Log in

S-, N- and C-doped ZnO as semiconductor photocatalysts: A review

  • Review Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

In the past few decades, many novel non-metal doped ZnO materials have developed hasty interest due to their adaptable properties such as low recombination rate and high activity under the solar light exposure. In this article, we compiled recent research advances in non-metal (S, N, C) doped ZnO, emphasizing on the related mechanism of catalysis and the effect of non-metals on structural, morphological, optical and photocatalytic characteristics of ZnO. This review will enhance the knowledge about the advancement in ZnO and will help in synthesizing new ZnO-based materials with modified structural and photocatalytic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Samadi M, Zirak M, Naseri A, et al. Recent progress on doped ZnO nanostructures for visible-light photocatalysis. Thin Solid Films, 2016, 605: 2–19

    Article  CAS  Google Scholar 

  2. **ao J, **e Y, Cao H. Organic pollutants removal in wastewater by heterogeneous photocatalytic ozonation. Chemosphere, 2015, 121: 1–17

    Article  CAS  Google Scholar 

  3. Wang C C, Li J R, Lv X L, et al. Photocatalytic organic pollutants degradation in metal–organic frameworks. Energy & Environmental Science, 2014, 7(9): 2831–2867

    Article  CAS  Google Scholar 

  4. Qadri S, Ganoe A, Haik Y. Removal and recovery of acridine orange from solutions by use of magnetic nanoparticles. Journal of Hazardous Materials, 2009, 169(1–3): 318–323

    Article  CAS  Google Scholar 

  5. Panthi G, Park M, Kim H Y, et al. Electrospun ZnO hybrid nanofibers for photodegradation of wastewater containing organic dyes: A review. Journal of Industrial and Engineering Chemistry, 2015, 21: 26–35

    Article  CAS  Google Scholar 

  6. Robinson T, Chandran B, Nigam P. Removal of dyes from a synthetic textile dye effluent by biosorption on apple pomace and wheat straw. Water Research, 2002, 36(11): 2824–2830

    Article  CAS  Google Scholar 

  7. Wang L, Zhang J, Zhao R, et al. Adsorption of basic dyes on activated carbon prepared from Polygonum orientale Linn: Equilibrium, kinetic and thermodynamic studies. Desalination, 2010, 254(1–3): 68–74

    Article  CAS  Google Scholar 

  8. Vanhulle S, Trovaslet M, Enaud E, et al. Decolorization, cytotoxicity, and genotoxicity reduction during a combined ozonation/fungal treatment of dye-contaminated wastewater. Environmental Science & Technology, 2008, 42(2): 584–589

    Article  CAS  Google Scholar 

  9. Dafnopatidou E K, Gallios G P, Tsatsaroni E G, et al. Reactive dyestuffs removal from aqueous solutions by flotation, possibility of water reuse, and dyestuff degradation. Industrial & Engineering Chemistry Research, 2007, 46(7): 2125–2132

    Article  CAS  Google Scholar 

  10. Panizza M, Barbucci A, Ricotti R, et al. Electrochemical degradation of methylene blue. Separation and Purification Technology, 2007, 54(3): 382–387

    Article  CAS  Google Scholar 

  11. Ahmad A L, Puasa S W. Reactive dyes decolourization from an aqueous solution by combined coagulation/micellar-enhanced ultrafiltration process. Chemical Engineering Journal, 2007, 132 (1–3): 257–265

    Google Scholar 

  12. Riera-Torres M, Gutiérrez-Bouzán C, Crespi M. Combination of coagulation–flocculation and nanofiltration techniques for dye removal and water reuse in textile effluents. Desalination, 2010, 252(1–3): 53–59

    Article  CAS  Google Scholar 

  13. Ravichandran P, Farzana M H, Meenakshi S. Sorption equilibrium and kinetic studies of Direct Yellow 12 using carbon prepared from bagasse, rice husk and textile waste cloth. Indian Journal of Chemical Technology, 2012, 19(2): 103–110

    CAS  Google Scholar 

  14. Selcuk H. Decolorization and detoxification of textile wastewater by ozonation and coagulation processes. Dyes and Pigments, 2005, 64(3): 217–222

    Article  CAS  Google Scholar 

  15. Beydoun D, Amal R, Low G, et al. Role of nanoparticles in photocatalysis. Journal of Nanoparticle Research, 1999, 1(4): 439–458

    Article  CAS  Google Scholar 

  16. Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 2001, 293 (5528): 269–271

    Google Scholar 

  17. Chen X, Liu L, Yu P Y, et al. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science, 2011, 331(6018): 746–750

    Article  CAS  Google Scholar 

  18. Chen J, Shi J, Wang X, et al. Recent progress in the preparation and application of semiconductor/graphene composite photocatalysts. Chinese Journal of Catalysis, 2013, 34(4): 621–640

    Article  CAS  Google Scholar 

  19. Arslan I, Balcioglu I A, Tuhkanen T, et al. H2O2/UV-C and Fe2+/ H2O2/UV-C versus TiO2/UV-A treatment for reactive dye wastewater. Journal of Environmental Engineering, 2000, 126(10): 903–911

    Article  CAS  Google Scholar 

  20. Forgacs E, Cserháti T, Oros G. Removal of synthetic dyes from wastewaters: A review. Environment International, 2004, 30(7): 953–971

    Article  CAS  Google Scholar 

  21. Li B, Liu T, Wang Y, et al. ZnO/graphene-oxide nanocomposite with remarkably enhanced visible-light-driven photocatalytic performance. Journal of Colloid and Interface Science, 2012, 377(1): 114–121

    Article  CAS  Google Scholar 

  22. Verma N, Yadav S, Marí B, et al. Synthesis and charcterization of coupled ZnO/SnO2 photocatalysts and their activity towards degradation of cibacron red dye. Transactions of the Indian Ceramic Society, 2018, 77(1): 1–7

    Article  CAS  Google Scholar 

  23. Williams G, Kamat P V. Graphene-semiconductor nanocomposites: excited-state interactions between ZnO nanoparticles and graphene oxide. Langmuir, 2009, 25(24): 13869–13873

    Article  CAS  Google Scholar 

  24. Kumar N, Chauhan N S, Mittal A, et al. TiO2 and its composites as promising biomaterials: a review. Biometals, 2018, 31(2): 147–159

    Article  CAS  Google Scholar 

  25. Zhang H, Lv X, Li Y, et al. P25-graphene composite as a high performance photocatalyst. ACS Nano, 2010, 4(1): 380–386

    Article  CAS  Google Scholar 

  26. Neri G, Bonavita A, Milone C, et al. Role of the Au oxidation state in the CO sensing mechanism of Au/iron oxide-based gas sensors. Sensors and Actuators B: Chemical, 2003, 93(1–3): 402–408

    Article  CAS  Google Scholar 

  27. Ng Y H, Iwase A, Kudo A, et al. Reducing graphene oxide on a visible-light BiVO4 photocatalyst for an enhanced photoelectrochemical water splitting. Journal of Physical Chemistry Letters, 2010, 1(17): 2607–2612

    Article  CAS  Google Scholar 

  28. Li F, Xu J, Yu X, et al. One-step solid-state reaction synthesis and gas sensing property of tin oxide nanoparticles. Sensors and Actuators B: Chemical, 2002, 81(2–3): 165–169

    Article  CAS  Google Scholar 

  29. **ang X, **e L, Li Z, et al. Ternary MgO/ZnO/In2O3 heterostructured photocatalysts derived from a layered precursor and visible-light-induced photocatalytic activity. Chemical Engineering Journal, 2013, 221: 222–229

    Article  CAS  Google Scholar 

  30. Ilkhechi N N, Kaleji B K. Temperature stability and photocatalytic activity of nanocrystalline cristobalite powders with Cu dopant. Silicon, 2017, 9(6): 943–948

    Article  CAS  Google Scholar 

  31. Hu J, Li H, Huang C, et al. Enhanced photocatalytic activity of Bi2O3 under visible light irradiation by Cu(II) clusters modification. Applied Catalysis B: Environmental, 2013, 142–143: 598–603

    Article  CAS  Google Scholar 

  32. Wang Q, Lian J, Ma Q, et al. Preparation of carbon spheres supported CdS photocatalyst for enhancement its photocatalytic H2 evolution. Catalysis Today, 2017, 281: 662–668

    Article  CAS  Google Scholar 

  33. Zhou S S, Liu S Q. Photocatalytic reduction of CO2 based on a CeO2 photocatalyst loaded with imidazole fabricated N-doped graphene and Cu(II) as cocatalysts. Photochemical & Photobiological Sciences, 2017, 16(10): 1563–1569

    Article  CAS  Google Scholar 

  34. Kiriakidou F, Kondarides D I, Verykios X E. The effect of operational parameters and TiO2-do** on the photocatalytic degradation of azo-dyes. Catalysis Today, 1999, 54(1): 119–130

    Article  CAS  Google Scholar 

  35. Yu J C, **e Y, Tang H Y, et al. Visible light-assisted bactericidal effect of metalphthalocyanine-sensitized titanium dioxide films. Journal of Photochemistry and Photobiology A Chemistry, 2003, 156(1–3): 235–241

    Article  CAS  Google Scholar 

  36. Kisch H, Macyk W. Visible-light photocatalysis by modified titania. ChemPhysChem, 2002, 3(5): 399–400

    Article  CAS  Google Scholar 

  37. Wang L, Wu Y, Chen F, et al. Photocatalytic enhancement of Mg-doped ZnO nanocrystals hybridized with reduced graphene oxide sheets. Progress in Natural Science: Materials International, 2014, 24(1): 6–12

    Article  CAS  Google Scholar 

  38. Sakthivel S, Neppolian B, Shankar M V, et al. Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2. Solar Energy Materials and Solar Cells, 2003, 77(1): 65–82

    Article  CAS  Google Scholar 

  39. Farzana M H, Meenakshi S. Visible light-driven photoactivity of zinc oxide impregnated chitosan beads for the detoxification of textile dyes. Applied Catalysis A: General, 2015, 503: 124–134

    Article  CAS  Google Scholar 

  40. Akyol A, Yatmaz H C, Bayramoglu M. Photocatalytic decolorization of Remazol Red RR in aqueous ZnO suspensions. Applied Catalysis B: Environmental, 2004, 54(1): 19–24

    Article  CAS  Google Scholar 

  41. Lee J M, Pyun Y B, Yi J, et al. ZnO nanorod–graphene hybrid architectures for multifunctional conductors. The Journal of Physical Chemistry C, 2009, 113(44): 19134–19138

    Article  CAS  Google Scholar 

  42. Si X, Liu Y, Wu X, et al. The interaction between oxygen vacancies and do** atoms in ZnO. Materials & Design, 2015, 87: 969–973

    Article  CAS  Google Scholar 

  43. Fu D, Han G, Chang Y, et al. The synthesis and properties of ZnO–graphene nano hybrid for photodegradation of organic pollutant in water. Materials Chemistry and Physics, 2012, 132(2–3): 673–681

    Article  CAS  Google Scholar 

  44. Lee K M, Lai C W, Ngai K S, et al. Recent developments of zinc oxide based photocatalyst in water treatment technology: A review. Water Research, 2016, 88: 428–448

    Article  CAS  Google Scholar 

  45. Fox M A, Dulay M T. Heterogeneous photocatalysis. Chemical Reviews, 1993, 93(1): 341–357

    Article  CAS  Google Scholar 

  46. Litter M I. Heterogeneous photocatalysis: Transition metal ions in photocatalytic systems. Applied Catalysis B: Environmental, 1999, 23(2–3): 89–114

    Article  CAS  Google Scholar 

  47. Ma H, Han J, Fu Y, et al. Synthesis of visible light responsive ZnO–ZnS/C photocatalyst by simple carbothermal reduction. Applied Catalysis B: Environmental, 2011, 102(3–4): 417–423

    Article  CAS  Google Scholar 

  48. Osman H, Su Z, Ma X, et al. Synthesis of ZnO/C nanocomposites with enhanced visible light photocatalytic activity. Ceramics International, 2016, 42(8): 10237–10241

    Article  CAS  Google Scholar 

  49. Carp O, Huisman C L, Reller A. Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry, 2004, 32(1–2): 33–177

    Article  CAS  Google Scholar 

  50. Shinde S S, Bhosale C H, Rajpure K Y. Photocatalytic degradation of toluene using sprayed N-doped ZnO thin films in aqueous suspension. Journal of Photochemistry and Photobiology B: Biology, 2012, 113: 70–77

    Article  CAS  Google Scholar 

  51. Chen L C, Tu Y J, Wang Y S, et al. Characterization and photoreactivity of N-, S-, and C-doped ZnO under UV and visible light illumination. Journal of Photochemistry and Photobiology A: Chemistry, 2008, 199(2–3): 170–178

    Article  CAS  Google Scholar 

  52. Habibi M H, Habibi A H. Nanostructure composite ZnFe2O4–FeFe2O4–ZnO immobilized on glass: Photocatalytic activity for degradation of an azo textile dye F3B. Journal of Industrial and Engineering Chemistry, 2014, 20(1): 68–73

    Article  CAS  Google Scholar 

  53. Modirshahla N, Hassani A, Behnajady M A, et al. Effect of operational parameters on decolorization of Acid Yellow 23 from wastewater by UV irradiation using ZnO and ZnO/SnO2 photocatalysts. Desalination, 2011, 271(1–3): 187–192

    Article  CAS  Google Scholar 

  54. Nishio J, Tokumura M, Znad H T, et al. Photocatalytic decolorization of azo-dye with zinc oxide powder in an external UV light irradiation slurry photoreactor. Journal of Hazardous Materials, 2006, 138(1): 106–115

    Article  CAS  Google Scholar 

  55. Kim C, Doh S J, Lee S G, et al. Visible-light absorptivity of a zincoxysulfide (ZnOxS1–x) composite semiconductor and its photocatalytic activities for degradation of organic pollutants under visible-light irradiation. Applied Catalysis A: General, 2007, 330: 127–133

    Article  CAS  Google Scholar 

  56. Panda S K, Dev A, Chaudhuri S. Fabrication and luminescent properties of c-axis oriented ZnO–ZnS core–shell and ZnS nanorod arrays by sulfidation of aligned ZnO nanorod arrays. The Journal of Physical Chemistry C, 2007, 111(13): 5039–5043

    Article  CAS  Google Scholar 

  57. Lu MY, Song J, Lu MP, et al. ZnO–ZnS heterojunction and ZnS nanowire arrays for electricity generation. ACS Nano, 2009, 3(2): 357–362

    Article  CAS  Google Scholar 

  58. Li F, Liu X, Kong T, et al. Conversion from ZnO nanospindles into ZnO/ZnS core/shell composites and ZnS microspindles. Crystal Research and Technology, 2009, 44(4): 402–408

    Article  CAS  Google Scholar 

  59. Yan C, Xue D. Conversion of ZnO nanorod arrays into ZnO/ZnS nanocable and ZnS nanotube arrays via an in situ chemistry strategy. The Journal of Physical Chemistry B, 2006, 110(51): 25850–25855

    Article  CAS  Google Scholar 

  60. Di Paola A, Palmisano L, Derrigo M, et al. Preparation and characterization of tungsten chalcogenide photocatalysts. The Journal of Physical Chemistry B, 1997, 101(6): 876–883

    Article  Google Scholar 

  61. Di Paola A, Addamo M, Palmisano L. Mixed oxide/sulfide systems for photocatalysis. Research on Chemical Intermediates, 2003, 29(5): 467–475

    Article  Google Scholar 

  62. Kołodziejczak-Radzimska A, Jesionowski T. Zinc oxide—from synthesis to application: A review. Materials, 2014, 7(4): 2833–2881

    Article  CAS  Google Scholar 

  63. Wang X, Zhang Q, Wan Q, et al. Controllable ZnO architectures by ethanolamine-assisted hydrothermal reaction for enhanced photocatalytic activity. The Journal of Physical Chemistry C, 2011, 115(6): 2769–2775

    Article  CAS  Google Scholar 

  64. Qin J, Li R, Lu C, et al. Ag/ZnO/graphene oxide heterostructure for the removal of rhodamine B by the synergistic adsorption–degradation effects. Ceramics International, 2015, 41(3): 4231–4237

    Article  CAS  Google Scholar 

  65. Nhut J M, Pesant L, Tessonnier J P, et al. Mesoporous carbon nanotubes for use as support in catalysis and as nanosized reactors for one-dimensional inorganic material synthesis. Applied Catalysis A: General, 2003, 254(2): 345–363

    Article  CAS  Google Scholar 

  66. Shi J, Zheng J, Wu P, et al. Immobilization of TiO2 films on activated carbon fiber and their photocatalytic degradation properties for dye compounds with different molecular size. Catalysis Communications, 2008, 9(9): 1846–1850

    Article  CAS  Google Scholar 

  67. Shen G, Cho J H, Yoo J K, et al. Synthesis and optical properties of S-doped ZnO nanostructures: nanonails and nanowires. The Journal of Physical Chemistry B, 2005, 109(12): 5491–5496

    Article  CAS  Google Scholar 

  68. Ohno T, Akiyoshi M, Umebayashi T, et al. Preparation of Sdoped TiO2 photocatalysts and their photocatalytic activities under visible light. Applied Catalysis A: General, 2004, 265(1): 115–121

    Article  CAS  Google Scholar 

  69. Patil A B, Patil K R, Pardeshi S K. Ecofriendly synthesis and solar photocatalytic activity of S-doped ZnO. Journal of Hazardous Materials, 2010, 183(1–3): 315–323

    Article  CAS  Google Scholar 

  70. Li J C, Li Y F, Yang T, et al. Effects of S on solid solubility of Ag and electrical properties of Ag-doped ZnO films grown by radio frequency magnetron sputtering. Journal of Alloys and Compounds, 2013, 550: 479–482

    Article  CAS  Google Scholar 

  71. Yang J, Xu C, Ye T, et al. Synthesis of S-doped hierarchical ZnO nanostructures via hydrothermal method and their optical properties. Journal of Materials Science: Materials in Electronics, 2017, 28(2): 1785–1792

    CAS  Google Scholar 

  72. Bae S Y, Seo H W, Park J. Vertically aligned sulfur-doped ZnO nanowires synthesized via chemical vapor deposition. The Journal of Physical Chemistry B, 2004, 108(17): 5206–5210

    Article  CAS  Google Scholar 

  73. Zhou P, Yu X, Yang L, et al. Simple air oxidation synthesis and optical properties of S-doped ZnO microspheres. Materials Letters, 2007, 61(18): 3870–3872

    Article  CAS  Google Scholar 

  74. Panda N R, Acharya B S, Nayak P, et al. Studies on growth morphology, UV absorbance and luminescence properties of sulphur doped ZnO nanopowders synthesized by the application of ultrasound with varying input power. Ultrasonics Sonochemistry, 2014, 21(2): 582–589

    Article  CAS  Google Scholar 

  75. **e X Y, Zhan P, Li L Y, et al. Synthesis of S-doped ZnO by the interaction of sulfur with zinc salt in PEG200. Journal of Alloys and Compounds, 2015, 644: 383–389

    Article  CAS  Google Scholar 

  76. Darzi S J, Mahjoub A, Bayat A. Sulfur modified ZnO nanorod as a high performance photocatalyst for degradation of Congoredazo dye. International Journal of Nano Dimension, 2015, 6(4): 425–431

    CAS  Google Scholar 

  77. Sanon G, Rup R, Mansingh A. Band-gap narrowing and band structure in degenerate tin oxide (SnO2) films. Physical Review B: Condensed Matter, 1991, 44(11): 5672–5680

    Article  CAS  Google Scholar 

  78. Sernelius B E, Berggren K, ** Z, et al. Band-gap tailoring of ZnO by means of heavy Al do**. Physical Review B: Condensed Matter, 1988, 37(17): 10244–10248

    Article  CAS  Google Scholar 

  79. Long S, Li Y, Yao B, et al. Effect of do** behaviors of Ag and S on the formation of p-type Ag–S co-doped ZnO film by a modified hydrothermal method. Thin Solid Films, 2016, 600: 13–18

    Article  CAS  Google Scholar 

  80. Cruz-Vázquez C, Rocha-Alonzo F, Burruel-Ibarra S E, et al. Fabrication and characterization of sulfur doped zinc oxide thin films. Superficies y Vacío, 2001, 13: 89–91

    Google Scholar 

  81. Wang X H, Liu S, Chang P, et al. Influence of S incorporation on the luminescence property of ZnO nanowires by electrochemical deposition. Physics Letters A, 2008, 372(16): 2900–2903

    Article  CAS  Google Scholar 

  82. Zhang X, Yan X, Zhao J, et al. Structure and photoluminescence of S-doped ZnO nanorod arrays. Materials Letters, 2009, 63(3–4): 444–446

    Article  CAS  Google Scholar 

  83. Yoo Y Z, ** Z W, Chikyow T, et al. S do** in ZnO film by supplying ZnS species with pulsed-laser-deposition method. Applied Physics Letters, 2002, 81(20): 3798–3800

    Article  CAS  Google Scholar 

  84. Geng B Y, Wang G Z, Jiang Z, et al. Synthesis and optical properties of S-doped ZnO nanowires. Applied Physics Letters, 2003, 82(26): 4791–4793

    Article  CAS  Google Scholar 

  85. Wang X H, Liu S, Chang P, et al. Synthesis of sulfur-doped ZnO nanowires by electrochemical deposition. Materials Science in Semiconductor Processing, 2007, 10(6): 241–245

    Article  CAS  Google Scholar 

  86. Poongodi G, Mohan Kumar R, Jayavel R. Influence of S do** on structural, optical and visible light photocatalytic activity of ZnO thin films. Ceramics International, 2014, 40(9): 14733–14740

    Article  CAS  Google Scholar 

  87. Yan Y, Al-Jassim M M, Wei S H. Do** of ZnO by group-IB elements. Applied Physics Letters, 2006, 89(18): 181912

    Article  CAS  Google Scholar 

  88. Hsu C L, Su I L, Hsueh T J. Sulfur-doped-ZnO-nanospire-based transparent flexible nanogenerator self-powered by environmental vibration. RSC Advances, 2015, 5(43): 34019–34026

    Article  CAS  Google Scholar 

  89. Ma H C, Ding Y R, Fu Y H, et al. Microwave assisted hydrothermal synthesis and characterization of N, S co-doped ZnO photocatalyst. Advanced Materials Research, 2012, 616–618: 1841–1844

    Article  CAS  Google Scholar 

  90. Sun Y, He T, Guo H, et al. Structural and optical properties of the S-doped ZnO particles synthesized by hydrothermal method. Applied Surface Science, 2010, 257(3): 1125–1128

    Article  CAS  Google Scholar 

  91. Babikier M,Wang D,Wang J, et al. Fabrication and properties of sulfur (S)-doped ZnO nanorods. Journal of Materials Science: Materials in Electronics, 2014, 25(1): 157–162

    CAS  Google Scholar 

  92. Cho J, Lin Q, Yang S, et al. Sulfur-doped zinc oxide (ZnO) nanostars: Synthesis and simulation of growth mechanism. Nano Research, 2012, 5(1): 20–26

    Article  CAS  Google Scholar 

  93. Kar S, Dutta P, Pal T, et al. Simple solvothermal route to synthesize S-doped ZnO nanonails and ZnS/ZnO core/shell nanorods. Chemical Physics Letters, 2009, 473(1–3): 102–107

    Article  CAS  Google Scholar 

  94. Hsu M H, Chang C J. S-doped ZnO nanorods on stainless-steel wire mesh as immobilized hierarchical photocatalysts for photocatalytic H2 production. International Journal of Hydrogen Energy, 2014, 39(29): 16524–16533

    Article  CAS  Google Scholar 

  95. Park H K, Hong S P, Do Y R. Vertical growth of ZnO nanorods prepared on an ITO-coated glass substrate by hydrothermal–electrochemical deposition. Journal of the Electrochemical Society, 2012, 159(6): D355–D361

    Google Scholar 

  96. Zha M, Calestani D, Zappettini A, et al. Large-area self-catalysed and selective growth of ZnO nanowires. Nanotechnology, 2008, 19(32): 325603

    Article  CAS  Google Scholar 

  97. Kong Y C, Yu D P, Zhang B, et al. Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach. Applied Physics Letters, 2001, 78(4): 407–409

    Article  CAS  Google Scholar 

  98. Zhang X, Wang L, Zhou G. Synthesis of well-aligned ZnO nanowires without catalysts. Reviews on Advanced Materials Science, 2005, 10(1): 69–72

    CAS  Google Scholar 

  99. Lyu S C, Zhang Y, Lee C J, et al. Low-temperature growth of ZnO nanowire array by a simple physical vapor-deposition method. Chemistry of Materials, 2003, 15(17): 3294–3299

    Article  CAS  Google Scholar 

  100. Meng X, Shi Z, Chen X, et al. Temperature behavior of electronacceptor transitions and oxygen vacancy recombinations in ZnO thin films. Journal of Applied Physics, 2010, 107(2): 023501

    Article  CAS  Google Scholar 

  101. Vanheusden K, Warren W L, Seager C H, et al. Mechanisms behind green photoluminescence in ZnO phosphor powders. Journal of Applied Physics, 1996, 79(10): 7983–7990

    Article  CAS  Google Scholar 

  102. Qin H, Li W, **a Y, et al. Photocatalytic activity of heterostructures based on ZnO and N-doped ZnO. ACS Applied Materials & Interfaces, 2011, 3(8): 3152–3156

    Article  CAS  Google Scholar 

  103. Tang Y H, Sham T K, Jürgensen A, et al. Phosphorus-doped silicon nanowires studied by near edge x-ray absorption fine structure spectroscopy. Applied Physics Letters, 2002, 80(20): 3709–3711

    Article  CAS  Google Scholar 

  104. Duan X, Huang Y, Cui Y, et al. Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature, 2001, 409(6816): 66–69

    Article  CAS  Google Scholar 

  105. Wang J, Wang Z, Huang B, et al. Oxygen vacancy induced bandgap narrowing and enhanced visible light photocatalytic activity of ZnO. ACS Applied Materials & Interfaces, 2012, 4(8): 4024–4030

    Article  CAS  Google Scholar 

  106. Joshi B N, Yoon H, Na S H, et al. Enhanced photocatalytic performance of graphene–ZnO nanoplatelet composite thin films prepared by electrostatic spray deposition. Ceramics International, 2014, 40(2): 3647–3654

    Article  CAS  Google Scholar 

  107. Jongnavakit P, Amornpitoksuk P, Suwanboon S, et al. Preparation and photocatalytic activity of Cu-doped ZnO thin films prepared by the sol–gel method. Applied Surface Science, 2012, 258(20): 8192–8198

    Article  CAS  Google Scholar 

  108. Foreman J V, Li J, Peng H, et al. Time-resolved investigation of bright visible wavelength luminescence from sulfur-doped ZnO nanowires and micropowders. Nano Letters, 2006, 6(6): 1126–1130

    Article  CAS  Google Scholar 

  109. Swapna R, Santhosh Kumar M C. Deposition of Na–N dual acceptor doped p-type ZnO thin films and fabrication of p-ZnO: (Na, N)/n-ZnO:Eu homojunction. Materials Science and Engineering B, 2013, 178(16): 1032–1039

    Article  CAS  Google Scholar 

  110. Chen X, Lou Y B, Samia A C S, et al. Formation of oxynitride as the photocatalytic enhancing site in nitrogen-doped titania nanocatalysts: Comparison to a commercial nanopowder. Advanced Functional Materials, 2005, 15(1): 41–49

    Article  CAS  Google Scholar 

  111. Silva I M P, Byzynski G, Ribeiro C, et al. Different dye degradation mechanisms for ZnO and ZnO doped with N (ZnO: N). Journal of Molecular Catalysis A: Chemical, 2016, 417: 89–100

    Article  CAS  Google Scholar 

  112. Li D, Haneda H. Synthesis of nitrogen-containing ZnO powders by spray pyrolysis and their visible-light photocatalysis in gasphase acetaldehyde decomposition. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 155(1–3): 171–178

    CAS  Google Scholar 

  113. Wang L G, Zunger A. Cluster-do** approach for wide-gap semiconductors: the case of p-type ZnO. Physical Review Letters, 2003, 90(25Pt 1): 256401

    Google Scholar 

  114. Kamat P V, Huehn R, Nicolaescu R. A “sense and shoot” approach for photocatalytic degradation of organic contaminants in water. The Journal of Physical Chemistry B, 2002, 106(4): 788–794

    Article  CAS  Google Scholar 

  115. Lin B, Fu Z, Jia Y. Green luminescent center in undoped zinc oxide films deposited on silicon substrates. Applied Physics Letters, 2001, 79(7): 943–945

    Article  CAS  Google Scholar 

  116. Wu C. Facile one-step synthesis of N-doped ZnO micropolyhedrons for efficient photocatalytic degradation of formaldehyde under visible-light irradiation. Applied Surface Science, 2014, 319: 237–243

    Article  CAS  Google Scholar 

  117. Chen X, Zhang G, Shi L, et al. Au/ZnO hybrid nanocatalysts impregnated in N-doped graphene for simultaneous determination of ascorbic acid, acetaminophen and dopamine. Materials Science and Engineering C, 2016, 65: 80–89

    Article  CAS  Google Scholar 

  118. Solanki J N, Murthy Z V P. Controlled size silver nanoparticles synthesis with water-in-oil microemulsion method: A topical review. Industrial & Engineering Chemistry Research, 2011, 50(22): 12311–12323

    Article  CAS  Google Scholar 

  119. Inoguchi M, Suzuki K, Kageyama K, et al. Monodispersed and well-crystallized zinc oxide nanoparticles fabricated by micro-emulsion method. Journal of the American Ceramic Society, 2008, 91(12): 3850–3855

    Article  CAS  Google Scholar 

  120. Lim B P, Wang J, Ng S C, et al. A bicontinuous microemulsion route to zinc oxide powder. Ceramics International, 1998, 24(3): 205–209

    Article  CAS  Google Scholar 

  121. Jansen M, Letschert H P. Inorganic yellow-red pigments without toxic metals. Nature, 2000, 404(6781): 980–982

    Article  CAS  Google Scholar 

  122. Maki H, Ichinose N, Sakaguchi I, et al. The effect of the nitrogen plasma irradiation on ZnO single crystals. Key Engineering Materials, 2001, 216: 61–64

    Article  Google Scholar 

  123. Zhao X W, Gao X Y, Chen X M, et al. Microstructure and optical properties of nitrogen-doped ZnO film. Chinese Physics B, 2013, 22(2): 024202 (4 pages)

    Article  CAS  Google Scholar 

  124. Zhao Y, Zhou M, Li Z, et al. Effect of strain on the structural and optical properties of Cu–N co-doped ZnO thin films. Journal of Luminescence, 2011, 131(9): 1900–1903

    Article  CAS  Google Scholar 

  125. Chen S, Zhao W, Zhang S, et al. Preparation, characterization and photocatalytic activity of N-containing ZnO powder. Chemical Engineering Journal, 2009, 148(2–3): 263–269

    Google Scholar 

  126. Wu C, Zhang Y C, Huang Q. Solvothermal synthesis of N-doped ZnO microcrystals from commercial ZnO powder with visible light-driven photocatalytic activity. Materials Letters, 2014, 119: 104–106

    Article  CAS  Google Scholar 

  127. Tang Y H, Zheng H, Wang Y, et al. Facile fabrication of nitrogen-doped zinc oxide nanoparticles with enhanced photocatalytic performance. Micro & Nano Letters, 2015, 10(9): 432–434

    Article  CAS  Google Scholar 

  128. Zheng M, Wu J. One-step synthesis of nitrogen-doped ZnO nanocrystallites and their properties. Applied Surface Science, 2009, 255(11): 5656–5661

    Article  CAS  Google Scholar 

  129. Futsuhara M, Yoshioka K, Takai O. Optical properties of zinc oxynitride thin films. Thin Solid Films, 1998, 317(1–2): 322–325

    Article  CAS  Google Scholar 

  130. Wang X, Yang S, Wang J, et al. Nitrogen doped ZnO film grown by the plasma-assisted metal-organic chemical vapor deposition. Journal of Crystal Growth, 2001, 226(1): 123–129

    Article  CAS  Google Scholar 

  131. Ong H C, Zhu A X E, Du G T. Dependence of the excitonic transition energies and mosaicity on residual strain in ZnO thin films. Applied Physics Letters, 2002, 80(6): 941–943

    Article  CAS  Google Scholar 

  132. Fouchet A, Prellier W, Mercey B, et al. Investigation of laserablated ZnO thin films grown with Zn metal target: A structural study. Journal of Applied Physics, 2004, 96(6): 3228–3233

    Article  CAS  Google Scholar 

  133. Look D C, Hemsky J W, Sizelove J R. Residual native shallow donor in ZnO. Physical Review Letters, 1999, 82(12): 2552–2555

    Article  CAS  Google Scholar 

  134. Zhu X, Wu H Z, Qiu D J, et al. Photoluminescence and resonant Raman scattering in N-doped ZnO thin films. Optics Communications, 2010, 283(13): 2695–2699

    Article  CAS  Google Scholar 

  135. Meng A, Li X, Wang X, et al. Preparation, photocatalytic properties and mechanism of Fe or N-doped Ag/ZnO nanocomposites. Ceramics International, 2014, 40(7): 9303–9309

    Article  CAS  Google Scholar 

  136. Söllradl S, Greiwe M, Bukas V J, et al. Nitrogen-do** in ZnO via combustion synthesis? Chemistry of Materials, 2015, 27(12): 4188–4195

    Article  CAS  Google Scholar 

  137. Park S H, Chang J H, Ko H J, et al. Lattice deformation of ZnO films with high nitrogen concentration. Applied Surface Science, 2008, 254(23): 7972–7975

    Article  CAS  Google Scholar 

  138. Fujimura N, Nishihara T, Goto S, et al. Control of preferred orientation for ZnOx films: control of self-texture. Journal of Crystal Growth, 1993, 130(1–2): 269–279

    Article  CAS  Google Scholar 

  139. Panigrahy B, Aslam M, Bahadur D. Effect of Fe do** concentration on optical and magnetic properties of ZnO nanorods. Nanotechnology, 2012, 23(11): 115601

    Article  CAS  Google Scholar 

  140. Perkins C L, Lee S H, Li X, et al. Identification of nitrogen chemical states in N-doped ZnO via x-ray photoelectron spectroscopy. Journal of Applied Physics, 2005, 97(3): 034907

    Article  CAS  Google Scholar 

  141. Wang L, Lin B, Zhou L, et al. Nitrogen-doped ZnO nanorods prepared by hydrothermal diffusion. Materials Letters, 2012, 85: 171–174

    Article  CAS  Google Scholar 

  142. Bhirud A P, Sathaye S D, Waichal R P, et al. An eco-friendly, highly stable and efficient nanostructured p-type N-doped ZnO photocatalyst for environmentally benign solar hydrogen production. Green Chemistry, 2012, 14(10): 2790–2798

    Article  CAS  Google Scholar 

  143. Zong X, Sun C, Yu H, et al. Activation of photocatalytic water oxidation on N-doped ZnO bundle-like nanoparticles under visible light. The Journal of Physical Chemistry C, 2013, 117(10): 4937–4942

    Article  CAS  Google Scholar 

  144. Muthulingam S, Bae K B, Khan R, et al. Carbon quantum dots decorated N-doped ZnO: Synthesis and enhanced photocatalytic activity on UV, visible and daylight sources with suppressed photocorrosion. Journal of Environmental Chemical Engineering, 2016, 4(1): 1148–1155

    Article  CAS  Google Scholar 

  145. Qiu Y, Fan H, Tan G, et al. Effect of nitrogen do** on the photo-catalytic properties of nitrogen doped ZnO tetrapods. Materials Letters, 2014, 131: 64–66

    Article  CAS  Google Scholar 

  146. Amanullah M, Javed Q A, Rizwan S. Surfactant-assisted carbon do** in ZnO nanowires using Poly Ethylene Glycol (PEG). Materials Chemistry and Physics, 2016, 180: 128–134

    Article  CAS  Google Scholar 

  147. Lavand A B, Malghe Y S. Synthesis, characterization and visible light photocatalytic activity of nitrogen-doped zinc oxide nanospheres. Journal of Asian Ceramic Societies, 2015, 3(3): 305–310

    Article  Google Scholar 

  148. Lu J, Zhu J, Wang Z, et al. Rapid synthesis and thermal catalytic performance of N-doped ZnO/Ag nanocomposites. Ceramics International, 2014, 40(1): 1489–1494

    Article  CAS  Google Scholar 

  149. Du J, Liu Z, Huang Y, et al. Control of ZnO morphologies via surfactants assisted route in the subcritical water. Journal of Crystal Growth, 2005, 280(1–2): 126–134

    Article  CAS  Google Scholar 

  150. Gao X, Li X, Yu W. Flowerlike ZnO nanostructures via hexamethylenetetramine-assisted thermolysis of zinc-ethylenediamine complex. The Journal of Physical Chemistry B, 2005, 109(3): 1155–1161

    Article  CAS  Google Scholar 

  151. Tuomisto F, Saarinen K, Look D C, et al. Introduction and recovery of point defects in electron-irradiated ZnO. Physical Review B: Condensed Matter and Materials Physics, 2005, 72 (8): 085206

    Book  Google Scholar 

  152. Li D, Haneda H. Enhancement of photocatalytic activity of sprayed nitrogen-containing ZnO powders by coupling with metal oxides during the acetaldehyde decomposition. Chemosphere, 2004, 54(8): 1099–1110

    Article  CAS  Google Scholar 

  153. Qu D, Zheng M, Du P, et al. Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts. Nanoscale, 2013, 5(24): 12272–12277

    Article  CAS  Google Scholar 

  154. Zeng H, Cai W, Hu J, et al. Violet photoluminescence from shell layer of Zn/ZnO core–shell nanoparticles induced by laser ablation. Applied Physics Letters, 2006, 88(17): 171910

    Article  CAS  Google Scholar 

  155. Naouar M, Ka I, Gaidi M, et al. Growth, structural and optoelectronic properties tuning of nitrogen-doped ZnO thin films synthesized by means of reactive pulsed laser deposition. Materials Research Bulletin, 2014, 57: 47–51

    Article  CAS  Google Scholar 

  156. Dong Q, Yin S, Guo C, et al. Single-crystalline porous NiO nanosheets prepared from β-Ni(OH)2 nanosheets: Magnetic property and photocatalytic activity. Applied Catalysis B: Environmental, 2014, 147: 741–747

    Article  CAS  Google Scholar 

  157. Krýsa J, Keppert M, Jirkovský J, et al. The effect of thermal treatment on the properties of TiO2 photocatalyst. Materials Chemistry and Physics, 2004, 86(2–3): 333–339

    Article  CAS  Google Scholar 

  158. Shen J, Hu Y, Li C, et al. Synthesis of amphiphilic graphene nanoplatelets. Small, 2009, 5(1): 82–85

    Article  CAS  Google Scholar 

  159. Li B, Cao H. ZnO@graphene composite with enhanced performance for the removal of dye from water. Journal of Materials Chemistry, 2011, 21(10): 3346–3349

    Article  CAS  Google Scholar 

  160. Lee C, Wei X, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 2008, 321(5887): 385–388

    Article  CAS  Google Scholar 

  161. Jiao L, Zhang L, Wang X, et al. Narrow graphene nanoribbons from carbon nanotubes. Nature, 2009, 458(7240): 877–880

    Article  CAS  Google Scholar 

  162. Stankovich S, Dikin D A, Dommett G H B, et al. Graphene-based composite materials. Nature, 2006, 442(7100): 282–286

    Article  CAS  Google Scholar 

  163. Yang Y, Ren L, Zhang C, et al. Facile fabrication of functionalized graphene sheets (FGS)/ZnO nanocomposites with photocatalytic property. ACS Applied Materials & Interfaces, 2011, 3(7): 2779–2785

    Article  CAS  Google Scholar 

  164. Ma Q, Zhu X, Zhang D, et al. Graphene oxide—a surprisingly good nucleation seed and adhesion promotion agent for one-step ZnO lithography and optoelectronic applications. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2014, 2(42): 8956–8961

    Article  CAS  Google Scholar 

  165. Paci J T, Belytschko T, Schatz G C. Computational studies of the structure, behavior upon heating, and mechanical properties of graphite oxide. The Journal of Physical Chemistry C, 2007, 111(49): 18099–18111

    Article  CAS  Google Scholar 

  166. Chen D, Wang D, Ge Q, et al. Graphene-wrapped ZnO nanospheres as a photocatalyst for high performance photocatalysis. Thin Solid Films, 2015, 574: 1–9

    Article  CAS  Google Scholar 

  167. Xu F, Yuan Y, Wu D, et al. Synthesis of ZnO/Ag/graphene composite and its enhanced photocatalytic efficiency. Materials Research Bulletin, 2013, 48(6): 2066–2070

    Article  CAS  Google Scholar 

  168. Liu W, Wang M, Xu C, et al. Significantly enhanced visible-light photocatalytic activity of g-C3N4 via ZnO modification and the mechanism study. Journal of Molecular Catalysis A: Chemical, 2013, 368–369: 9–15

    Article  CAS  Google Scholar 

  169. Tu N, Nguyen K T, Trung D Q, et al. Effects of carbon on optical properties of ZnO powder. Journal of Luminescence, 2016, 174: 6–10

    Article  CAS  Google Scholar 

  170. Zhang G, Zhang H, Zhang X, et al. Solid-solution-like ZnO/C composites as excellent anode materials for lithium ion batteries. Electrochimica Acta, 2015, 186: 165–173

    Article  CAS  Google Scholar 

  171. Ouyang H, Huang J F, Li C, et al. Synthesis of carbon doped ZnO with a porous structure and its solar-light photocatalytic properties. Materials Letters, 2013, 111: 217–220

    Article  CAS  Google Scholar 

  172. Li X, Wang Q, Zhao Y, et al. Green synthesis and photo-catalytic performances for ZnO-reduced graphene oxide nanocomposites. Journal of Colloid and Interface Science, 2013, 411: 69–75

    Article  CAS  Google Scholar 

  173. Sakong S, Kratzer P. Density functional study of carbon do** in ZnO. Semiconductor Science and Technology, 2011, 26(1): 014038

    Article  CAS  Google Scholar 

  174. Pan L, Muhammad T, Ma L, et al. MOF-derived C-doped ZnO prepared via a two-step calcination for efficient photocatalysis. Applied Catalysis B: Environmental, 2016, 189: 181–191

    Article  CAS  Google Scholar 

  175. Pan H, Yi J B, Shen L, et al. Room-temperature ferromagnetism in carbon-doped ZnO. Physical Review Letters, 2007, 99(12): 127201

    Article  CAS  Google Scholar 

  176. Neumann B, Bogdanoff P, Tributsch H, et al. Electrochemical mass spectroscopic and surface photovoltage studies of catalytic water photooxidation by undoped and carbon-doped titania. The Journal of Physical Chemistry B, 2005, 109(35): 16579–16586

    Article  CAS  Google Scholar 

  177. Kaciulis S. Spectroscopy of carbon: from diamond to nitride films. Surface and Interface Analysis, 2012, 44(8): 1155–1161

    Article  CAS  Google Scholar 

  178. Akbar S, Hasanain S K, Abbas M, et al. Defect induced ferromagnetism in carbon-doped ZnO thin films. Solid State Communications, 2011, 151(1): 17–20

    Article  CAS  Google Scholar 

  179. Zhai J, Wang L, Wang D, et al. UV-illumination roomtemperature gas sensing activity of carbon-doped ZnO microspheres. Sensors and Actuators B: Chemical, 2012, 161(1): 292–297

    Article  CAS  Google Scholar 

  180. Majumder T, Mondal S P. Advantages of nitrogen-doped graphene quantum dots as a green sensitizer with ZnO nanorod based photoanodes for solar energy conversion. Journal of Electroanalytical Chemistry, 2016, 769: 48–52

    Article  CAS  Google Scholar 

  181. Zhu Y P, Li M, Liu Y L, et al. Carbon-doped ZnO hybridized homogeneously with graphitic carbon nitride nanocomposites for photocatalysis. The Journal of Physical Chemistry C, 2014, 118(20): 10963–10971

    Article  CAS  Google Scholar 

  182. Lin H F, Liao S C, Hung S W. The dc thermal plasma synthesis of ZnO nanoparticles for visible-light photocatalyst. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 174(1): 82–87

    Article  CAS  Google Scholar 

  183. Bechambi O, Sayadi S, Najjar W. Photocatalytic degradation of bisphenol A in the presence of C-doped ZnO: Effect of operational parameters and photodegradation mechanism. Journal of Industrial and Engineering Chemistry, 2015, 32: 201–210

    Article  CAS  Google Scholar 

  184. Dai K, Dawson G, Yang S, et al. Large scale preparing carbon nanotube/zinc oxide hybrid and its application for highly reusable photocatalyst. Chemical Engineering Journal, 2012, 191: 571–578

    Article  CAS  Google Scholar 

  185. Tayyebi A, outokesh M, Tayebi M, et al. ZnO quantum dots–graphene composites: Formation mechanism and enhanced photocatalytic activity for degradation of methyl orange dye. Journal of Alloys and Compounds, 2016, 663: 738–749

    Article  CAS  Google Scholar 

  186. Hsiao M C, Liao S H, Yen M Y, et al. Preparation of covalently functionalized graphene using residual oxygen-containing functional groups. ACS Applied Materials & Interfaces, 2010, 2(11): 3092–3099

    Article  CAS  Google Scholar 

  187. Li D, Haneda H. Morphologies of zinc oxide particles and their effects on photocatalysis. Chemosphere, 2003, 51(2): 129–137

    Article  CAS  Google Scholar 

  188. Li Y, Zhang B P, Zhao J X, et al. ZnO/carbon quantum dots heterostructure with enhanced photocatalytic properties. Applied Surface Science, 2013, 279: 367–373

    Article  CAS  Google Scholar 

  189. Liu S, Sun H, Suvorova A, et al. One-pot hydrothermal synthesis of ZnO-reduced graphene oxide composites using Zn powders for enhanced photocatalysis. Chemical Engineering Journal, 2013, 229: 533–539

    Article  CAS  Google Scholar 

  190. Wei A, **ong L, Sun L, et al. One-step electrochemical synthesis of a graphene–ZnO hybrid for improved photocatalytic activity. Materials Research Bulletin, 2013, 48(8): 2855–2860

    Article  CAS  Google Scholar 

  191. Xu F, Lu Y, **e Y, et al. Synthesis and photoluminescence of assembly-controlled ZnO architectures by aqueous chemical growth. The Journal of Physical Chemistry C, 2009, 113(3): 1052–1059

    Article  CAS  Google Scholar 

  192. Mu J, Shao C, Guo Z, et al. High photocatalytic activity of ZnO–carbon nanofiber heteroarchitectures. ACS Applied Materials & Interfaces, 2011, 3(2): 590–596

    Article  CAS  Google Scholar 

  193. Sin J C, Lam S M, Satoshi I, et al. Sunlight photocatalytic activity enhancement and mechanism of novel europium-doped ZnO hierarchical micro/nanospheres for degradation of phenol. Applied Catalysis B: Environmental, 2014, 148–149: 258–268

    Article  CAS  Google Scholar 

  194. Zou B, Liu R, Wang F, et al. Lasing mechanism of ZnO nanowires/nanobelts at room temperature. The Journal of Physical Chemistry B, 2006, 110(26): 12865–12873

    Article  CAS  Google Scholar 

  195. **g L, Qu Y, Wang B, et al. Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity. Solar Energy Materials and Solar Cells, 2006, 90(12): 1773–1787

    Article  CAS  Google Scholar 

  196. Li C, Hong G, Wang P, et al. Wet chemical approaches to patterned arrays of well-aligned ZnO nanopillars assisted by monolayer colloidal crystals. Chemistry of Materials, 2009, 21(5): 891–897

    Article  CAS  Google Scholar 

  197. He W, Kim H K, Wamer W G, et al. Photogenerated charge carriers and reactive oxygen species in ZnO/Au hybrid nanostructures with enhanced photocatalytic and antibacterial activity. Journal of the American Chemical Society, 2014, 136(2): 750–757

    Article  CAS  Google Scholar 

  198. Bozetine H, Wang Q, Barras A, et al. Green chemistry approach for the synthesis of ZnO–carbon dots nanocomposites with good photocatalytic properties under visible light. Journal of Colloid and Interface Science, 2016, 465: 286–294

    Article  CAS  Google Scholar 

Download references

Acknowledgement

V.K. is highly thankful to the Maharshi Dayanand University, Rohtak for availing the University Research Scholarship (URS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveen Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, V., Mittal, A., **dal, J. et al. S-, N- and C-doped ZnO as semiconductor photocatalysts: A review. Front. Mater. Sci. 13, 1–22 (2019). https://doi.org/10.1007/s11706-019-0453-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-019-0453-4

Keywords

Navigation