept of extrinsic deficiency is usually attributed to the introduction of certain foreign atoms in the crystal lattice of target materials and consequent manipulation over their concentration, distribution, diffusion, and interaction with intrinsic defects such as vacancies interstitials, etc. Under proper management, it might result in significant enhancement of structural, optical electronic, and electrical properties which eventually could be used to improve photocatalytic and photoelectrochemical performances. The reliability of this approach is often defined in terms of overall strategies, and thus certain difficulties might exist in applying it to specific composition or compound that has its own uniqueness and particulate features. For example, the same element that is used to modify TiO2 and 2-D MoS2 might have absolutely oppose impact on them. Following it, the goal of this chapter is to discuss in detail individual and selected characteristics of some widely applied materials after been subjected to do**.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, J. Ye, Nano-photocatalytic materials: Possibilities and challenges. Adv. Mater. 24, 229–251 (2012). https://doi.org/10.1002/adma.201102752

    Article  CAS  Google Scholar 

  2. D. Banerjee, S.K. Gupta, N. Patra, S.W. Raja, N. Pathak, D. Bhattacharyya, P.K. Pujari, S.V. Thakare, S.N. Jha, Unraveling do** induced anatase–rutile phase transition in TiO2 using electron, X-ray and gamma-ray as spectroscopic probes. Phys. Chem. Chem. Phys. 20, 28699–28711 (2018). https://doi.org/10.1039/C8CP04310H

    Article  CAS  Google Scholar 

  3. C. Di Valentin, G. Pacchioni, Trends in non-metal do** of anatase TiO2: B, C, N and F. Catal. Today 206, 12–18 (2013). https://doi.org/10.1016/j.cattod.2011.11.030

    Article  CAS  Google Scholar 

  4. X. Pan, M.-Q. Yang, X. Fu, N. Zhang, Y.-J. Xu, Defective TiO2 with oxygen vacancies: Synthesis, properties and photocatalytic applications. Nanoscale 5, 3601–3614 (2013). https://doi.org/10.1039/C3NR00476G

    Article  CAS  Google Scholar 

  5. L. Zhou, M. Cai, X. Zhang, N. Cui, G. Chen, G. Zou, In-situ nitrogen-doped black TiO2 with enhanced visible-light-driven photocatalytic inactivation of Microcystis aeruginosa cells: Synthesization, performance and mechanism. Appl. Catal. B Environ. 272, 119019 (2020). https://doi.org/10.1016/j.apcatb.2020.119019

    Article  CAS  Google Scholar 

  6. L. Gao, Y. Li, J. Ren, S. Wang, R. Wang, G. Fu, Y. Hu, Passivation of defect states in anatase TiO2 hollow spheres with Mg do**: Realizing efficient photocatalytic overall water splitting. Appl. Catal. B Environ. 202, 127–133 (2017). https://doi.org/10.1016/j.apcatb.2016.09.018

    Article  CAS  Google Scholar 

  7. M.S. Akple, J. Low, Z. Qin, S. Wageh, A.A. Al-Ghamdi, J. Yu, S. Liu, Nitrogen-doped TiO2 microsheets with enhanced visible light photocatalytic activity for CO2 reduction. Chinese J. Catal. 36, 2127–2134 (2015). https://doi.org/10.1016/S1872-2067(15)60989-5

    Article  CAS  Google Scholar 

  8. H. Zhuang, Y. Zhang, Z. Chu, J. Long, X. An, H. Zhang, H. Lin, Z. Zhang, X. Wang, Synergy of metal and nonmetal dopants for visible-light photocatalysis: A case-study of Sn and N co-doped TiO2. Phys. Chem. Chem. Phys. 18, 9636–9644 (2016). https://doi.org/10.1039/C6CP00580B

    Article  CAS  Google Scholar 

  9. M. Samadi, M. Zirak, A. Naseri, E. Khorashadizade, A.Z. Moshfegh, Recent progress on doped ZnO nanostructures for visible-light photocatalysis. Thin Solid Films 605, 2–19 (2016). https://doi.org/10.1016/j.tsf.2015.12.064

    Article  CAS  Google Scholar 

  10. K.C. Barick, S. Singh, M. Aslam, D. Bahadur, Porosity and photocatalytic studies of transition metal doped ZnO nanoclusters. Micropor. Mesopor. Mater. 134, 195–202 (2010). https://doi.org/10.1016/j.micromeso.2010.05.026

    Article  CAS  Google Scholar 

  11. S. Anandan, A. Vinu, T. Mori, N. Gokulakrishnan, P. Srinivasu, V. Murugesan, K. Ariga, Photocatalytic degradation of 2,4,6-trichlorophenol using lanthanum doped ZnO in aqueous suspension. Catal. Commun. 8, 1377–1382 (2007). https://doi.org/10.1016/j.catcom.2006.12.001

    Article  CAS  Google Scholar 

  12. Y. Zhao, K. Kita, K. Kyuno, A. Toriumi, Band gap enhancement and electrical properties of La2O3 films doped with Y2O3 as high-k gate insulators. Appl. Phys. Lett. 94, 042901 (2009). https://doi.org/10.1063/1.3075954

    Article  CAS  Google Scholar 

  13. K.C. Cadien, L. Nolan, Chapter 10 – Chemical mechanical polishing method and practice, in Handbook of Thin Film Deposition, ed. by K. Seshan, D. Schepis, Fourth edn., (William Andrew Publishing, 2018), pp. 317–357. https://doi.org/10.1016/B978-0-12-812311-9.00010-4

    Chapter  Google Scholar 

  14. A. Narjis, H. El Aakib, M. Boukendil, M. El Hasnaoui, L. Nkhaili, A. Aberkouks, A. Outzourhit, Controlling the structural properties of pure and aluminum doped zinc oxide nanoparticles by annealing. J. King Saud. Univ. Sci. 32, 1074–1080 (2020). https://doi.org/10.1016/j.jksus.2019.10.004

    Article  Google Scholar 

  15. S.T. Tan, X.W. Sun, Z.G. Yu, P. Wu, G.Q. Lo, D.L. Kwong, p-type conduction in unintentional carbon-doped ZnO thin films. Appl. Phys. Lett. 91, 072101 (2007). https://doi.org/10.1063/1.2768917

    Article  CAS  Google Scholar 

  16. V. Kumari, A. Mittal, J. **dal, S. Yadav, N. Kumar, S-, N- and C-doped ZnO as semiconductor photocatalysts: A review. Front. Mater. Sci. 13, 1–22 (2019). https://doi.org/10.1007/s11706-019-0453-4

    Article  Google Scholar 

  17. R. Kumari, A. Sahai, N. Goswami, Effect of nitrogen do** on structural and optical properties of ZnO nanoparticles. Prog. Nat. Sci. Mater. 25, 300–309 (2015). https://doi.org/10.1016/j.pnsc.2015.08.003

    Article  CAS  Google Scholar 

  18. R. Kobayashi, T. Kishi, Y. Katayanagi, T. Yano, N. Matsushita, Fabrication of nitrogen-doped ZnO nanorod arrays by hydrothermal synthesis and ambient annealing. RSC Adv. 8, 23599–23605 (2018). https://doi.org/10.1039/C8RA04168G

    Article  CAS  Google Scholar 

  19. D. **g, L. Guo, Hydrogen production over Fe-doped tantalum oxide from an aqueous methanol solution under the light irradiation. J. Phys. Chem. Solids 68, 2363–2369 (2007). https://doi.org/10.1016/j.jpcs.2007.07.045

    Article  CAS  Google Scholar 

  20. T. Grewe, H. Tüysüz, Alkali metals incorporated ordered mesoporous tantalum oxide with enhanced photocatalytic activity for water splitting. J. Mater. Chem. A 4, 3007–3017 (2016). https://doi.org/10.1039/C5TA07086D

    Article  CAS  Google Scholar 

  21. M. Danish, A. Pandey, M.O. Ansari, A. Jilani, Influence of ammonolysis, Cu-incorporation and film thickness on structure, optical and photocatalytic properties of Ta2O5 thin films fabricated via sol-gel: A comparative study. J. Mater. Sci. Mater. Electron. 28, 6812–6822 (2017). https://doi.org/10.1007/s10854-017-6379-7

    Article  CAS  Google Scholar 

  22. K.X. Shi, H.Y. Xu, Z.Q. Wang, X.N. Zhao, W.Z. Liu, J.G. Ma, Y.C. Liu, Improved performance of Ta2O5−x resistive switching memory by Gd-do**: Ultralow power operation, good data retention, and multilevel storage. Appl. Phys. Lett. 111, 223505 (2017). https://doi.org/10.1063/1.5002571

    Article  CAS  Google Scholar 

  23. E. Atanassova, D. Spassov, A. Paskaleva, M. Georgieva, J. Koprinarova, Electrical characteristics of Ti-doped Ta2O5 stacked capacitors. Thin Solid Films 516, 8684–8692 (2008). https://doi.org/10.1016/j.tsf.2008.05.003

    Article  CAS  Google Scholar 

  24. W.-S. Liu, S.-H. Huang, C.-F. Liu, C.-W. Hu, T.-Y. Chen, T.-P. Perng, Nitrogen do** in Ta2O5 and its implication for photocatalytic H2 production. Appl. Surf. Sci. 459, 477–482 (2018). https://doi.org/10.1016/j.apsusc.2018.07.185

    Article  CAS  Google Scholar 

  25. R. **nouchi, A.V. Akimov, S. Shirai, R. Asahi, O.V. Prezhdo, Upward shift in conduction band of Ta2O5 due to surface dipoles induced by N-do**. J. Phys. Chem. C 119, 26925–26936 (2015). https://doi.org/10.1021/acs.jpcc.5b06932

    Article  CAS  Google Scholar 

  26. T.M. Suzuki, S. Saeki, K. Sekizawa, K. Kitazumi, N. Takahashi, T. Morikawa, Photoelectrochemical hydrogen production by water splitting over dual-functionally modified oxide: p-type N-doped Ta2O5 photocathode active under visible light irradiation. Appl. Catal. B Environ. 202, 597–604 (2017). https://doi.org/10.1016/j.apcatb.2016.09.066

    Article  CAS  Google Scholar 

  27. L. An, X. Han, Y. Li, H. Wang, C. Hou, Q. Zhang, One step synthesis of self-doped F-Ta2O5 nanoshuttles photocatalyst and enhanced photocatalytic hydrogen evolution. Int. J. Hydrog. Energy 46, 3996–4006 (2021). https://doi.org/10.1016/j.ijhydene.2020.10.250

    Article  CAS  Google Scholar 

  28. Y. **e, Y. Wang, Z. Chen, X. Xu, Role of oxygen defects on the photocatalytic properties of Mg-doped mesoporous Ta3N5. ChemSusChem 9, 1403–1412 (2016). https://doi.org/10.1002/cssc.201600193

    Article  CAS  Google Scholar 

  29. Y. Wang, D. Zhu, X. Xu, Zr-doped mesoporous Ta3N5 microspheres for efficient photocatalytic water oxidation. ACS Appl. Mater. Interfaces 8, 35407–35418 (2016). https://doi.org/10.1021/acsami.6b14230

    Article  CAS  Google Scholar 

  30. L. Pei, Z. Xu, Z. Shi, H. Zhu, S. Yan, Z. Zou, Mg-doped Ta3N5 nanorods coated with a conformal CoOOH layer for water oxidation: Bulk and surface dual modification of photoanodes. J. Mater. Chem. A 5, 20439–20447 (2017). https://doi.org/10.1039/C7TA06227C

    Article  CAS  Google Scholar 

  31. Y. Kado, C.-Y. Lee, K. Lee, J. Müller, M. Moll, E. Spiecker, P. Schmuki, Enhanced water splitting activity of M-doped Ta3N5 (M = Na, K, Rb, Cs). Chem. Commun. 48, 8685–8687 (2012). https://doi.org/10.1039/C2CC33822J

    Article  CAS  Google Scholar 

  32. S. Grigorescu, B. Bärhausen, L. Wang, A. Mazare, J.E. Yoo, R. Hahn, P. Schmuki, Tungsten do** of Ta3N5-nanotubes for band gap narrowing and enhanced photoelectrochemical water splitting efficiency. Electrochem. Commun. 51, 85–88 (2015). https://doi.org/10.1016/j.elecom.2014.12.019

    Article  CAS  Google Scholar 

  33. T.D.C. Nguyen, T.P.L.C. Nguyen, H.T.T. Mai, V.-D. Dao, M.P. Nguyen, V.N. Nguyen, Novel photocatalytic conversion of CO2 by vanadium-doped tantalum nitride for valuable solar fuel production. J. Catal. 352, 67–74 (2017). https://doi.org/10.1016/j.jcat.2017.04.020

    Article  CAS  Google Scholar 

  34. L. Cui, M. Wang, Y.X. Wang, Nitrogen vacancies and oxygen substitution of Ta3N5: First-principles investigation. J. Phys. Soc. Jpn. 83, 114707 (2014). https://doi.org/10.7566/JPSJ.83.114707

    Article  Google Scholar 

  35. J. Wang, T. Fang, L. Zhang, J. Feng, Z. Li, Z. Zou, Effects of oxygen do** on optical band gap and band edge positions of Ta3N5 photocatalyst: A GGA+U calculation. J. Catal. 309, 291–299 (2014). https://doi.org/10.1016/j.jcat.2013.10.014

    Article  CAS  Google Scholar 

  36. Y. Yin, X. Zhang, C. Sun, Transition-metal-doped Fe2O3 nanoparticles for oxygen evolution reaction. Prog. Nat. Sci. Mater. 28, 430–436 (2018). https://doi.org/10.1016/j.pnsc.2018.07.005

    Article  CAS  Google Scholar 

  37. A. Bak, S.K. Choi, H. Park, Photoelectrochemical performances of hematite (α-Fe2O3 ) films doped with various metals. Bull. Kor. Chem. Soc. 36, 1487–1494 (2015). https://doi.org/10.1002/bkcs.10290

    Article  CAS  Google Scholar 

  38. Z. Fan, X. Wen, S. Yang, J.G. Lu, Controlled p- and n-type do** of Fe2O3 nanobelt field effect transistors. Appl. Phys. Lett. 87, 013113 (2005). https://doi.org/10.1063/1.1977203

    Article  CAS  Google Scholar 

  39. R. Zhang, Y. Fang, T. Chen, F. Qu, Z. Liu, G. Du, A.M. Asiri, T. Gao, X. Sun, Enhanced photoelectrochemical water oxidation performance of Fe2O3 nanorods array by S do**. ACS Sustain. Chem. Eng. 5, 7502–7506 (2017). https://doi.org/10.1021/acssuschemeng.7b01799

    Article  CAS  Google Scholar 

  40. T. Morikawa, K. Kitazumi, N. Takahashi, T. Arai, T. Ka**o, p-type conduction induced by N-do** in α-Fe2O3. Appl. Phys. Lett. 98, 242108 (2011). https://doi.org/10.1063/1.3599852

    Article  CAS  Google Scholar 

  41. M.-C. Huang, W.-S. Chang, J.-C. Lin, Y.-H. Chang, C.-C. Wu, Magnetron sputtering process of carbon-doped α-Fe2O3 thin films for photoelectrochemical water splitting. J. Alloys Compd. 636, 176–182 (2015). https://doi.org/10.1016/j.jallcom.2015.02.166

    Article  CAS  Google Scholar 

  42. D. Barreca, G. Carraro, A. Gasparotto, C. Maccato, C. Sada, A.P. Singh, S. Mathur, A. Mettenbörger, E. Bontempi, L.E. Depero, Columnar Fe2O3 arrays via plasma-enhanced growth: Interplay of fluorine substitution and photoelectrochemical properties. Int. J. Hydrog. Energy 38, 14189–14199 (2013). https://doi.org/10.1016/j.ijhydene.2013.08.119

    Article  CAS  Google Scholar 

  43. C. **. Phys. Lett. A 377, 1943–1947 (2013). https://doi.org/10.1016/j.physleta.2013.05.026

    Article  CAS  Google Scholar 

  44. J. An, P. Wanaguru, C. ** and adsorption on α–Fe2O3 (0001) film. Phys. Lett. A 380, 3149–3154 (2016). https://doi.org/10.1016/j.physleta.2016.07.042

    Article  CAS  Google Scholar 

  45. M. Mishra, D.-M. Chun, α-Fe2O3 as a photocatalytic material: A review. Appl. Catal. A Gen. 498, 126–141 (2015). https://doi.org/10.1016/j.apcata.2015.03.023

    Article  CAS  Google Scholar 

  46. J.S. Jang, J. Lee, H. Ye, F.-R.F. Fan, A.J. Bard, Rapid screening of effective dopants for Fe2O3 photocatalysts with scanning electrochemical microscopy and investigation of their photoelectrochemical properties. J. Phys. Chem. C 113, 6719–6724 (2009). https://doi.org/10.1021/jp8109429

    Article  CAS  Google Scholar 

  47. P. Luo, F. Zhuge, Q. Zhang, Y. Chen, L. Lv, Y. Huang, H. Li, T. Zhai, Do** engineering and functionalization of two-dimensional metal chalcogenides. Nanoscale Horiz. 4, 26–51 (2018). https://doi.org/10.1039/C8NH00150B

    Article  Google Scholar 

  48. J. Fan, J. Yang, A. Pham, S. Li, Origins of possible synergistic effects in the interactions between metal atoms and MoS2/graphene heterostructures for battery applications. Phys. Chem. Chem. Phys. 20, 18671–18677 (2018). https://doi.org/10.1039/C8CP02740D

    Article  CAS  Google Scholar 

  49. A. Yoshimura, N. Koratkar, V. Meunier, Substitutional transition metal do** in MoS2: A first-principles study. Nano Express 1, 010008 (2020). https://doi.org/10.1088/2632-959X/ab7cb3

    Article  Google Scholar 

  50. M. Rajapakse, B. Karki, U.O. Abu, S. Pishgar, M.R.K. Musa, S.M.S. Riyadh, M. Yu, G. Sumanasekera, J.B. Jasinski, Intercalation as a versatile tool for fabrication, property tuning, and phase transitions in 2D materials. Npj 2D Mater. Appl. 5, 1–21 (2021). https://doi.org/10.1038/s41699-021-00211-6

    Article  CAS  Google Scholar 

  51. P. Liu, Y. Liu, W. Ye, J. Ma, D. Gao, Flower-like N-doped MoS2 for photocatalytic degradation of RhB by visible light irradiation. Nanotechnology 27, 225403 (2016). https://doi.org/10.1088/0957-4484/27/22/225403

    Article  CAS  Google Scholar 

  52. X. Wen, S. Yu, Y. Wang, Y. Liu, H. Wang, J. Zhao, Do** MoS2 monolayer with nonmetal atoms to tune its electronic and magnetic properties, and chemical activity: A computational study. New J. Chem. 43, 5766–5772 (2019). https://doi.org/10.1039/C9NJ00466A

    Article  CAS  Google Scholar 

  53. R. Li, L. Yang, T. **ong, Y. Wu, L. Cao, D. Yuan, W. Zhou, Nitrogen doped MoS2 nanosheets synthesized via a low-temperature process as electrocatalysts with enhanced activity for hydrogen evolution reaction. J. Power Sources 356, 133–139 (2017). https://doi.org/10.1016/j.jpowsour.2017.04.060

    Article  CAS  Google Scholar 

  54. M. Li, Z. Cui, E. Li, Silver-modified MoS2 nanosheets as a high-efficiency visible-light photocatalyst for water splitting. Ceram. Int. 45, 14449–14456 (2019). https://doi.org/10.1016/j.ceramint.2019.04.166

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gurylev, V. (2021). Extrinsic Defects in Nanostructured Semiconductors. In: Nanostructured Photocatalyst via Defect Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-81911-8_10

Download citation

Publish with us

Policies and ethics

Navigation