Resistance to the Proteasome Inhibitors: Lessons from Multiple Myeloma and Mantle Cell Lymphoma

  • Chapter
  • First Online:
Proteostasis and Disease

Abstract

Since its introduction in the clinics in early 2000s, the proteasome inhibitor bortezomib (BTZ) significantly improved the prognosis of patients with multiple myeloma (MM) and mantle cell lymphoma (MCL), two of the most challenging B cell malignancies in western countries. However, relapses following BTZ therapy are frequent, while primary resistance to this agent remains a major limitation for further development of its therapeutic potential. In the present chapter, we recapitulate the molecular mechanisms associated with intrinsic and acquired resistance to BTZ learning from MM and MCL experience, including mutations of crucial genes and activation of prosurvival signalling pathways inherent to malignant B cells. We also outline the preclinical and clinical evaluations of some potential druggable targets associated to BTZ resistance, considering the most meaningful findings of the past 10 years. Although our understanding of BTZ resistance is far from being completed, recent discoveries are contributing to develop new approaches to treat relapsed MM and MCL patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 160.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 160.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Budenholzer L, Cheng CL, Li Y, Hochstrasser M (2017) Proteasome structure and assembly. J Mol Biol 429:3500–3524. https://doi.org/10.1016/j.jmb.2017.05.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mata-Cantero L, Lobato-Gil S, Aillet F et al (2015) The ubiquitin-proteasome system (UPS) as a cancer drug target: emerging mechanisms and therapeutics. In: Wondrak GT (ed) Stress response pathways in cancer. Springer, New York, pp 225–264

    Chapter  Google Scholar 

  3. Roeten MSF, Cloos J, Jansen G (2018) Positioning of proteasome inhibitors in therapy of solid malignancies. Cancer Chemother Pharmacol 81:227–243. https://doi.org/10.1007/s00280-017-3489-0

    Article  CAS  PubMed  Google Scholar 

  4. Niewerth D, Jansen G, Assaraf YG et al (2015) Molecular basis of resistance to proteasome inhibitors in hematological malignancies. Drug Resist Updat Rev Comment Antimicrob Anticancer Chemother 18:18–35. https://doi.org/10.1016/j.drup.2014.12.001

    Article  Google Scholar 

  5. Kumar SK, Rajkumar V, Kyle RA et al (2017) Multiple myeloma. Nat Rev Dis Primer 3:17046. https://doi.org/10.1038/nrdp.2017.46

    Article  Google Scholar 

  6. Pérez-Galán P, Dreyling M, Wiestner A (2011) Mantle cell lymphoma: biology, pathogenesis, and the molecular basis of treatment in the genomic era. Blood 117:26–38. https://doi.org/10.1182/blood-2010-04-189977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Diefenbach CSM, O’Connor OA (2010) Mantle cell lymphoma in relapse: the role of emerging new drugs. Curr Opin Oncol 22:419–423. https://doi.org/10.1097/CCO.0b013e32833d58f2

    Article  CAS  PubMed  Google Scholar 

  8. Yong K, Gonzalez-McQuire S, Szabo Z et al (2018) The start of a new wave: developments in proteasome inhibition in multiple myeloma. Eur J Haematol 101:220–236. https://doi.org/10.1111/ejh.13071

    Article  Google Scholar 

  9. Robak P, Drozdz I, Szemraj J, Robak T (2018) Drug resistance in multiple myeloma. Cancer Treat Rev 70:199–208. https://doi.org/10.1016/j.ctrv.2018.09.001

    Article  CAS  PubMed  Google Scholar 

  10. Soriano GP, Besse L, Li N et al (2016) Proteasome inhibitor-adapted myeloma cells are largely independent from proteasome activity and show complex proteomic changes, in particular in redox and energy metabolism. Leukemia 30:2198–2207. https://doi.org/10.1038/leu.2016.102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Franke NE, Niewerth D, Assaraf YG et al (2012) Impaired bortezomib binding to mutant β5 subunit of the proteasome is the underlying basis for bortezomib resistance in leukemia cells. Leukemia 26:757–768. https://doi.org/10.1038/leu.2011.256

    Article  CAS  PubMed  Google Scholar 

  12. Barrio S, Stühmer T, Da-Viá M et al (2018) Spectrum and functional validation of PSMB5 mutations in multiple myeloma. Leukemia. https://doi.org/10.1038/s41375-018-0216-8

  13. Ri M, Iida S, Nakashima T et al (2010) Bortezomib-resistant myeloma cell lines: a role for mutated PSMB5 in preventing the accumulation of unfolded proteins and fatal ER stress. Leukemia 24:1506–1512. https://doi.org/10.1038/leu.2010.137

    Article  CAS  PubMed  Google Scholar 

  14. Valentin R, Grabow S, Davids MS (2018) The rise of apoptosis: targeting apoptosis in hematologic malignancies. Blood 132:1248–1264. https://doi.org/10.1182/blood-2018-02-791350

    Article  CAS  PubMed  Google Scholar 

  15. Pérez-Galán P, Roué G, Villamor N et al (2007) The BH3-mimetic GX15-070 synergizes with bortezomib in mantle cell lymphoma by enhancing Noxa-mediated activation of Bak. Blood 109:4441–4449. https://doi.org/10.1182/blood-2006-07-034173

    Article  CAS  PubMed  Google Scholar 

  16. Kotschy A, Szlavik Z, Murray J et al (2016) The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models. Nature 538:477–482. https://doi.org/10.1038/nature19830

    Article  CAS  PubMed  Google Scholar 

  17. Morales AA, Kurtoglu M, Matulis SM et al (2011) Distribution of Bim determines Mcl-1 dependence or codependence with Bcl-xL/Bcl-2 in Mcl-1–expressing myeloma cells. Blood 118:1329–1339. https://doi.org/10.1182/blood-2011-01-327197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gupta VA, Matulis SM, Conage-Pough JE et al (2017) Bone marrow microenvironment-derived signals induce Mcl-1 dependence in multiple myeloma. Blood 129:1969–1979. https://doi.org/10.1182/blood-2016-10-745059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pan R, Ruvolo VR, Wei J et al (2015) Inhibition of Mcl-1 with the pan–Bcl-2 family inhibitor (–)BI97D6 overcomes ABT-737 resistance in acute myeloid leukemia. Blood 126:363–372. https://doi.org/10.1182/blood-2014-10-604975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yang DT, Young KH, Kahl BS et al (2008) Prevalence of bortezomib-resistant constitutive NF-kappaB activity in mantle cell lymphoma. Mol Cancer 7:1–14. https://doi.org/10.1186/1476-4598-7-40

    Article  CAS  Google Scholar 

  21. Markovina S, Callander NS, O’Connor SL et al (2008) Bortezomib-resistant nuclear factor-kappaB activity in multiple myeloma cells. Mol Cancer Res 6:1356–1364. https://doi.org/10.1158/1541-7786.MCR-08-0108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Annunziata CM, Davis RE, Demchenko Y et al (2007) Frequent engagement of the classical and alternative NF-kappaB pathways by diverse genetic abnormalities in multiple myeloma. Cancer Cell 12:115–130. https://doi.org/10.1016/j.ccr.2007.07.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rizzatti EG, Mora-Jensen H, Weniger MA et al (2008) Noxa mediates Bortezomib induced apoptosis in both sensitive and intrinsically resistant mantle cell lymphoma cells and this effect is independent of constitutive activity of the AKT and NF-kappaB pathways. Leuk Lymphoma 49:798–808. https://doi.org/10.1080/10428190801910912

    Article  CAS  PubMed  Google Scholar 

  24. Manni S, Brancalion A, Mandato E et al (2013) Protein kinase CK2 inhibition down modulates the NF-κB and STAT3 survival pathways, enhances the cellular proteotoxic stress and synergistically boosts the cytotoxic effect of bortezomib on multiple myeloma and mantle cell lymphoma cells. Clin Cancer Res 18:1888–1900. https://doi.org/10.1371/journal.pone.0075280

    Article  CAS  Google Scholar 

  25. Chattopadhyay S, Thomsen H, da Silva Filho MI et al (2018) Enrichment of B cell receptor signaling and epidermal growth factor receptor pathways in monoclonal gammopathy of undetermined significance: a genome-wide genetic interaction study. Mol Med 24:30. https://doi.org/10.1186/s10020-018-0031-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim A, Seong KM, Kang HJ et al (2015) Inhibition of Lyn is a promising treatment for mantle cell lymphoma with bortezomib resistance. Oncotarget 6:38225–38238

    PubMed  PubMed Central  Google Scholar 

  27. Pérez-Galán P, Roué G, Villamor N et al (2006) The proteasome inhibitor bortezomib induces apoptosis in mantle-cell lymphoma through generation of ROS and Noxa activation independent of p53 status. Blood 107:257–264. https://doi.org/10.1182/blood-2005-05-2091

    Article  CAS  PubMed  Google Scholar 

  28. Weniger MA, Rizzatti EG, Pérez-Galán P et al (2011) Treatment-induced oxidative stress and cellular antioxidant capacity determine response to bortezomib in mantle cell lymphoma. Clin Cancer Res 17:5101–5112. https://doi.org/10.1158/1078-0432.CCR-10-3367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Luanpitpong S, Poohadsuan J, Samart P et al (2018) Reactive oxygen species mediate cancer stem-like cells and determine bortezomib sensitivity via Mcl-1 and Zeb-1 in mantle cell lymphoma. Biochim Biophys Acta Mol Basis Dis 1864:3739–3753. https://doi.org/10.1016/j.bbadis.2018.09.010

    Article  CAS  PubMed  Google Scholar 

  30. Sánchez-Tilló E, Fanlo L, Siles L et al (2014) The EMT activator ZEB1 promotes tumor growth and determines differential response to chemotherapy in mantle cell lymphoma. Cell Death Differ 21:247–257. https://doi.org/10.1038/cdd.2013.123

    Article  CAS  PubMed  Google Scholar 

  31. Balsas P, Galán-Malo P, Marzo I, Naval J (2012) Bortezomib resistance in a myeloma cell line is associated to PSMβ5 overexpression and polyploidy. Leuk Res 36:212–218. https://doi.org/10.1016/j.leukres.2011.09.011

    Article  CAS  PubMed  Google Scholar 

  32. Rückrich T, Kraus M, Gogel J et al (2009) Characterization of the ubiquitin-proteasome system in bortezomib-adapted cells. Leukemia 23:1098–1105. https://doi.org/10.1038/leu.2009.8

    Article  CAS  PubMed  Google Scholar 

  33. Shuqing L, Jianmin Y, Chongmei H et al (2011) Upregulated expression of the PSMB5 gene may contribute to drug resistance in patient with multiple myeloma when treated with bortezomib-based regimen. Exp Hematol 39:1117–1118. https://doi.org/10.1016/j.exphem.2011.09.003

    Article  CAS  PubMed  Google Scholar 

  34. Acosta-Alvear D, Cho MY, Wild T et al (2015) Paradoxical resistance of multiple myeloma to proteasome inhibitors by decreased levels of 19S proteasomal subunits. eLife 4:e08153. https://doi.org/10.7554/eLife.08153

    Article  PubMed  PubMed Central  Google Scholar 

  35. Shi C-X, Kortüm KM, Zhu YX et al (2017) CRISPR genome-wide screening identifies dependence on the proteasome subunit PSMC6 for bortezomib sensitivity in multiple myeloma. Mol Cancer Ther 16:2862–2870. https://doi.org/10.1158/1535-7163.MCT-17-0130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bartel B (2015) Proteaphagy-selective autophagy of inactive proteasomes. Mol Cell 58:970–971. https://doi.org/10.1016/j.molcel.2015.06.004

    Article  CAS  PubMed  Google Scholar 

  37. Marshall RS, Vierstra RD (2018) Autophagy: the master of bulk and selective recycling. Annu Rev Plant Biol 69:173–208. https://doi.org/10.1146/annurev-arplant-042817-040606

    Article  CAS  PubMed  Google Scholar 

  38. Quinet G, Rodriguez MS (2019) Evidences for an active proteaphagy in Bortezomib resistant mantle cell lymphoma cells. Manuscript Preparation

    Google Scholar 

  39. Bond MR, Hanover JA (2013) O-GlcNAc cycling: a link between metabolism and chronic disease. Annu Rev Nutr 33:205–229. https://doi.org/10.1146/annurev-nutr-071812-161240

    Article  CAS  PubMed  Google Scholar 

  40. Luanpitpong S, Chanthra N, Janan M et al (2018) Inhibition of O-GlcNAcase sensitizes apoptosis and reverses Bortezomib resistance in mantle cell lymphoma through modification of truncated bid. Mol Cancer Ther 17:484–496. https://doi.org/10.1158/1535-7163.MCT-17-0390

    Article  CAS  PubMed  Google Scholar 

  41. Abraham I, Jain S, Wu C-P et al (2010) Marine sponge-derived sipholane triterpenoids reverse P-glycoprotein (ABCB1)-mediated multidrug resistance in cancer cells. Biochem Pharmacol 80:1497–1506. https://doi.org/10.1016/j.bcp.2010.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Besse A, Stolze SC, Rasche L et al (2018) Carfilzomib resistance due to ABCB1/MDR1 overexpression is overcome by nelfinavir and lopinavir in multiple myeloma. Leukemia 32:391–401. https://doi.org/10.1038/leu.2017.212

    Article  CAS  PubMed  Google Scholar 

  43. Fok JHL, Hedayat S, Zhang L et al (2018) HSF1 is essential for myeloma cell survival and a promising therapeutic target. Clin Cancer Res 24:2395–2407. https://doi.org/10.1158/1078-0432.CCR-17-1594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Dytfeld D, Luczak M, Wrobel T et al (2016) Comparative proteomic profiling of refractory/relapsed multiple myeloma reveals biomarkers involved in resistance to bortezomib-based therapy. Oncotarget 7:56726–56736. https://doi.org/10.18632/oncotarget.11059

    Article  PubMed  PubMed Central  Google Scholar 

  45. Hayes JD, Dinkova-Kostova AT (2014) The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem Sci 39:199–218. https://doi.org/10.1016/j.tibs.2014.02.002

    Article  CAS  PubMed  Google Scholar 

  46. Zong Z-H, Du Z-X, Zhang H-Y et al (2015) Involvement of Nrf2 in proteasome inhibition-mediated induction of ORP150 in thyroid cancer cells. Oncotarget 7:3416–3426. https://doi.org/10.18632/oncotarget.6636

    Article  PubMed Central  Google Scholar 

  47. Riz I, Hawley TS, Marsal JW, Hawley RG (2016) Noncanonical SQSTM1/p62-Nrf2 pathway activation mediates proteasome inhibitor resistance in multiple myeloma cells via redox, metabolic and translational reprogramming. Oncotarget 7:66360–66385. https://doi.org/10.18632/oncotarget.11960

    Article  PubMed  PubMed Central  Google Scholar 

  48. Starheim KK, Holien T, Misund K et al (2016) Intracellular glutathione determines bortezomib cytotoxicity in multiple myeloma cells. Blood Cancer J 6:e446. https://doi.org/10.1038/bcj.2016.56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Podar K, Chauhan D, Anderson KC (2009) Bone marrow microenvironment and the identification of new targets for myeloma therapy. Leukemia 23:10–24. https://doi.org/10.1038/leu.2008.259

    Article  CAS  PubMed  Google Scholar 

  50. Finlayson AE, Freeman KW (2009) A cell motility screen reveals role for MARCKS-related protein in adherens junction formation and tumorigenesis. PLoS One 4:e7833. https://doi.org/10.1371/journal.pone.0007833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yang Y, Chen Y, Saha MN et al (2015) Targeting phospho-MARCKS overcomes drug-resistance and induces antitumor activity in preclinical models of multiple myeloma. Leukemia 29:715–726. https://doi.org/10.1038/leu.2014.255

    Article  CAS  PubMed  Google Scholar 

  52. Sprynski AC, Hose D, Caillot L et al (2009) The role of IGF-1 as a major growth factor for myeloma cell lines and the prognostic relevance of the expression of its receptor. Blood 113:4614–4626. https://doi.org/10.1182/blood-2008-07-170464

    Article  CAS  PubMed  Google Scholar 

  53. Kuhn DJ, Berkova Z, Jones RJ et al (2012) Targeting the insulin-like growth factor-1 receptor to overcome bortezomib resistance in preclinical models of multiple myeloma. Blood 120:3260–3270. https://doi.org/10.1182/blood-2011-10-386789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Vincenz L, Jäger R, O’Dwyer M, Samali A (2013) Endoplasmic reticulum stress and the unfolded protein response: targeting the Achilles heel of multiple myeloma. Mol Cancer Ther 12:831–843. https://doi.org/10.1158/1535-7163.MCT-12-0782

    Article  CAS  PubMed  Google Scholar 

  55. Leung-Hagesteijn C, Erdmann N, Cheung G et al (2013) Xbp1s-negative tumor B cells and pre-plasmablasts mediate therapeutic proteasome inhibitor resistance in multiple myeloma. Cancer Cell 24:289–304. https://doi.org/10.1016/j.ccr.2013.08.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mimura N, Fulciniti M, Gorgun G et al (2012) Blockade of XBP1 splicing by inhibition of IRE1α is a promising therapeutic option in multiple myeloma. Blood 119:5772–5781. https://doi.org/10.1182/blood-2011-07-366633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang C, Pan Y-H, Shan M et al (2015) Knockdown of UbcH10 enhances the chemosensitivity of dual drug resistant breast cancer cells to epirubicin and docetaxel. Int J Mol Sci 16:4698–4712. https://doi.org/10.3390/ijms16034698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lilienbaum A (2013) Relationship between the proteasomal system and autophagy. Int J Biochem Mol Biol 4:1–26

    CAS  PubMed  PubMed Central  Google Scholar 

  59. White E, DiPaola RS (2009) The double-edged sword of autophagy modulation in cancer. Clin Cancer Res 15:5308–5316. https://doi.org/10.1158/1078-0432.CCR-07-5023

    Article  PubMed  PubMed Central  Google Scholar 

  60. Ding W-X, Ni H-M, Gao W et al (2007) Linking of autophagy to ubiquitin-proteasome system is important for the regulation of endoplasmic reticulum stress and cell viability. Am J Pathol 171:513–524. https://doi.org/10.2353/ajpath.2007.070188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Amaravadi RK, Lippincott-Schwartz J, Yin X-M et al (2011) Principles and current strategies for targeting autophagy for cancer treatment. Clin Cancer Res 17:654–666. https://doi.org/10.1158/1078-0432.CCR-10-2634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cohen-Kaplan V, Livneh I, Avni N et al (2016) The ubiquitin-proteasome system and autophagy: coordinated and independent activities. Int J Biochem Cell Biol 79:403–418. https://doi.org/10.1016/j.biocel.2016.07.019

    Article  CAS  PubMed  Google Scholar 

  63. Chen S, Zhang Y, Zhou L et al (2014) A Bim-targeting strategy overcomes adaptive bortezomib resistance in myeloma through a novel link between autophagy and apoptosis. Blood 124:2687–2697. https://doi.org/10.1182/blood-2014-03-564534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang Q, Mora-Jensen H, Weniger MA et al (2009) ERAD inhibitors integrate ER stress with an epigenetic mechanism to activate BH3-only protein NOXA in cancer cells. Proc Natl Acad Sci USA 106:2200–2205. https://doi.org/10.1073/pnas.0807611106

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ni M, Lee AS (2007) ER chaperones in mammalian development and human diseases. FEBS Lett 581:3641–3651. https://doi.org/10.1016/j.febslet.2007.04.045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kaufman RJ (2002) Orchestrating the unfolded protein response in health and disease. J Clin Invest 110:1389–1398. https://doi.org/10.1172/JCI16886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Szegezdi E, Logue SE, Gorman AM, Samali A (2006) Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep 7:880–885. https://doi.org/10.1038/sj.embor.7400779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Roué G, Pérez-Galán P, Mozos A et al (2011) The Hsp90 inhibitor IPI-504 overcomes bortezomib resistance in mantle cell lymphoma in vitro and in vivo by down-regulation of the prosurvival ER chaperone BiP/Grp78. Blood 117:1270–1279. https://doi.org/10.1182/blood-2010-04-278853

    Article  CAS  PubMed  Google Scholar 

  69. Weinkauf M, Zimmermann Y, Hartmann E et al (2009) 2-D PAGE-based comparison of proteasome inhibitor bortezomib in sensitive and resistant mantle cell lymphoma. Electrophoresis 30:974–986. https://doi.org/10.1002/elps.200800508

    Article  CAS  PubMed  Google Scholar 

  70. Davenport EL, Moore HE, Dunlop AS et al (2007) Heat shock protein inhibition is associated with activation of the unfolded protein response pathway in myeloma plasma cells. Blood 110:2641–2649. https://doi.org/10.1182/blood-2006-11-053728

    Article  CAS  PubMed  Google Scholar 

  71. Roué G, Pichereau V, Lincet H et al (2008) Cyclin D1 mediates resistance to apoptosis through upregulation of molecular chaperones and consequent redistribution of cell death regulators. Oncogene 27. https://doi.org/10.1038/onc.2008.126

  72. Orchard J, Garand R, Davis Z et al (2003) A subset of t(11;14) lymphoma with mantle cell features displays mutated IgVH genes and includes patients with good prognosis, nonnodal disease. Blood 101:4975–4981. https://doi.org/10.1182/blood-2002-06-1864

    Article  CAS  PubMed  Google Scholar 

  73. Moros A, Rodríguez V, Saborit-Villarroya I et al (2014) Synergistic antitumor activity of lenalidomide with the BET bromodomain inhibitor CPI203 in bortezomib-resistant mantle cell lymphoma. Leukemia 28:2049–2059. https://doi.org/10.1038/leu.2014.106

    Article  CAS  PubMed  Google Scholar 

  74. Desai S, Maurin M, Smith MA et al (2010) PRDM1 is required for mantle cell lymphoma response to bortezomib. Mol Cancer Res MCR 8:907–918. https://doi.org/10.1158/1541-7786.MCR-10-0131

    Article  CAS  PubMed  Google Scholar 

  75. Chauhan D, Tian Z, Nicholson B et al (2012) A small molecule inhibitor of ubiquitin-specific protease-7 induces apoptosis in multiple myeloma cells and overcomes bortezomib resistance. Cancer Cell 22:345–358. https://doi.org/10.1016/j.ccr.2012.08.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Tian Z, D’Arcy P, Wang X et al (2014) A novel small molecule inhibitor of deubiquitylating enzyme USP14 and UCHL5 induces apoptosis in multiple myeloma and overcomes bortezomib resistance. Blood 123:706–716. https://doi.org/10.1182/blood-2013-05-500033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kropp KN, Maurer S, Rothfelder K et al (2018) The novel deubiquitinase inhibitor b-AP15 induces direct and NK cell-mediated antitumor effects in human mantle cell lymphoma. Cancer Immunol Immunother 67:935–947. https://doi.org/10.1007/s00262-018-2151-y

    Article  CAS  PubMed  Google Scholar 

  78. Das DS, Das A, Ray A et al (2017) Blockade of deubiquitylating enzyme USP1 inhibits DNA repair and triggers apoptosis in multiple myeloma cells. Clin Cancer Res 23:4280–4289. https://doi.org/10.1158/1078-0432.CCR-16-2692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Song Y, Li S, Ray A et al (2017) Blockade of deubiquitylating enzyme Rpn11 triggers apoptosis in multiple myeloma cells and overcomes bortezomib resistance. Oncogene 36:5631–5638. https://doi.org/10.1038/onc.2017.172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Peterson LF, Sun H, Liu Y et al (2015) Targeting deubiquitinase activity with a novel small-molecule inhibitor as therapy for B-cell malignancies. Blood 125:3588–3597. https://doi.org/10.1182/blood-2014-10-605584

    Article  CAS  PubMed  Google Scholar 

  81. Wang X, Mazurkiewicz M, Hillert EK et al (2016) The proteasome deubiquitinase inhibitor VLX1570 shows selectivity for ubiquitin-specific protease-14 and induces apoptosis of multiple myeloma cells. Sci Rep 6:26979. https://doi.org/10.1038/srep26979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Driessen C, Kraus M, Joerger M et al (2016) Treatment with the HIV protease inhibitor nelfinavir triggers the unfolded protein response and may overcome proteasome inhibitor resistance of multiple myeloma in combination with bortezomib: a phase I trial (SAKK 65/08). Haematologica 101:346–355. https://doi.org/10.3324/haematol.2015.135780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Kawaguchi T, Miyazawa K, Moriya S et al (2011) Combined treatment with bortezomib plus bafilomycin A1 enhances the cytocidal effect and induces endoplasmic reticulum stress in U266 myeloma cells: crosstalk among proteasome, autophagy-lysosome and ER stress. Int J Oncol 38:643–654. https://doi.org/10.3892/ijo.2010.882

    Article  CAS  PubMed  Google Scholar 

  84. Heine S, Kleih M, Giménez N et al (2018) Cyclin D1-CDK4 activity drives sensitivity to bortezomib in mantle cell lymphoma by blocking autophagy-mediated proteolysis of NOXA. J Hematol Oncol 11:112. https://doi.org/10.1186/s13045-018-0657-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Richardson PG, Eng C, Kolesar J et al (2012) Perifosine, an oral, anti-cancer agent and inhibitor of the Akt pathway: mechanistic actions, pharmacodynamics, pharmacokinetics, and clinical activity. Expert Opin Drug Metab Toxicol 8:623–633. https://doi.org/10.1517/17425255.2012.681376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Kim A, Park S, Lee J-E et al (2012) The dual PI3K and mTOR inhibitor NVP-BEZ235 exhibits anti-proliferative activity and overcomes bortezomib resistance in mantle cell lymphoma cells. Leuk Res 36:912–920. https://doi.org/10.1016/j.leukres.2012.02.010

    Article  CAS  PubMed  Google Scholar 

  87. Witzig TE, Geyer SM, Ghobrial I et al (2005) Phase II trial of single-agent temsirolimus (CCI-779) for relapsed mantle cell lymphoma. J Clin Oncol 23:5347–5356. https://doi.org/10.1200/JCO.2005.13.466

    Article  CAS  PubMed  Google Scholar 

  88. Rizzieri DA, Feldman E, Dipersio JF et al (2008) A phase 2 clinical trial of deforolimus (AP23573, MK-8669), a novel mammalian target of rapamycin inhibitor, in patients with relapsed or refractory hematologic malignancies. Clin Cancer Res 14:2756–2762. https://doi.org/10.1158/1078-0432.CCR-07-1372

    Article  CAS  PubMed  Google Scholar 

  89. Jung HJ, Chen Z, Wang M et al (2012) Calcium blockers decrease the bortezomib resistance in mantle cell lymphoma via manipulation of tissue transglutaminase activities. Blood 119:2568–2578. https://doi.org/10.1182/blood-2011-09-377598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Muz B, Azab F, de la Puente P et al (2017) Selinexor overcomes hypoxia-induced drug resistance in multiple myeloma. Transl Oncol 10:632–640. https://doi.org/10.1016/j.tranon.2017.04.010

    Article  PubMed  PubMed Central  Google Scholar 

  91. de Claro RA, McGinn KM, Verdun N et al (2015) FDA approval: Ibrutinib for patients with previously treated mantle cell lymphoma and previously treated chronic lymphocytic leukemia. Clin Cancer Res 21:3586–3590. https://doi.org/10.1158/1078-0432.CCR-14-2225

    Article  CAS  PubMed  Google Scholar 

  92. Murray MY, Zaitseva L, Auger MJ et al (2015) Ibrutinib inhibits BTK-driven NF-κB p65 activity to overcome bortezomib-resistance in multiple myeloma. Cell Cycle 14:2367–2375. https://doi.org/10.1080/15384101.2014.998067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Richardson PG, Bensinger WI, Huff CA et al (2018) Ibrutinib alone or with dexamethasone for relapsed or relapsed and refractory multiple myeloma: phase 2 trial results. Br J Haematol 180:821–830. https://doi.org/10.1111/bjh.15058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Pham LV, Tamayo AT, Li C et al (2010) Degrasyn potentiates the antitumor effects of bortezomib in mantle cell lymphoma cells in vitro and in vivo: therapeutic implications. Mol Cancer Ther 9:2026–2036. https://doi.org/10.1158/1535-7163.MCT-10-0238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Goy A, Hernandez-Ilzaliturri FJ, Kahl B et al (2014) A phase I/II study of the pan Bcl-2 inhibitor obatoclax mesylate plus bortezomib for relapsed or refractory mantle cell lymphoma. Leuk Lymphoma 55:2761–2768. https://doi.org/10.3109/10428194.2014.907891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Wang Y, Tang Y, Hang H et al (2018) cAMP induces cell apoptosis in multiple myeloma and overcomes bortezomib resistance. Am J Cancer Res 8:16–29

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Desai M, Newberry K, Ou Z et al (2014) Lenalidomide in relapsed or refractory mantle cell lymphoma: overview and perspective. Ther Adv Hematol 5:91–101. https://doi.org/10.1177/2040620714532124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Morrison VA, Jung S-H, Johnson J et al (2015) Therapy with bortezomib plus lenalidomide for relapsed/refractory mantle cell lymphoma: final results of a phase II trial (CALGB 50501). Leuk Lymphoma 56:958–964. https://doi.org/10.3109/10428194.2014.938333

    Article  CAS  PubMed  Google Scholar 

  99. Richardson PG, Hofmeister CC, Raje NS et al (2017) Pomalidomide, bortezomib and low-dose dexamethasone in lenalidomide-refractory and proteasome inhibitor-exposed myeloma. Leukemia 31:2695–2701. https://doi.org/10.1038/leu.2017.173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Spencer A, Harrison S, Zonder J et al (2018) A phase 1 clinical trial evaluating marizomib, pomalidomide and low-dose dexamethasone in relapsed and refractory multiple myeloma (NPI-0052-107): final study results. Br J Haematol 180:41–51. https://doi.org/10.1111/bjh.14987

    Article  CAS  PubMed  Google Scholar 

  101. Tarantelli C, Bernasconi E, Gaudio E et al (2018) BET bromodomain inhibitor birabresib in mantle cell lymphoma: in vivo activity and identification of novel combinations to overcome adaptive resistance. ESMO Open 3:e000387. https://doi.org/10.1136/esmoopen-2018-000387

    Article  PubMed  PubMed Central  Google Scholar 

  102. Vogl DT, Raje N, Jagannath S et al (2017) Ricolinostat, the first selective histone deacetylase 6 inhibitor, in combination with Bortezomib and dexamethasone for relapsed or refractory multiple myeloma. Clin Cancer Res 23:3307–3315. https://doi.org/10.1158/1078-0432.CCR-16-2526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Delmore JE, Issa GC, Lemieux ME et al (2011) BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 146:904–917. https://doi.org/10.1016/j.cell.2011.08.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Siegel MB, Liu SQ, Davare MA et al (2015) Small molecule inhibitor screen identifies synergistic activity of the bromodomain inhibitor CPI203 and bortezomib in drug resistant myeloma. Oncotarget 6:18921–18932

    Article  PubMed  PubMed Central  Google Scholar 

  105. Zhang X, Lee HC, Shirazi F et al (2018) Protein targeting chimeric molecules specific for bromodomain and extra-terminal motif family proteins are active against pre-clinical models of multiple myeloma. Leukemia 32:2224–2239. https://doi.org/10.1038/s41375-018-0044-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Amengual JE, Johannet P, Lombardo M et al (2015) Dual targeting of protein degradation pathways with the selective HDAC6 inhibitor ACY-1215 and bortezomib is synergistic in lymphoma. Clin Cancer Res 21:4663–4675. https://doi.org/10.1158/1078-0432.CCR-14-3068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Leshchenko VV, Kuo P-Y, Jiang Z et al (2015) Harnessing Noxa demethylation to overcome Bortezomib resistance in mantle cell lymphoma. Oncotarget 6:27332–27342. https://doi.org/10.18632/oncotarget.2903

    Article  PubMed  PubMed Central  Google Scholar 

  108. Yazbeck V, Shafer D, Perkins EB et al (2018) A phase II trial of bortezomib and vorinostat in mantle cell lymphoma and diffuse large B-cell lymphoma. Clin Lymphoma Myeloma Leuk 18:569–575.e1. https://doi.org/10.1016/j.clml.2018.05.023

    Article  PubMed  Google Scholar 

  109. Turner JG, Kashyap T, Dawson JL et al (2016) XPO1 inhibitor combination therapy with bortezomib or carfilzomib induces nuclear localization of IκBα and overcomes acquired proteasome inhibitor resistance in human multiple myeloma. Oncotarget 7:78896–78909. https://doi.org/10.18632/oncotarget.12969

    Article  PubMed  PubMed Central  Google Scholar 

  110. Campo E, Rule S (2015) Mantle cell lymphoma: evolving management strategies. Blood 125:48–55. https://doi.org/10.1182/blood-2014-05-521898

    Article  CAS  PubMed  Google Scholar 

  111. Lopez-Girona A, Heintel D, Zhang L-H et al (2011) Lenalidomide downregulates the cell survival factor, interferon regulatory factor-4, providing a potential mechanistic link for predicting response. Br J Haematol 154:325–336. https://doi.org/10.1111/j.1365-2141.2011.08689.x

    Article  CAS  PubMed  Google Scholar 

  112. McConkey DJ, White M, Yan W (2012) HDAC inhibitor modulation of proteotoxicity as a therapeutic approach in cancer. Adv Cancer Res 116:131–163. https://doi.org/10.1016/B978-0-12-394387-3.00004-5

    Article  CAS  PubMed  Google Scholar 

  113. Catley L, Weisberg E, Kiziltepe T et al (2006) Aggresome induction by proteasome inhibitor bortezomib and alpha-tubulin hyperacetylation by tubulin deacetylase (TDAC) inhibitor LBH589 are synergistic in myeloma cells. Blood 108:3441–3449. https://doi.org/10.1182/blood-2006-04-016055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

MGS and MSR are part of the UbiCODE project and received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 765445. GQ is a fellow from the French Ministry of Education. MSR is also funded by the Institut National du Cancer, France (PLBIO16-251), LASSERLAB-EUROPE grant number 654148 and CONACyT-SRE (Mexico) grant 0280365.

BS acknowledges support from Ligue contre le Cancer and Fondation Française pour la Recherche contre le Myélome et les Gammapathies. GR was financially supported by Fondo de Investigación Sanitaria PI15/00102 and PI18/01383, European Regional Development Fund (ERDF) ‘Una manera de hacer Europa’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel S. Rodriguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gonzalez-Santamarta, M., Quinet, G., Reyes-Garau, D., Sola, B., Roué, G., Rodriguez, M.S. (2020). Resistance to the Proteasome Inhibitors: Lessons from Multiple Myeloma and Mantle Cell Lymphoma. In: Barrio, R., Sutherland, J., Rodriguez, M. (eds) Proteostasis and Disease . Advances in Experimental Medicine and Biology, vol 1233. Springer, Cham. https://doi.org/10.1007/978-3-030-38266-7_6

Download citation

Publish with us

Policies and ethics

Navigation