Roneparstat: Development, Preclinical and Clinical Studies

  • Chapter
  • First Online:
Heparanase

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1221))

Abstract

A growing interest around heparanase and its role in cancer, inflammation and other diseases prompted the identification of specific inhibitors of this enzyme and the exploration of their potential therapeutic role. Roneparstat, a 15–25 kDa N-acetylated and glycol split heparin, is one of the most potent and widely studied heparanase inhibitors. These studies generated a large body of data, which allowed to characterize Roneparstat properties and to endorse its potential therapeutic role. Multiple Myeloma represents the indication that most of the studies, including the phase I clinical trial, addressed. However, Roneparstat antitumor activity activity has been documented in other cancers, and in non-oncological conditions.

In addition, assessing Roneparstat activity in different experimental models contributed to understanding heparanase role and the biological factors that may be affected by heparanase inhibition in more detail. Finally, some studies elucidated the molecular mechanisms regulating the enzyme-inhibitor kinetics, thus providing important data for the identification and design of new inhibitors.

The objective of this chapter is to provide a comprehensive overview of the most significant studies involving Roneparstat and discuss its potential role in therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ilan, N., Elkin, M., & Vlodavsky, I. (2006). Regulation, function and clinical significance of heparanase in cancer metastasis and angiogenesis. Intl J Biochem & Cell Biol, 38, 2018–2039.

    Article  CAS  Google Scholar 

  2. McKenzie, E. A. (2007). Heparanase: A target for drug discovery in cancer and inflammation. British Journal of Pharmacology, 151, 1–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Masola, V., Secchi, M. F., Gambaro, G., & Onisto, M. (2014). Heparanase as a target in cancer therapy. Current Cancer Drug Targets, 14, 286–293.

    Article  CAS  PubMed  Google Scholar 

  4. Rivara, S., Milazzo, F. M., & Giannini, G. (2016). Heparanase: A rainbow pharmacological target associated to multiple pathologies including rare diseases. Future Medicinal Chemistry, 8, 647–680.

    Article  CAS  PubMed  Google Scholar 

  5. Vlodavsky, I., Singh, P., Boyango, I., Gutter-Kapon, L., Elkin, M., Sanderson, R. D., et al. (2016). Heparanase: From basic research to therapeutic applications in cancer and inflammation. Drug Res Updates., 29, 54–75.

    Article  Google Scholar 

  6. Nadir, Y., & Brenner, B. (2014). Heparanase multiple effects in cancer. Thrombosis Research, 133(Suppl 2), S90–S94.

    Article  CAS  PubMed  Google Scholar 

  7. Meirovitz, A., Hermano, E., Lerner, I., Zcharia, E., Pisano, C., Peretz, T., et al. (2011). Role of heparanase in radiation-enhanced invasiveness of pancreatic carcinoma. Cancer Research, 71, 2772–2780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ramani, V. C., Vlodavsky, I., Ng, M., Zhang, Y., Barbieri, P., Noseda, A., et al. (2016). Chemotherapy induces expression and release of heparanase leading to changes associated with an aggressive tumor phenotype. Matrix Biology, 55, 22–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ramani, V. C., Zhan, F., He, J., Barbieri, P., Noseda, A., Tricot, G., et al. (2016). Targeting heparanase overcomes chemoresistance and diminishes relapse in myeloma. Oncotarget, 7, 1598–1607.

    Article  PubMed  Google Scholar 

  10. Shteingauz, A., Boyango, I., Naroditsky, I., Hammond, E., Gruber, M., Doweck, I., et al. (2015). Heparanase enhances tumor growth and chemoresistance by promoting autophagy. Cancer Research, 75, 3946–3957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sanderson, R. D., Elkin, M., Rapraeger, A. C., Ilan, N., & Vlodavsky, I. (2017). Heparanase regulation of cancer, autophagy and inflammation: New mechanisms and targets for therapy. The FEBS Journal, 284, 42–55.

    Article  CAS  PubMed  Google Scholar 

  12. Lv, Q., Zeng, J., & He, L. (2016). The advancements of heparanase in fibrosis. Int J Mol Epidemiol Genet., 7, 137–140.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Masola, V., Zaza, G., Gambaro, G., Onisto, M., Bellin, G., Vischini, G., et al. (2016). Heparanase: A potential new factor involved in the renal epithelial mesenchymal transition (EMT) induced by ischemia/reperfusion (I/R) injury. PLoS One, 11, e0160074.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Naggi, A., Casu, B., Perez, M., Torri, G., Cassinelli, G., Penco, S., et al. (2005). Modulation of the heparanase-inhibiting activity of heparin through selective desulfation, graded N-acetylation, and glycol splitting. The Journal of Biological Chemistry, 280, 12103–12113.

    Article  CAS  PubMed  Google Scholar 

  15. Alekseeva, A., Mazzini, G., Giannini, G., & Naggi, A. (2017). Structural features of heparanase-inhibiting non-anticoagulant heparin derivative Roneparstat. Carbohydrate Polymers, 156, 470–480.

    Article  CAS  PubMed  Google Scholar 

  16. Pala, D., Rivara, S., Mor, M., Milazzo, F. M., Roscilli, G., Pavoni, E., et al. (2016). Kinetic analysis and molecular modeling of the inhibition mechanism of roneparstat (SST0001) on human heparanase. Glycobiology, 26, 640–654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ritchie, J. P., Ramani, V. C., Ren, Y., Naggi, A., Torri, G., Casu, B., et al. (2011). SST0001, a chemically modified heparin, inhibits myeloma growth and angiogenesis via disruption of the heparanase/syndecan-1 axis. Clinical Cancer Research, 17, 1382–1393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li, J., Pan, Q., Rowan, P. D., Trotter, T. N., Peker, D., Regal, K. M., et al. (2016). Heparanase promotes myeloma progression by inducing mesenchymal features and motility of myeloma cells. Oncotarget, 7, 11299–11309.

    PubMed  PubMed Central  Google Scholar 

  19. Purushothaman, A., Hurst, D. R., Pisano, C., Mizumoto, S., Sugahara, K., & Sanderson, R. D. (2011). Heparanase-mediated loss of nuclear syndecan-1 enhances histone acetyltransferase (HAT) activity to promote expression of genes that drive an aggressive tumor phenotype. The Journal of Biological Chemistry, 286, 30377–30383.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cassinelli, G., Favini, E., Dal Bo, L., Tortoreto, M., De Maglie, M., Dagrada, G., et al. (2016). Antitumor efficacy of the heparan sulfate mimic roneparstat (SST0001) against sarcoma models involves multi-target inhibition of receptor tyrosine kinases. Oncotarget, 7, 47848–47863.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Cassinelli, G., Dal Bo, L., Favini, E., Cominetti, D., Pozzi, S., Tortoreto, M., et al. (2018). Supersulfated low-molecular weight heparin synergizes with IGF1R/IR inhibitor to suppress synovial sarcoma growth and metastases. Cancer Letters, 415, 187–197.

    Article  CAS  PubMed  Google Scholar 

  22. Cassinelli, G., Lanzi, C., Tortoreto, M., Cominetti, D., Petrangolini, G., Favini, E., et al. (2013). Antitumor efficacy of the heparanase inhibitor SST0001 alone and in combination with antiangiogenic agents in the treatment of human pediatric sarcoma models. Biochemical Pharmacology, 85, 1424–1432.

    Article  CAS  PubMed  Google Scholar 

  23. Lanzi, C., & Cassinelli, G. (2018). Heparan sulfate mimetics in cancer therapy: The challenge to define structural determinants and the relevance of targets for optimal activity. Molecules, 23.

    Google Scholar 

  24. Cassinelli, G., Zaffaroni, N., & Lanzi, C. (2016). The heparanase/heparan sulfate proteoglycan axis: A potential new therapeutic target in sarcomas. Cancer Letters, 382, 245–254.

    Article  CAS  PubMed  Google Scholar 

  25. Giannini, G. N. A., & Esposito, E. (2018). Preparation of biotin-conjugated N-acetyl glycol split heparin as heparanase inhibitors. In PCT Int Appl WO2018188990.

    Google Scholar 

  26. Couchman, J. R., Multhaupt, H., & Sanderson, R. D. (2016). Recent insights into cell surface heparan sulphate proteoglycans and cancer. F1000Res, 5.

    Google Scholar 

  27. Iozzo, R. V., & Sanderson, R. D. (2011). Proteoglycans in cancer biology, tumour microenvironment and angiogenesis. Journal of Cellular and Molecular Medicine, 15, 1013–1031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mahtouk, K., Hose, D., Raynaud, P., Hundemer, M., Jourdan, M., Jourdan, E., et al. (2007). Heparanase influences expression and shedding of syndecan-1, and its expression by the bone marrow environment is a bad prognostic factor in multiple myeloma. Blood, 109, 4914–4923.

    Article  CAS  PubMed  Google Scholar 

  29. Thompson, C. A., Purushothaman, A., Ramani, V. C., Vlodavsky, I., & Sanderson, R. D. (2013). Heparanase regulates secretion, composition, and function of tumor cell-derived exosomes. The Journal of Biological Chemistry, 288, 10093–10099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Masola, V., Granata, S., Bellin, G., Gambaro, G., Onisto, M., Rugiu, C., et al. (2017). Specific heparanase inhibition reverses glucose-induced mesothelial-to-mesenchymal transition. Nephrology, Dialysis, Transplantation, 32, 1145–1154.

    Article  CAS  PubMed  Google Scholar 

  31. Secchi, M. F., Crescenzi, M., Masola, V., Russo, F. P., Floreani, A., & Onisto, M. (2017). Heparanase and macrophage interplay in the onset of liver fibrosis. Scientific Reports, 7, 14956.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Zhang, L., Ngo, J. A., Wetzel, M. D., & Marchetti, D. (2015). Heparanase mediates a novel mechanism in lapatinib-resistant brain metastatic breast cancer. Neoplasia, 17, 101–113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang, B., Tan, Y. X., Jia, J., Digre, A., Zhang, X., Vlodavsky, I., et al. (2012). Accelerated resolution of AA amyloid in heparanase knockout mice is associated with matrix metalloproteases. PLoS One, 7, e39899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dimopoulos, M. A., & Kastritis, E. (2011). Bortezomib for AL amyloidosis: Moving forward. Blood, 118, 827–828.

    Article  CAS  PubMed  Google Scholar 

  35. Palladini, G., Milani, P., Foli, A., Obici, L., Lavatelli, F., Nuvolone, M., et al. (2014). Oral melphalan and dexamethasone grants extended survival with minimal toxicity in AL amyloidosis: Long-term results of a risk-adapted approach. Haematologica, 99, 743–750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Rossini, A., Zunino, F., Ruggiero, G., De Cesare, M., Cominetti, D., Tortoreto, M., et al. (2018). Microenvironment modulation and enhancement of antilymphoma therapy by the heparanase inhibitor roneparstat. Hematological Oncology, 36, 360–362.

    Article  PubMed  Google Scholar 

  37. Shafat, I., Ben-Arush, M. W., Issakov, J., Meller, I., Naroditsky, I., Tortoreto, M., et al. (2011). Pre-clinical and clinical significance of heparanase in Ewing’s sarcoma. Journal of Cellular and Molecular Medicine, 15, 1857–1864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hostettler, N., Naggi, A., Torri, G., Ishai-Michaeli, R., Casu, B., Vlodavsky, I., et al. (2007). P-selectin- and heparanase-dependent antimetastatic activity of non-anticoagulant heparins. The FASEB Journal, 21, 3562–3572.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang, X., & Li, J. P. (2010). Heparan sulfate proteoglycans in amyloidosis. Progress in Molecular Biology and Translational Science, 93, 309–334.

    Article  CAS  PubMed  Google Scholar 

  40. Masola, V., Bellin, G., Vischini, G., Dall’Olmo, L., Granata, S., Gambaro, G., et al. (2018). Inhibition of heparanase protects against chronic kidney dysfunction following ischemia/reperfusion injury. Oncotarget, 9, 36185–36201.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Masola, V., Zaza, G., Bellin, G., Dall’Olmo, L., Granata, S., Vischini, G., et al. (2018). Heparanase regulates the M1 polarization of renal macrophages and their crosstalk with renal epithelial tubular cells after ischemia/reperfusion injury. The FASEB Journal, 32, 742–756.

    Article  CAS  PubMed  Google Scholar 

  42. Gil, N., Goldberg, R., Neuman, T., Garsen, M., Zcharia, E., Rubinstein, A. M., et al. (2012). Heparanase is essential for the development of diabetic nephropathy in mice. Diabetes, 61, 208–216.

    Article  CAS  PubMed  Google Scholar 

  43. Khamaysi, I., Singh, P., Nasser, S., Awad, H., Chowers, Y., Sabo, E., et al. (2017). The role of heparanase in the pathogenesis of acute pancreatitis: A potential therapeutic target. Scientific Reports, 7, 715.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Huegel, J., Enomoto-Iwamoto, M., Sgariglia, F., Koyama, E., & Pacifici, M. (2015). Heparanase stimulates chondrogenesis and is up-regulated in human ectopic cartilage. a mechanism possibly involved in hereditary multiple exostoses. Am J Pathol., 185, 1676–1685.

    CAS  PubMed  Google Scholar 

  45. Galli, M., Chatterjee, M., Grasso, M., Specchia, G., Magen, H., Einsele, H., et al. (2018). Phase I study of the heparanase inhibitor roneparstat: An innovative approach for ultiple myeloma therapy. Haematologica, 103, e469–ee72.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Giannini, G. S. D., & Semeraro, F. (2018). Preparation of disodium 2,2′-{carbonyl-bis[imino-3,1-phenylenecarbonylimino(1-methyl-1h-pyrrole-4,2-diyl)carbonylimino]}dinaphthalene-1,5-disulfonate compounds as heparanase inhibitors for the treatment of cancer. In PCT Int Appl WO2018177863.

    Google Scholar 

  47. Giannini, G. S. D., & Oliva, P. (2018). Preparation of symmetrical tris-aryl-amide peptide derivatives and their use as anti-heparanase. In PCT Int Appl WO2018177861.

    Google Scholar 

  48. Giannini, G. B. G., & Di Santo, R. (2018). Preparation of 2-(4-(4-(bromo-methoxybenzamido)benzylamino)phenyl)benzazole derivatives and their use as anti-heparanase. In PCT Int Appl WO2018177860.

    Google Scholar 

  49. Giannini G BG, Di Santo R Preparation of symmetrical 2-aminophenyl-benzazolyl-5-acetate compounds and their use as anti-heparanase. PCT Int Appl WO2018177857 A1 20181004. 2018.

    Google Scholar 

  50. Giannini, G. M. M., & Rivara, S. (2018). Heparanase inhibitory compounds for therapeutic use in the treatment of proliferative disorders. In Patent: PCT Int Appl WO2018177865.

    Google Scholar 

Download references

Acknowledgments

The authors are thankful to Israel Vlodavsky and Ralph Sanderson for the invitation to prepare this chapter and for having enjoyed a very stimulating scientific interaction with them during the whole development process of Roneparstat. Their pivotal research has been and still is inspiring to the whole field. The authors want also to thank Giuseppe Giannini for revising the manuscript and all the pre-clinical and clinical investigators that have been involved in studies with Roneparstat for the important contribution provided, without forgetting the phase I patients and their families, whose consent and participation have been fundamental.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Noseda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Noseda, A., Barbieri, P. (2020). Roneparstat: Development, Preclinical and Clinical Studies. In: Vlodavsky, I., Sanderson, R., Ilan, N. (eds) Heparanase. Advances in Experimental Medicine and Biology, vol 1221. Springer, Cham. https://doi.org/10.1007/978-3-030-34521-1_21

Download citation

Publish with us

Policies and ethics

Navigation