Mechanisms Driving Resistance to Proteasome Inhibitors Bortezomib, Carfilzomib, and Ixazomib in Multiple Myeloma

  • Chapter
  • First Online:
Resistance to Targeted Therapies in Multiple Myeloma

Part of the book series: Resistance to Targeted Anti-Cancer Therapeutics ((RTACT,volume 22))

  • 490 Accesses

Abstract

The first clinically available proteasome inhibitor (PI) bortezomib was trialed in multiple myeloma (MM) approximately two decades ago and has since become a mainstay of myeloma therapy, significantly enhancing the overall survival of patients. However, bortezomib resistance continues to be a significant hurdle in the treatment of MM, despite the introduction of next-generation PIs such as carfilzomib and ixazomib. Unlike resistance to some other targeted therapies such as tyrosine kinase inhibitors, bortezomib resistance is highly complex and is able to arise through multiple mechanisms. This chapter discusses the current known mechanisms underlying bortezomib resistance, as well as resistance to the next-generation proteasome inhibitors carfilzomib and ixazomib.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ABC:

ATP-binding cassette

ATF4:

Activating transcription factor 4

ATF6:

Activating transcription factor 6

BiP:

Binding immunoglobulin protein

BMSC:

Bone marrow stromal cell

eIF2É‘:

Eukaryotic initiation factor 2 alpha

ER:

Endoplasmic reticulum

ERAD:

ER-associated decay of proteins

FDA:

US Food and Drug Administration

HDAC6:

Histone deacetylase 6

IGF-1:

Insulin-like growth factor 1

IL:

Interleukin

IRE1:

Inositol-requiring enzyme 1

JNK:

c-Jun N-terminal kinase

MHC-1:

Major histocompatibility complex class I

MM:

Multiple myeloma

MSC:

Mesenchymal stem cells

NF-κB:

Nuclear factor kappa-B

p38MAPK:

p38 mitogen-activated protein kinase

PERK:

PKR-like ER kinase

PFS:

Progression-free survival

PI:

Proteasome inhibitor

PI3K:

Phosphotidylinositol 3-kinase

RIDD:

Regulated IRE1-dependent decay

RRMM:

Relapsed/refractory multiple myeloma

TNF-É‘:

Tumor necrosis factor-alpha

UPR:

Unfolded protein response

XBP1:

X-box binding protein 1

References

  1. Bianchi G, Anderson KC. Understanding biology to tackle the disease: multiple myeloma from bench to bedside, and back. CA Cancer J Clin. 2014;64(6):422–44.

    Article  PubMed  Google Scholar 

  2. Vincenz L, Jager R, O’Dwyer M, Samali A. Endoplasmic reticulum stress and the unfolded protein response: targeting the Achilles heel of multiple myeloma. Mol Cancer Ther. 2013;12(6):831–43.

    Article  CAS  PubMed  Google Scholar 

  3. Jung T, Grune T. Structure of the proteasome. Prog Mol Biol Transl Sci. 2012;109:1–39.

    Article  CAS  PubMed  Google Scholar 

  4. Forster F, Unverdorben P, Sledz P, Baumeister W. Unveiling the long-held secrets of the 26S proteasome. Structure. 2013;21(9):1551–62.

    Article  PubMed  CAS  Google Scholar 

  5. Livneh I, Cohen-Kaplan V, Cohen-Rosenzweig C, Avni N, Ciechanover A. The life cycle of the 26S proteasome: from birth, through regulation and function, and onto its death. Cell Res. 2016;26(8):869–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Murata S, Takahama Y, Kasahara M, Tanaka K. The immunoproteasome and thymoproteasome: functions, evolution and human disease. Nat Immunol. 2018;19(9):923–31.

    Article  CAS  PubMed  Google Scholar 

  7. Schroder M. Endoplasmic reticulum stress responses. Cell Mol Life Sci. 2008;65(6):862–94.

    Article  CAS  PubMed  Google Scholar 

  8. Szegezdi E, Logue SE, Gorman AM, Samali A. Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep. 2006;7(9):880–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gardner BM, Walter P. Unfolded proteins are Ire1-activating ligands that directly induce the unfolded protein response. Science. 2011;333(6051):1891–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Karagöz GE, Acosta-Alvear D, Nguyen LCP, Chu F, Walter P. An unfolded protein-induced conformational switch activates mammalian IRE1. Elife. 2017;6:e30700.

    Google Scholar 

  11. Hetz C, Papa FR. The unfolded protein response and cell fate control. Mol Cell. 2018;69(2):169–81.

    Article  CAS  PubMed  Google Scholar 

  12. Walter P, Ron D. The unfolded protein response: from stress pathway to homeostatic regulation. Science. 2011;334(6059):1081–6.

    Article  CAS  PubMed  Google Scholar 

  13. Hetz C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol. 2012;13(2):89–102.

    Article  CAS  PubMed  Google Scholar 

  14. Urra H, Dufey E, Lisbona F, Rojas-Rivera D, Hetz C. When ER stress reaches a dead end. BBA. 2013;1833(12):3507–17.

    CAS  PubMed  Google Scholar 

  15. Hollien J, Lin JH, Li H, Stevens N, Walter P, Weissman JS. Regulated Ire1-dependent decay of messenger RNAs in mammalian cells. J Cell Biol. 2009;186(3):323–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Maurel M, Chevet E, Tavernier J, Gerlo S. Getting RIDD of RNA: IRE1 in cell fate regulation. Trends Biochem Sci. 2014;39(5):245–54.

    Article  CAS  PubMed  Google Scholar 

  17. Harding HP, Zhang Y, Bertolotti A, Zeng H, Ron D. PERK is essential for translational regulation and cell survival during the unfolded protein response. Mol Cell. 2000;5:897–904.

    Article  CAS  PubMed  Google Scholar 

  18. Han J, Back SH, Hur J, Lin YH, Gildersleeve R, Shan J, et al. ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nat Cell Biol. 2013;15(5):481–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kane RC, Bross PF, Farrell AT, Pazdur R. Velcade: U.S. FDA approval for the treatment of multiple myeloma progressing on prior therapy. Oncologist. 2003;8(6):508–13.

    Article  PubMed  Google Scholar 

  20. Merin NM, Kelly KR. Clinical use of proteasome inhibitors in the treatment of multiple myeloma. Pharmaceuticals (Basel). 2014;8(1):1–20.

    Article  CAS  Google Scholar 

  21. Kubiczkova L, Pour L, Sedlarikova L, Hajek R, Sevcikova S. Proteasome inhibitors—molecular basis and current perspectives in multiple myeloma. J Cell Mol Med. 2014;18(6):947–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hideshima T, Ikeda H, Chauhan D, Okawa Y, Raje N, Podar K, et al. Bortezomib induces canonical nuclear factor-kappaB activation in multiple myeloma cells. Blood. 2009;114(5):1046–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Obeng E, Carlson L, Gutman D, Harrington W Jr, Lee K, Boise L. Proteasome inhibitors induce a terminal unfolded protein response in multiple myeloma cells. Blood. 2006;107:4907–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Raedler LA. Kyprolis (Carfilzomib) received new indications as combination therapy for use in relapsed and/or refractory multiple myeloma. Am Health Drug Benefits. 2016;9:93–6.

    PubMed  PubMed Central  Google Scholar 

  25. Raedler LA. Ninlaro (Ixazomib): first oral proteasome inhibitor approved for the treatment of patients with relapsed or refractory multiple myeloma. Am Health Drug Benefits. 2016;9:102–5.

    PubMed  PubMed Central  Google Scholar 

  26. Gandolfi S, Laubach JP, Hideshima T, Chauhan D, Anderson KC, Richardson PG. The proteasome and proteasome inhibitors in multiple myeloma. Cancer Metastasis Rev. 2017;36(4):561–84.

    Article  CAS  PubMed  Google Scholar 

  27. Kuhn DJ, Chen Q, Voorhees PM, Strader JS, Shenk KD, Sun CM, et al. Potent activity of carfilzomib, a novel, irreversible inhibitor of the ubiquitin-proteasome pathway, against preclinical models of multiple myeloma. Blood. 2007;110(9):3281–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dimopoulos MA, Moreau P, Palumbo A, Joshua D, Pour L, Hájek R, et al. Carfilzomib and dexamethasone versus bortezomib and dexamethasone for patients with relapsed or refractory multiple myeloma (ENDEAVOR): a randomised, phase 3, open-label, multicentre study. Lancet Oncol. 2016;17(1):27–38.

    Article  CAS  PubMed  Google Scholar 

  29. Khan ML, Stewart AK. Carfilzomib: a novel second-generation proteasome inhibitor. Future Oncol. 2011;7(5):607–12.

    Article  CAS  PubMed  Google Scholar 

  30. Chauhan D, Li G, Podar K, Hideshima T, Mitsiades C, Schlossman R, et al. Targeting mitochondria to overcome conventional and bortezomib/proteasome inhibitor PS-341 resistance in multiple myeloma (MM) cells. Blood. 2004;104(8):2458–66.

    Article  CAS  PubMed  Google Scholar 

  31. Oerlemans R, Franke NE, Assaraf YG, Cloos J, van Zantwijk I, Berkers CR, et al. Molecular basis of bortezomib resistance: proteasome subunit beta5 (PSMB5) gene mutation and overexpression of PSMB5 protein. Blood. 2008;112(6):2489–99.

    Article  CAS  PubMed  Google Scholar 

  32. Ri M, Iida S, Nakashima T, Miyazaki H, Mori F, Ito A, et al. Bortezomib-resistant myeloma cell lines: a role for mutated PSMB5 in preventing the accumulation of unfolded proteins and fatal ER stress. Leukemia. 2010;24(8):1506–12.

    Article  CAS  PubMed  Google Scholar 

  33. Lu S, Yang J, Song X, Gong S, Zhou H, Guo L, et al. Point mutation of the proteasome beta5 subunit gene is an important mechanism of bortezomib resistance in bortezomib-selected variants of Jurkat T cell lymphoblastic lymphoma/leukemia line. J Pharmacol Exp Ther. 2008;326(2):423–31.

    Article  CAS  PubMed  Google Scholar 

  34. Verbrugge SE, Assaraf YG, Dijkmans BA, Scheffer GL, Al M, den Uyl D, et al. Inactivating PSMB5 mutations and P-glycoprotein (multidrug resistance-associated protein/ATP-binding cassette B1) mediate resistance to proteasome inhibitors: ex vivo efficacy of (immuno)proteasome inhibitors in mononuclear blood cells from patients with rheumatoid arthritis. J Pharmacol Exp Ther. 2012;341(1):174–82.

    Article  CAS  PubMed  Google Scholar 

  35. Kuhn DJ, Berkova Z, Jones RJ, Woessner R, Bjorklund CC, Ma W, et al. Targeting the insulin-like growth factor-1 receptor to overcome bortezomib resistance in preclinical models of multiple myeloma. Blood. 2012;120(16):3260–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Balsas P, Galan-Malo P, Marzo I, Naval J. Bortezomib resistance in a myeloma cell line is associated to PSMB5 overexpression and polyploidy. Leuk Res. 2012;36(2):212–8.

    Article  CAS  PubMed  Google Scholar 

  37. Lichter DI, Danaee H, Pickard MD, Tayber O, Sintchak M, Shi H, et al. Sequence analysis of B-subunit genes of the 20S proteasome in patients with relapsed multiple myeloma treated with bortezomib or dexamethasone. Blood. 2012;120(23):4513–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kortuem KM, Braggio E, Bruins L, Barrio S, Shi CS, Zhu YX, et al. Panel sequencing for clinically oriented variant screening and copy number detection in 142 untreated multiple myeloma patients. Blood Cancer J. 2016;6:e397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Walker BA, Boyle EM, Wardell CP, Murison A, Begum DB, Dahir NM, et al. Mutational spectrum, copy number changes, and outcome: results of a sequencing study of patients with newly diagnosed myeloma. J Clin Oncol. 2015;33(33):3911–20.

    Article  CAS  PubMed  Google Scholar 

  40. Egan JB, Shi CX, Tembe W, Christoforides A, Kurdoglu A, Sinari S, et al. Whole-genome sequencing of multiple myeloma from diagnosis to plasma cell leukemia reveals genomic initiating events, evolution, and clonal tides. Blood. 2012;120(5):1060–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Barrio S, Stuhmer T, Da-Via M, Barrio-Garcia C, Lehners N, Besse A, et al. Spectrum and functional validation of PSMB5 mutations in multiple myeloma. Leukemia. 2019;33:447–56.

    Article  CAS  PubMed  Google Scholar 

  42. Shuqing L, Jianmin Y, Chongmei H, Hui C, Wang J. Upregulated expression of the PSMB5 gene may contribute to drug resistance in patient with multiple myeloma when treated with bortezomib-based regimen. Exp Hematol. 2011;39(12):1117–8.

    Article  PubMed  CAS  Google Scholar 

  43. Chen Z, Shi T, Zhang L, Zhu P, Deng M, Huang C, et al. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family in multidrug resistance: a review of the past decade. Cancer Lett. 2016;370(1):153–64.

    Article  CAS  PubMed  Google Scholar 

  44. Clemens J, Seckinger A, Hose D, Theile D, Longo M, Haefeli WE, et al. Cellular uptake kinetics of bortezomib in relation to efficacy in myeloma cells and the influence of drug transporters. Cancer Chemother Pharmacol. 2015;75(2):281–91.

    Article  CAS  PubMed  Google Scholar 

  45. O’Connor R, Ooi MG, Meiller J, Jakubikova J, Klippel S, Delmore J, et al. The interaction of bortezomib with multidrug transporters: implications for therapeutic applications in advanced multiple myeloma and other neoplasias. Cancer Chemother Pharmacol. 2013;71(5):1357–68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Rumpold H, Salvador C, Wolf AM, Tilg H, Gastl G, Wolf D. Knockdown of PgP resensitizes leukemic cells to proteasome inhibitors. Biochem Biophys Res Commun. 2007;361(2):549–54.

    Article  CAS  PubMed  Google Scholar 

  47. Muz B, Kusdono HD, Azab F, de la Puente P, Federico C, Fiala M, et al. Tariquidar sensitizes multiple myeloma cells to proteasome inhibitors via reduction of hypoxia-induced P-gp-mediated drug resistance. Leuk Lymphoma. 2017;58(12):2916–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wiberg K, Carlson K, Aleskog A, Larsson R, Nygren P, Lindhagen E. In vitro activity of bortezomib in cultures of patient tumour cells—potential utility in haematological malignancies. Med Oncol. 2009;26(2):193–201.

    Article  CAS  PubMed  Google Scholar 

  49. Buda G, Ricci D, Huang CC, Favis R, Cohen N, Zhuang SH, et al. Polymorphisms in the multiple drug resistance protein 1 and in P-glycoprotein 1 are associated with time to event outcomes in patients with advanced multiple myeloma treated with bortezomib and pegylated liposomal doxorubicin. Ann Hematol. 2010;89(11):1133–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lu S, Wang J. The resistance mechanisms of proteasome inhibitor bortezomib. Biomarker Res. 2013;1:13.

    Article  Google Scholar 

  51. Iwakoshi NN, Lee AH, Vallabhajosyula P, Otipoby KL, Rajewsky K, Glimcher LH. Plasma cell differentiation and the unfolded protein response intersect at the transcription factor XBP-1. Nat Immunol. 2003;4(4):321–9.

    Article  CAS  PubMed  Google Scholar 

  52. Leung-Hagesteijn C, Erdmann N, Cheung G, Keats JJ, Stewart AK, Reece DE, et al. Xbp1s-negative tumor B cells and pre-plasmablasts mediate therapeutic proteasome inhibitor resistance in multiple myeloma. Cancer Cell. 2013;24(3):289–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gu JL, Li J, Zhou ZH, Liu JR, Huang BH, Zheng D, et al. Differentiation induction enhances bortezomib efficacy and overcomes drug resistance in multiple myeloma. Biochem Biophys Res Commun. 2012;420(3):644–50.

    Article  CAS  PubMed  Google Scholar 

  54. Stessman HA, Mansoor A, Zhan F, Linden MA, Van Ness B, Baughn LB. Bortezomib resistance can be reversed by induced expression of plasma cell maturation markers in a mouse in vitro model of multiple myeloma. PLoS One. 2013;8(10):e77608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ling SC, Lau EK, Al-Shabeeb A, Nikolic A, Catalano A, Iland H, et al. Response of myeloma to the proteasome inhibitor bortezomib is correlated with the unfolded protein response regulator XBP-1. Haematologica. 2012;97(1):64–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Shah SP, Lonial S, Boise LH. When cancer fights back: multiple myeloma, proteasome inhibition, and the heat-shock response. Mol Cancer Res. 2015;13(8):1163–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Abdel Malek MA, Jagannathan S, Malek E, Sayed DM, Elgammal SA, Abd El-Azeem HG, et al. Molecular chaperone GRP78 enhances aggresome delivery to autophagosomes to promote drug resistance in multiple myeloma. Oncotarget. 2015;6(5):3098–110.

    Article  PubMed  Google Scholar 

  58. Steiner N, Borjan B, Hajek R, Johrer K, Gobel G, Willenbacher W, et al. Expression and release of glucose-regulated protein-78 (GRP78) in multiple myeloma. Oncotarget. 2017;8(34):56,243–54.

    Article  Google Scholar 

  59. Rasche L, Menoret E, Dubljevic V, Menu E, Vanderkerken K, Lapa C, et al. A GRP78-directed monoclonal antibody recaptures response in refractory multiple myeloma with extramedullary involvement. Clin Cancer Res. 2016;22(17):4341–9.

    Article  CAS  PubMed  Google Scholar 

  60. Adomako A, Calvo V, Biran N, Osman K, Chari A, Paton JC, et al. Identification of markers that functionally define a quiescent multiple myeloma cell sub-population surviving bortezomib treatment. BMC Cancer. 2015;15:444.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Jagannathan S, Abdel-Malek MA, Malek E, Vad N, Latif T, Anderson KC, et al. Pharmacologic screens reveal metformin that suppresses GRP78-dependent autophagy to enhance the anti-myeloma effect of bortezomib. Leukemia. 2015;29(11):2184–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mitsiades N, Mitsiades C, Poulaki V, Chauhan D, Fanourakis G, Gu X, et al. Molecular sequelae of proteasome inhibition in human multiple myeloma cells. Proc Natl Acad Sci U S A. 2002;99(22):14,374–9.

    Article  CAS  Google Scholar 

  63. Zhang L, Fok JHL, Davies F. Heat shock proteins in multiple myeloma. Oncotarget. 2014;5(5):1132–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Khong T, Spencer A. Targeting HSP 90 induces apoptosis and inhibits critical survival and proliferation pathways in multiple myeloma. Mol Cancer Ther. 2011;10(10):1909–17.

    Article  CAS  PubMed  Google Scholar 

  65. Ishii T, Seike T, Nakashima T, Juliger S, Maharaj L, Soga S, et al. Anti-tumor activity against multiple myeloma by combination of KW-2478, an Hsp90 inhibitor, with bortezomib. Blood Cancer J. 2012;2(4):e68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Cavenagh J, Oakervee H, Baetiong-Caguioa P, Davies F, Gharibo M, Rabin N, et al. A phase I/II study of KW-2478, an Hsp90 inhibitor, in combination with bortezomib in patients with relapsed/refractory multiple myeloma. Br J Cancer. 2017;117(9):1295–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Usmani SZ, Chiosis G. HSP90 inhibitors as therapy for multiple myeloma. Clin Lymphoma Myeloma Leuk. 2011;11(Suppl 1):S77–81.

    Article  PubMed  Google Scholar 

  68. Shringarpure R, Catley L, Bhole D, Burger R, Podar K, Tai YT, et al. Gene expression analysis of B-lymphoma cells resistant and sensitive to bortezomib. Br J Haematol. 2006;134(2):145–56.

    Article  CAS  PubMed  Google Scholar 

  69. Roue G, Perez-Galan P, Mozos A, Lopez-Guerra M, Xargay-Torrent S, Rosich L, et al. The Hsp90 inhibitor IPI-504 overcomes bortezomib resistance in mantle cell lymphoma in vitro and in vivo by down-regulation of the prosurvival ER chaperone BiP/Grp78. Blood. 2011;117(4):1270–9.

    Article  CAS  PubMed  Google Scholar 

  70. Hamouda MA, Belhacene N, Puissant A, Colosetti P, Robert G, Jacquel A, et al. The small heat shock protein B8 (HSPB8) confers resistance to bortezomib by promoting autophagic removal of misfolded proteins in multiple myeloma cells. Oncotarget. 2014;5(15):6252–66.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Benbrook DM, Long A. Integration of autophagy, proteasomal degradation, unfolded protein response and apoptosis. Exp Oncol. 2012;34(3):286–97.

    CAS  PubMed  Google Scholar 

  72. Yun Z, Zhichao J, Hao Y, Ou J, Ran Y, Wen D, et al. Targeting autophagy in multiple myeloma. Leuk Res. 2017;59:97–104.

    Article  CAS  PubMed  Google Scholar 

  73. Milan E, Perini T, Resnati M, Orfanelli U, Oliva L, Raimondi A, et al. A plastic SQSTM1/p62-dependent autophagic reserve maintains proteostasis and determines proteasome inhibitor susceptibility in multiple myeloma cells. Autophagy. 2015;11(7):1161–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhang H, Pang Y, Ma C, Li J, Wang H, Shao Z. ClC5 decreases the sensitivity of multiple myeloma cells to bortezomib via promoting prosurvival autophagy. Oncol Res. 2018;26(3):421–9.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Lu Y, Wang Y, Xu H, Shi C, ** F, Li W. Profilin 1 induces drug resistance through Beclin1 complex-mediated autophagy in multiple myeloma. Cancer Sci. 2018;109(9):2706–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Jagannathan S, Vad N, Vallabhapurapu S, Vallabhapurapu S, Anderson KC, Driscoll JJ. MiR-29b replacement inhibits proteasomes and disrupts aggresome+autophagosome formation to enhance the antimyeloma benefit of bortezomib. Leukemia. 2015;29(3):727–38.

    Article  CAS  PubMed  Google Scholar 

  77. Zhang M, He J, Liu Z, Lu Y, Zheng Y, Li H, et al. Anti-β2-microglobulin monoclonal antibody overcomes bortezomib resistance in multiple myeloma by inhibiting autophagy. Oncotarget. 2015;6(11):8567–78.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Vogl DT, Stadtmauer EA, Tan KS, Heitjan DF, Davis LE, Pontiggia L, et al. Combined autophagy and proteasome inhibition: a phase 1 trial of hydroxychloroquine and bortezomib in patients with relapsed/refractory myeloma. Autophagy. 2014;10(8):1380–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kawaguchi T, Miyazawa K, Moriya S, Ohtomo T, Che XF, Naito M, et al. Combined treatment with bortezomib plus bafilomycin A1 enhances the cytocidal effect and induces endoplasmic reticulum stress in U266 myeloma cells: crosstalk among proteasome, autophagy-lysosome and ER stress. Int J Oncol. 2011;38(3):643–54.

    CAS  PubMed  Google Scholar 

  80. Jaganathan S, Malek E, Vallabhapurapu S, Vallabhapurapu S, Driscoll JJ. Bortezomib induces AMPK-dependent autophagosome formation uncoupled from apoptosis in drug resistant cells. Oncotarget. 2014;5(23):12,358–70.

    Article  Google Scholar 

  81. Murray MY, Auger MJ, Bowles KM. Overcoming bortezomib resistance in multiple myeloma. Biochem Soc Trans. 2014;42(4):804–8.

    Article  CAS  PubMed  Google Scholar 

  82. Kawano Y, Moschetta M, Manier S, Glavey S, Gorgun G, Roccaro AM, et al. Targeting the bone marrow microenvironment in multiple myeloma. Immunol Rev. 2015;263(1):160–72.

    Article  PubMed  Google Scholar 

  83. Di Marzo L, Desantis V, Solimando AG, Ruggieri S, Annese T, Nico B, et al. Microenvironment drug resistance in multiple myeloma: emerging new players. Oncotarget. 2016;7(37):60,698–711.

    Article  Google Scholar 

  84. Neri P, Ren L, Azab AK, Brentnall M, Gratton K, Klimowicz AC, et al. Integrin beta7-mediated regulation of multiple myeloma cell adhesion, migration, and invasion. Blood. 2011;117(23):6202–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Azab AK, Runnels JM, Pitsillides C, Moreau AS, Azab F, Leleu X, et al. CXCR4 inhibitor AMD3100 disrupts the interaction of multiple myeloma cells with the bone marrow microenvironment and enhances their sensitivity to therapy. Blood. 2009;113(18):4341–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zi FM, He JS, Li Y, Wu C, Wu WJ, Yang Y, et al. Fibroblast activation protein protects bortezomib-induced apoptosis in multiple myeloma cells through beta-catenin signaling pathway. Cancer Biol Ther. 2014;15(10):1413–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hao M, Zhang L, An G, Sui W, Yu Z, Zou D, et al. Suppressing miRNA-15a/-16 expression by interleukin-6 enhances drug-resistance in myeloma cells. J Hematol Oncol. 2011;4:37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Fan F, Bashari MH, Morelli E, Tonon G, Malvestiti S, Vallet S, et al. The AP-1 transcription factor JunB is essential for multiple myeloma cell proliferation and drug resistance in the bone marrow microenvironment. Leukemia. 2017;31(7):1570–81.

    Article  CAS  PubMed  Google Scholar 

  89. Markovina S, Callander NS, O’Connor SL, Xu G, Shi Y, Leith CP, et al. Bone marrow stromal cells from multiple myeloma patients uniquely induce bortezomib resistant NF-kappaB activity in myeloma cells. Mol Cancer. 2010;9:176.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Thangavadivel S, Zelle-Rieser C, Olivier A, Postert B, Untergasser G, Kern J, et al. CCR10/CCL27 crosstalk contributes to failure of proteasome-inhibitors in multiple myeloma. Oncotarget. 2016;7(48):78,605–18.

    Article  Google Scholar 

  91. Podar K, Chauhan D, Anderson KC. Bone marrow microenvironment and the identification of new targets for myeloma therapy. Leukemia. 2009;23(1):10–24.

    Article  CAS  PubMed  Google Scholar 

  92. Azab F, Vali S, Abraham J, Potter N, Muz B, de la Puente P, et al. PI3KCA plays a major role in multiple myeloma and its inhibition with BYL719 decreases proliferation, synergizes with other therapies and overcomes stroma-induced resistance. Br J Haematol. 2014;165(1):89–101.

    Article  CAS  PubMed  Google Scholar 

  93. Farrell ML, Reagan MR. Soluble and cell-cell-mediated drivers of proteasome inhibitor resistance in multiple myeloma. Front Endocrinol (Lausanne). 2018;9:218.

    Article  Google Scholar 

  94. Xu H, Han H, Song S, Yi N, Qian C, Qiu Y, et al. Exosome-transmitted PSMA3 and PSMA3-AS1 promote proteasome inhibitor resistance in multiple myeloma. Clin Cancer Res. 2019; https://doi.org/10.1158/1078-0432.CCR-18-2363.

  95. Stessman HA, Baughn LB, Sarver A, **a T, Deshpande R, Mansoor A, et al. Profiling bortezomib resistance identifies secondary therapies in a mouse myeloma model. Mol Cancer Ther. 2013;12(6):1140–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ao L, Wu Y, Kim D, Jang ER, Kim K, Lee DM, et al. Development of peptide-based reversing agents for p-glycoprotein-mediated resistance to carfilzomib. Mol Pharm. 2012;9(8):2197–205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Hawley TS, Riz I, Yang W, Wakabayashi Y, Depalma L, Chang YT, et al. Identification of an ABCB1 (P-glycoprotein)-positive carfilzomib-resistant myeloma subpopulation by the pluripotent stem cell fluorescent dye CDy1. Am J Hematol. 2013;88(4):265–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Besse A, Stolze SC, Rasche L, Weinhold N, Morgan GJ, Kraus M, et al. Carfilzomib resistance due to ABCB1/MDR1 overexpression is overcome by nelfinavir and lopinavir in multiple myeloma. Leukemia. 2017;32(2):391–401.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Jarauta V, Jaime P, Gonzalo O, de Miguel D, Ramirez-Labrada A, Martinez-Lostao L, et al. Inhibition of autophagy with chloroquine potentiates carfilzomib-induced apoptosis in myeloma cells in vitro and in vivo. Cancer Lett. 2016;382(1):1–10.

    Article  CAS  PubMed  Google Scholar 

  100. Riz I, Hawley TS, Hawley RG. KLF4-SQSTM1/p62-associated prosurvival autophagy contributes to carfilzomib resistance in multiple myeloma models. Oncotarget. 2015;6(17):14,814–31.

    Article  Google Scholar 

  101. Baranowska K, Misund K, Starheim KK, Holien T, Johansson I, Darvekar S, et al. Hydroxychloroquine potentiates carfilzomib toxicity towards myeloma cells. Oncotarget. 2016;7(43):70,845–56.

    Article  Google Scholar 

  102. Mishima Y, Santo L, Eda H, Cirstea D, Nemani N, Yee AJ, et al. Ricolinostat (ACY-1215) induced inhibition of aggresome formation accelerates carfilzomib-induced multiple myeloma cell death. Br J Haematol. 2015;169(3):423–34.

    Article  CAS  PubMed  Google Scholar 

  103. Bustany S, Bourgeais J, Tchakarsha G, Body S, Herault O, Gouilleux F, et al. Cyclin D1 unbalances the redox status controlling cell adhesion, migration, and drug resistance in myeloma cells. Oncotarget. 2016;7(29):45,214–24.

    Article  Google Scholar 

  104. Waldschmidt JM, Simon A, Wider D, Muller SJ, Follo M, Ihorst G, et al. CXCL12 and CXCR7 are relevant targets to reverse cell adhesion-mediated drug resistance in multiple myeloma. Br J Haematol. 2017;179(1):36–49.

    Article  CAS  PubMed  Google Scholar 

  105. Moreau P, Masszi T, Grzasko N, Bahlis NJ, Hansson M, Pour L, et al. Oral ixazomib, lenalidomide, and dexamethasone for multiple myeloma. N Engl J Med. 2016;374(17):1621–34.

    Article  CAS  PubMed  Google Scholar 

  106. Mateos MV, Masszi T, Grzasko N, Hansson M, Sandhu I, Pour L, et al. Impact of prior therapy on the efficacy and safety of oral ixazomib-lenalidomide-dexamethasone vs. placebo-lenalidomide-dexamethasone in patients with relapsed/refractory multiple myeloma in TOURMALINE-MM1. Haematologica. 2017;102(10):1767–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Bonnet A, Moreau P. Safety of ixazomib for the treatment of multiple myeloma. Expert Opin Drug Saf. 2017;16(8):973–80.

    Article  CAS  PubMed  Google Scholar 

  108. Malek E, Kim BG, Driscoll JJ. Identification of long non-coding RNAs deregulated in multiple myeloma cells resistant to proteasome inhibitors. Genes (Basel). 2016;7(10)

    Google Scholar 

  109. Wallington-Beddoe CT, Sobieraj-Teague M, Kuss BJ, Pitson SM. Resistance to proteasome inhibitors and other targeted therapies in myeloma. Br J Haematol. 2018;182(1):11–28.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by an MF and MH Joyner Scholarship, the RAH Research Fund, an Australian Government Research Training Program Scholarship, a National Health and Medical Research Council of Australia (NHMRC) Peter Doherty Biomedical Early Career Fellowship (1071945), a Royal Australasian College of Physicians Research Establishment Fellowship, the Fay Fuller Foundation, and a Senior Research Fellowship from the NHMRC. The authors would also like to thank Dr. Melissa Pitman for her assistance with the protein structure analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Stuart M. Pitson or Craig T. Wallington-Beddoe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bennett, M.K., Pitson, S.M., Wallington-Beddoe, C.T. (2021). Mechanisms Driving Resistance to Proteasome Inhibitors Bortezomib, Carfilzomib, and Ixazomib in Multiple Myeloma. In: Ling, S.C., Trieu, S. (eds) Resistance to Targeted Therapies in Multiple Myeloma. Resistance to Targeted Anti-Cancer Therapeutics, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-030-73440-4_4

Download citation

Publish with us

Policies and ethics

Navigation