Heparanase: A Paramount Enzyme for Cancer Initiation, Progression, and Metastasis

  • Chapter
  • First Online:
The Extracellular Matrix and the Tumor Microenvironment

Part of the book series: Biology of Extracellular Matrix ((BEM,volume 11))

  • 472 Accesses

Abstract

Consolidated data indicate that tumor bulk is not only made up of a heterogeneous set of neoplastic cells but also of a variety of resident and infiltrating host cells, soluble factors, and components of the extracellular matrix which as a whole is defined as the tumor microenvironment. In this context, the extracellular matrix plays a fundamental role in tumor progression as it acts as a repository for various biomolecules such as growth factors, cytokines, enzymes, and inhibitors which are mainly linked to heparan sulfate proteoglycans (HSPG) and whose release can regulate the response or not of cancer cells. Among the various enzymes involved in the degradation of the ECM, heparanase (HPSE) has been shown to be particularly involved in tumor progression and metastatic invasion. This enzyme, capable of cutting heparan sulfate (HS) chains, is overexpressed in practically all solid tumors, clearly demonstrating that it has pro-invasive and pro-angiogenic characteristics for neoplastic cells.

Furthermore, considering that heparanase is released not only by tumor cells but also by platelets, endothelial cells, and immune cells, we can admit that its enzymatic activity has a strong impact on the tumor microenvironment. Here, we discuss the recent development in the study of heparanase in cancer progression as well as on novel mechanisms by which heparanase regulates the nature of the tumor microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abboud-Jarrous G, Atzmon R, Peretz T, Palermo C, Gadea BB, Joyce JA, Vlodavsky I (2008) Cathepsin L is responsible for processing and activation of proheparanase through multiple cleavages of a linker segment. J Biol Chem 283(26):18167–18176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Admyre C, Johansson SM, Qazi KR, Filén J-J, Lahesmaa R, Norman M, Neve EP, Scheynius A, Gabrielsson S (2007) Exosomes with immune modulatory features are present in human breast milk. J Immunol 179:1969–1978

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJA (2011) Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29:341–345. https://doi.org/10.1038/nbt.1807

    Article  CAS  PubMed  Google Scholar 

  • Andre F, Schartz NE, Movassagh M, Flament C, Pautier P, Morice P, Pomel C, Lhomme C, Escudier B, Le Chevalier T, Tursz T, Amigorena S, Raposo G, Angevin E, Zitvogel L (2002) Malignant effusions and immunogenic tumour-derived exosomes. Lancet 360:295–305

    Article  CAS  PubMed  Google Scholar 

  • Arasu UT, Kärnä R, Härkönen K, Oikari S, Koistinen A, Kröger H, Qu C, Lammi MJ, Rilla K (2017) Human mesenchymal stem cells secrete hyaluronan-coated extracellularvesicles. Matrix Biol 64:54–68. https://doi.org/10.1016/j.matbio.2017.05.001. Epub 2017 May 5

    Article  CAS  PubMed  Google Scholar 

  • Au Yeung CL et al (2016) Exosomal transfer of stroma-derived miR21 confers paclitaxel resistance in ovarian cancer cells through targeting APAF1. Nat Commun 7:11150

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baghban R, Roshangar L, Jahanban-Esfahlan R, Seidi K, Ebrahimi-Kalan A, Jaymand M, Kolahian S, Javaheri T, Zare P (2020) Tumor microenvironment complexity and therapeutic implications at a glance. Cell Commun Signal 18(1):59

    Article  PubMed  PubMed Central  Google Scholar 

  • Baietti MF, Zhang Z, Mortier E, Melchior A, Degeest G, Geeraerts A, Ivarsson Y, Depoortere F, Coomans C, Vermeiren E et al (2012) Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat Cell Biol 14:677–685

    Article  CAS  PubMed  Google Scholar 

  • Bandari SK, Purushothaman A, Ramani VC, Brinkley GJ, Chandrashekar DS, Varambally S, Mobley JA, Zhang Y, Brown EE, Vlodavsky I, Sanderson RD (2018) Chemotherapy induces secretion of exosomes loaded with heparanase that degrades extracellular matrix and impacts tumor and host cell behavior. Matrix Biol 65:104–118. https://doi.org/10.1016/j.matbio.2017.09.001

    Article  CAS  PubMed  Google Scholar 

  • Barash U, Zohar Y, Wildbaum G, Beider K, Nagler A, Karin N, Ilan N, Vlodavsky I (2014) Heparanase enhances myeloma progression via CXCL10 downregulation. Leukemia 28(11):2178–2187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartolini B, Caravà E, Caon I, Parnigoni A, Moretto P, Passi A, Vigetti D, Viola M, Karousou E (2020) Heparan sulfate in the tumor microenvironment. Adv Exp Med Biol 1245:147–161

    Article  CAS  PubMed  Google Scholar 

  • Becker A, Thakur BK, Weiss JM, Kim HS, Peinado H, Lyden D (2016) Extracellular vesicles in cancer: cell-to-cell mediators of metastasis. Cancer Cell 30:836–848. PubMed: 27960084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beckhove P, Helmke BM, Ziouta Y, Bucur M, Dorner W, Mogler C et al (2005) Heparanase expression at the invasion front of human head and neck cancers and correlation with poor prognosis. Clin Cancer Res 11:2899–2906

    Article  CAS  PubMed  Google Scholar 

  • Ben-Zaken O, Shafat I, Gingis-Velitski S, Bangio H, Kelson IK, Alergand T, Amor Y, Maya RB, Vlodavsky I, Ilan N (2008) Low and high affinity receptors mediate cellular uptake of heparanase. Int J Biochem Cell Biol 40(3):530–542

    Article  CAS  PubMed  Google Scholar 

  • Boyango I, Barash U, Naroditsky I, Li JP, Hammond E, Ilan N, Vlodavsky I (2014) Heparanase cooperates with Ras to drive breast and skin tumorigenesis. Cancer Res 74(16):4504–4514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brody I, Ronquist G, Gottfries A (1983) Ultrastructural localization of the prostasome—an organelle in human seminal plasma. Ups J Med Sci 88:63–80

    Article  CAS  PubMed  Google Scholar 

  • Caruana I, Savoldo B, Hoyos V et al (2015) Heparanase promotes tumor infiltration and antitumor activity of CAR-redirected T lymphocytes. Nat Med 21:524–529. https://doi.org/10.1038/nm.3833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casu B, Naggi A, Torri G (2010) Heparin-derived heparan sulfate mimics to modulate heparan sulfate-protein interaction in inflammation and cancer. Matrix Biol 29(6):442–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng CC, Lee YH, Lin SP, Huangfu WC, Liu IH (2014) Cell-autonomous heparanase modulates self-renewal and migration in bone marrow-derived mesenchymal stem cells. J Biomed Sci 21:21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Christianson HC, Svensson KJ, van Kuppevelt TH, Li JP, Belting M (2013) Cancer cell exosomes depend on cell-surface heparin sulfate proteoglycans for their internalization and functional activity. PNAS 110(43):17380–17385. ww.pnas.org/cgi/doi/10.1073/pnas.1304266110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins LE, Troeberg L (2019) Heparan sulfate as a regulator of inflammation and immunity. J Leukoc Biol 105(1):81–92

    Article  CAS  PubMed  Google Scholar 

  • Conigliaro A, Cicchini C (2019) Exosome-mediated signaling in epithelial to mesenchymal transition and tumor progression. J Clin Med 8:26. https://doi.org/10.3390/jcm8010026

    Article  CAS  Google Scholar 

  • Coombe DR, Gandhi NS (2019) Heparanase: a challenging cancer drug target. Front Oncol 9:article 1316. www.frontiersin.org. https://doi.org/10.3389/fonc.2019.01316

  • Cox TR (2021) The matrix in cancer. Nat Rev Cancer 21(4):217–238. https://doi.org/10.1038/s41568-020-00329-7

    Article  CAS  PubMed  Google Scholar 

  • Dehne N, Mora J, Namgaladze D, Weigert A, Brüne B (2017) Cancer cell and macrophage cross-talk in the tumor microenvironment. Curr Opin Pharmacol 35:12–19. https://doi.org/10.1016/j.coph.2017.04.007

    Article  CAS  PubMed  Google Scholar 

  • De Pasquale V, Pavone LM (2020) Heparan sulfate proteoglycan signaling in tumor microenvironment. Int J Mol Sci 21(18):6588

    Article  CAS  PubMed Central  Google Scholar 

  • Di Gregorio J, Robuffo I, Spalletta S, Giambuzzi G, De Iuliis V, Toniato E, Martinotti S, Conti P, Flati V (2020) The epithelial-to-mesenchymal transition as a possible therapeutic target in fibrotic disorders. Front Cell Dev Biol 8:607483

    Article  PubMed  PubMed Central  Google Scholar 

  • Dolo V, D’Ascenzo S, Violini S, Pompucci L, Festuccia C, Ginestra A, Vittorelli ML, Canevari S, Pavan A (1999) Matrix degrading proteinases are shed in membrane vesicles by ovarian cancer cells in vivo and in vitro. Clin Exp Metastasis 17:131–140

    Article  CAS  PubMed  Google Scholar 

  • Dongre A, Weinberg RA (2019) New insights into the mechanisms of epithelial-mesenchymal transition and implication for cancer. Nat Rev Mol Cell Biol 20(2):69–84

    Article  CAS  PubMed  Google Scholar 

  • Edovitsky E, Elkin M, Zcharia E, Peretz T, Vlodavsky I (2004) Heparanase gene silencing, tumor invasiveness, angiogenesis, and metastasis. J Natl Cancer Inst 96(16):1219–1230

    Article  CAS  PubMed  Google Scholar 

  • Elkin M (2020) Role of heparanase in macrophage activation. Adv Exp Med Biol 1221:445–460

    Article  CAS  PubMed  Google Scholar 

  • Elkin M, Ilan N, Ishai-Michaeli R, Friedmann Y, Papo O, Pecker I, Vlodavsky I (2001) Heparanase as mediator of angiogenesis: mode of action. FASEB J 15(9):1661–1663

    Article  CAS  PubMed  Google Scholar 

  • Erdogan B, Ao M, White LM, Means AL, Brewer BM, Yang L, Washington MK, Shi C, Franco OE, Weaver AM, Hayward SW, Li D, Webb J (2017) Cancer-associated fibroblasts promote directional cancer cell migration by aligning fibronectin. Cell Biol 216(11):3799–3816. https://doi.org/10.1083/jcb.201704053. Epub 2017 Oct 11

    Article  CAS  Google Scholar 

  • Fattet L et al (2020) Matrix rigidity controls epithelial-mesenchymal plasticity and tumor metastasis via a mechanoresponsive EPHA2/LYN complex. Dev Cell 54:302–316.e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fears CY, Woods A (2006) The role of syndecans in disease and wound healing. Matrix Biol 25(7):443–456

    Article  CAS  PubMed  Google Scholar 

  • Folkman J, Klagsbrun M, Sasse J, Wadzinski M, Ingber D, Vlodavsky I (1988) A heparin-binding angiogenic protein—basic fibroblast growth factor—is stored within basement membrane. Am J Pathol 130:393–400

    CAS  PubMed  PubMed Central  Google Scholar 

  • Friand V, David G, Zimmermann P (2015) Syntenin and syndecan in the biogenesis of exosomes. Biol Cell 107:331–341. [PubMed: 26032692]

    Article  CAS  PubMed  Google Scholar 

  • Gajewski TF, Schreiber H, Fu YX (2013) Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol 14(10):1014–1022 5

    Article  CAS  Google Scholar 

  • Gialeli C, Theocharis AD, Karamanos NK (2011) Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J 278(1):16–27

    Article  CAS  PubMed  Google Scholar 

  • Giese MA, Hind LE, Huttenlocher A (2019) Neutrophil plasticity in the tumor microenvironment. Blood 133(20):2159–2167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldberg R, Rubinstein AM, Gil N, Hermano E, Li JP, van der Vlag J, Atzmon R, Meirovitz A, Elkin M (2014) Role of heparanase-driven inflammatory cascade in pathogenesis of diabetic nephropathy. Diabetes 63(12):4302–4313

    Article  CAS  PubMed  Google Scholar 

  • Goodall KJ, Poon IK, Phipps S, Hulett MD (2014) Soluble heparan sulfate fragments generated by heparanase trigger the release of pro-inflammatory cytokines through TLR-4. PLoS One 9(10):e109596

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hammond E, Khurana A, Shridhar V, Dredge K (2014) The role of heparanase and sulfatases in the modification of heparan sulfate proteoglycans within the tumor microenvironment and opportunities for novel cancer therapeutics. Front Oncol 4:195

    Article  PubMed  PubMed Central  Google Scholar 

  • Hanahan D, Coussens LM (2012) Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell 21(3):309–322

    Article  CAS  PubMed  Google Scholar 

  • Heusermann W, Hean J, Trojer D, Steib E, von Bueren S, Graff-Meyer A, Genoud C, Martin K, Pizzato N, Voshol J, Morrissey DV, Andaloussi SE, Wood MJ, Meisner-Kober NC (2016) Exosomes surf on filopodia to enter cells at endocytic hot spots, traffic within endosomes, and are targeted to the ER. J Cell Biol 213:173–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higashi N, Irimura T, Nakajima M (2020) Heparanase is involved in leukocyte migration. Adv Exp Med Biol 1221:435–444

    Article  CAS  PubMed  Google Scholar 

  • Hinshaw DC, Shevde LA (2019) The tumor microenvironment innately modulates cancer progression. Cancer Res 79(18):4557–4566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoshino D, Kirkbride KC, Costello K, Clark ES, Sinha S, Grega-Larson N, Tyska MJ, Weaver AM (2013) Exosome secretion is enhanced by invadopodia and drives invasive behavior. Cell Rep 5:1159–1168. [PubMed: 24290760]

    Article  CAS  PubMed  Google Scholar 

  • Ilan N, Elkin M, Vlodavsky I (2006) Regulation, function and clinical significance of heparanase in cancer metastasis and angiogenesis. Int J Biochem Cell Biol 38(12):2018–2039

    Article  CAS  PubMed  Google Scholar 

  • Iozzo RV (2005) Basement membrane proteoglycans: from cellar to ceiling. Nat Rev Mol Cell Biol 6(8):646–656

    Article  CAS  PubMed  Google Scholar 

  • Iozzo RV, Sanderson RD (2011) Proteoglycans in cancer biology, tumour microenvironment and angiogenesis. J Cell Mol Med 15:1013–1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iozzo RV, Schaefer L (2015) Proteoglycan form and function: a comprehensive nomenclature of proteoglycans. Matrix Biol 42:11–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • James R (2016) Edgar Q&A: what are exosomes, exactly? BMC Biol 14:46

    Article  CAS  Google Scholar 

  • Jayatilleke KM, Hulett MD (2020) Heparanase and the hallmarks of cancer. J Transl Med 18(1):453

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C (1987) Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem 262:9412–9420

    Article  CAS  PubMed  Google Scholar 

  • Jung O, Trapp-Stamborski V, Purushothaman A, ** H, Wang H, Sanderson RD, Rapraeger AC (2016) Heparanase-induced shedding of syndecan-1/CD138 in myeloma and endothelial cells activates VEGFR2 and an invasive phenotype: prevention by novel synstatins. Oncogenesis 5:e202. https://doi.org/10.1038/oncsis.2016.5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kalluri R (2009) EMT: when epithelial cells decide to become mesenchymal-like cells. J Clin Invest 119:1417–1419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karamanos NK, Piperigkou Z, Theocharis AD, Watanabe H, Franchi M, Baud S, Brézillon S, Götte M, Passi A, Vigetti D, Ricard-Blum S, Sanderson RD, Neill T, Iozzo RV (2018) Proteoglycan chemical diversity drives multifunctional cell regulation and therapeutics. Chem Rev 118(18):9152–9232

    Article  CAS  PubMed  Google Scholar 

  • Karamanos NK, Theocharis AD, Piperigkou Z, Manou D, Passi A, Skandalis SS, Vynios DH, Orian-Rousseau V, Ricard-Blum S, Schmelzer CEH, Duca L, Durbeej M, Afratis NA, Troeberg L, Franchi M, Masola V, Onisto M (2021) A guide to the composition and functions of the extracellular matrix. FEBS J. https://doi.org/10.1111/febs.15776. Epub ahead of print. PMID: 33605520

  • Khamaysi I, Singh P, Nasser S, Awad H, Chowers Y, Sabo E, Hammond E, Gralnek I, Minkov I, Noseda A, Ilan N, Vlodavsky I, Abassi Z (2017) The role of heparanase in the pathogenesis of acute pancreatitis: a potential therapeutic target. Sci Rep 7(1):715

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim S-H, Turnbull J, Guimond S (2011) Extracellular matrix and cell signalling: the dynamic cooperation of integrin, proteoglycan and growth factor receptor. J Endocrinol 209:139–151

    Article  CAS  PubMed  Google Scholar 

  • Kordelas L, Rebmann V, Ludwig A-K, Radtke S, Ruesing J, Doeppner TR, Epple M, Horn PA, Beelen DW, Giebel B (2014) MSC-derived exosomes: a novel tool to treat therapy-refractory graft-versus-host disease. Leukemia 28:970–973

    Article  CAS  PubMed  Google Scholar 

  • Labani-Motlagh A, Ashja-Mahdavi M, Loskog A (2020) The tumor microenvironment: a milieu hindering and obstructing antitumor immune responses. Front Immunol 11:940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larrue C, Saland E, Boutzen H, Vergez F, David M, Joffre C, Hospital MA, Tamburini J, Delabesse E, Manenti S, Sarry JE, Recher C (2016) Proteasome inhibitors induce FLT3-ITD degradation through autophagy in AML cells. Blood 127:882–892. [PubMed: 26286850]

    Article  CAS  PubMed  Google Scholar 

  • Lerner I, Hermano E, Zcharia E, Rodkin D, Bulvik R, Doviner V, Rubinstein AM, Ishai-Michaeli R, Atzmon R, Sherman Y, Meirovitz A, Peretz T, Vlodavsky I, Elkin M (2011) Heparanase powers a chronic inflammatory circuit that promotes colitis-associated tumorigenesis in mice. J Clin Invest 121(5):1709–1721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levy JMM, Towers CG, Thorburn A (2017) Targeting autophagy in cancer. Nat Rev Cancer 17(9):528–542

    Article  CAS  PubMed  Google Scholar 

  • Levy-Adam F, Miao HQ, Heinrikson RL, Vlodavsky I, Ilan N (2003) Heterodimer formation is essential for heparanase enzymatic activity. Biochem Biophys Res Commun 308(4):885–891

    Article  CAS  PubMed  Google Scholar 

  • Li J, Pan Q, Rowan PD, Trotter TN, Peker D, Regal KM, Javed A, Suva LJ, Yang Y (2016) Heparanase promotes myeloma progression by inducing mesenchymal features and motility of myeloma cells. Oncotarget 7(10):11299–11309

    Article  PubMed  PubMed Central  Google Scholar 

  • Lim HC, Multhaupt HA, Couchman JR (2015) Cell surface proteoglycans control adhesion and invasion of breast carcinoma cells. Mol Cancer 14:15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madhusoodanan J (2019) Matrix mimics cell shape studies. Nature 566:563–565

    Article  CAS  PubMed  Google Scholar 

  • Manon-Jensen T, Itoh Y, Couchman JR (2010) Proteoglycans in health and disease: the multiple roles of syndecan shedding. FEBS J 277(19):3876–3889

    Article  CAS  PubMed  Google Scholar 

  • Marzagalli M, Ebelt ND, Manuel ER (2019) Unraveling the crosstalk between melanoma and immune cells in the tumor microenvironment. Semin Cancer Biol 59:236–250. https://doi.org/10.1016/j.semcancer.2019.08.002

    Article  CAS  PubMed  Google Scholar 

  • Masola V, Maran C, Tassone E, Zin A, Rosolen A, Onisto M (2009) Heparanase activity in alveolar and embryonal rhabdomyosarcoma: implications for tumor invasion. BMC Cancer 9:304

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Masola V, Gambaro G, Tibaldi E, Brunati AM, Gastaldello A, D’Angelo A, Onisto M, Lupo A (2012) Heparanase and syndecan-1 interplay orchestrates fibroblast growth factor-2-induced epithelial-mesenchymal transition in renal tubular cells. J Biol Chem 287(2):1478–1488

    Article  CAS  PubMed  Google Scholar 

  • Masola V, Zaza G, Secchi MF, Gambaro G, Lupo A, Onisto M (2014) Heparanase is a key player in renal fibrosis by regulating TGF-β expression and activity. Biochim Biophys Acta 1843(9):2122–2128

    Article  CAS  PubMed  Google Scholar 

  • Masola V, Zaza G, Gambaro G, Onisto M, Bellin G, Vischini G, Khamaysi I, Hassan A, Hamoud S, Nativ O, Heyman SN, Lupo A, Vlodavsky I, Abassi Z (2016) Heparanase: a potential new factor involved in the renal epithelial mesenchymal transition (EMT) induced by ischemia/reperfusion (I/R) injury. PLoS One. 11(7):e016074

    Article  CAS  Google Scholar 

  • Masola V, Zaza G, Gambaro G, Franchi M, Onisto M (2020) Role of heparanase in tumor progression: molecular aspects and therapeutic options. Semin Cancer Biol 62:86–98

    Article  CAS  PubMed  Google Scholar 

  • Massena S, Christoffersson G, Hjertström E, Zcharia E, Vlodavsky I, Ausmees N, Rolny C, Li JP, Phillipson M (2010) A chemotactic gradient sequestered on endothelial heparan sulfate induces directional intraluminal crawling of neutrophils. Blood 116(11):1924–1931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayes K, Elsayed Z, Alhazmi A, Waters M, Alkhatib SG, Roberts M, Song C, Peterson K, Chan V, Ailaney N, Malapati P, Blevins T, Lisnić B, Dumur CI, Landry JW (2017) BPTF inhibits NK cell activity and the abundance of natural cytotoxicity receptor co-ligands. Oncotarget 8(38):64344–64357

    Article  PubMed  PubMed Central  Google Scholar 

  • McKenzie E et al (2000) Cloning and expression profiling of Hpa2, a novel mammalian heparanase family member. Biochem Biophys Res Commun 276(3):1170–1177

    Article  CAS  PubMed  Google Scholar 

  • McMahon BJ, Kwaan HC (2015) Components of the plasminogen-plasmin system as biologic markers for cancer. Adv Exp Med Biol 867:145–156

    Article  CAS  PubMed  Google Scholar 

  • Menzel K, Hausmann M, Obermeier F, Schreiter K, Dunger N, Bataille F et al (2006) Cathepsins B, L and D in inflammatory bowel disease macrophages and potential therapeutic effects of cathepsin inhibition in vivo. Clin Exp Immunol 146(1):169–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mustonen AM, Nieminen P, Joukainen A, Jaroma A, Kääriäinen T, Kröger H, Lázaro-Ibáñez E, Siljander PR, Kärjä V, Härkönen K, Koistinen A, Rilla K (2016) First in vivo detection and characterization of hyaluronan-coated extracellular vesicles in human synovial fluid. J Orthop Res 34:1960–1968

    Article  CAS  PubMed  Google Scholar 

  • Mustonen AM, Capra J, Rilla K, Lehenkari P, Oikari S, Kääriäinen T, Joukainen A, Kröger H, Paakkonen T, Matilainen J, Nieminen P (2021) Characterization of hyaluronan-coated extracellular vesicles in synovial fluid of patients with osteoarthritis and rheumatoid arthritis. BMC Musculoskelet Disord 22:Article number 247

    Google Scholar 

  • Nathan C, Ding A (2010) Nonresolving inflammation. Cell 140(6):871–882

    Article  CAS  PubMed  Google Scholar 

  • Noseda A, Barbieri P (2020) Roneparstat: development, preclinical and clinical studies. Adv Exp Med Biol 1221:523–538

    Article  CAS  PubMed  Google Scholar 

  • Ogawa Y, Kanai-Azuma M, Akimoto Y, Kawakami H, Yanoshita R (2008) Exosome-like vesicles with dipeptidyl peptidase IV in human saliva. Biol Pharm Bull 31:1059–1062

    Article  CAS  PubMed  Google Scholar 

  • Pang MF, Georgoudaki AM, Lambut L, Johansson J, Tabor V, Hagikura K, ** Y, Jansson M, Alexander JS, Nelson CM, Jakobsson L, Betsholtz C, Sund M, Karlsson MC, Fuxe J (2016) TGF-β1-induced EMT promotes targeted migration of breast cancer cells through the lymphatic system by the activation of CCR7/CCL21-mediated chemotaxis. Oncogene 35(6):748–760

    Article  CAS  PubMed  Google Scholar 

  • Peinado H, Lavotshkin S, Lyden D (2011) The secreted factors responsible for pre-metastatic niche formation: old sayings and new thoughts. Semin Cancer Biol 21:139–146. [PubMed: 21251983]

    Article  CAS  PubMed  Google Scholar 

  • Peinado H, Zhang H, Matei IR, Costa-Silva B, Hoshino A, Rodrigues G, Psaila B, Kaplan RN, Bromberg JF, Kang Y et al (2017) Pre-metastatic niches: organ-specific homes for metastases. Nat Rev Cancer 17:302–317

    Article  CAS  PubMed  Google Scholar 

  • Piperigkou Z, Mohr B, Karamanos N, Götte M (2016) Shed proteoglycans in tumor stroma. Cell Tissue Res 365(3):643–655

    Article  CAS  PubMed  Google Scholar 

  • Pisitkun T, Shen RF, Knepper MA (2004) Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci U S A 101:13368–13373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poon IK, Goodall KJ, Phipps S, Chow JD, Pagler EB, Andrews DM, Conlan CL, Ryan GF, White JA, Wong MK, Horan C, Matthaei KI, Smyth MJ, Hulett MD (2014) Mice deficient in heparanase exhibit impaired dendritic cell migration and reduced airway inflammation. Eur J Immunol 44(4):1016–1030

    Article  CAS  PubMed  Google Scholar 

  • Properzi F, Logozzi M, Fais S (2013) Exosomes: the future of biomarkers in medicine. Biomark Med 7:769–778. https://doi.org/10.2217/bmm.13.63

    Article  CAS  PubMed  Google Scholar 

  • Purushothaman A, Sanderson RD (2020) Heparanase: a dynamic promoter of myeloma progression. Adv Exp Med Biol 1221:331–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Putz EM, Mayfosh AJ, Kos K, Barkauskas DS, Nakamura K, Town L, Goodall KJ, Yee DY, Poon IK, Baschuk N, Souza-Fonseca-Guimaraes F, Hulett MD, Smyth MJ (2017) NK cell heparanase controls tumor invasion and immune surveillance. J Clin Invest 127(7):2777–2788

    Article  PubMed  PubMed Central  Google Scholar 

  • Quail D, Joyce J (2013) Microenvironmental regulation of tumor progression and metastasis. Nat Med 19:1423–1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramani VC, Purushothaman A, Stewart MD, Thompson CA, Vlodavsky I, Au JL, Sanderson RD (2013) The heparanase/syndecan-1 axis in cancer: mechanisms and therapies. FEBS J 280(10):2294–2306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200:373–383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reiland J, Sanderson RD, Waguespack M, Barker SA, Long R, Carson DD, Marchetti D (2004) Heparanase degrades syndecan-1 and perlecan heparan sulfate: functional implications for tumor cell invasion. J Biol Chem 279(9):8047–8055

    Article  CAS  PubMed  Google Scholar 

  • Rilla K, Pasonen-Seppanen S, Deen AJ, Koistinen VV, Wojciechowski S, Oikari S et al (2013) HA production enhances shedding of plasma membrane-derived microvesicles. Exp Cell Res 319:2006–2018

    Article  CAS  PubMed  Google Scholar 

  • Rilla K, Siiskonen H, Tammi M, Tammi R (2014) Hyaluronan-coated extracellular vesicles—a novel link between hyaluronan and cancer. Adv Cancer Res 123:121–148. https://doi.org/10.1016/B978-0-12-800092-2.00005-8

    Article  PubMed  Google Scholar 

  • Ritchie JP, Ramani VC, Ren Y, Naggi A, Torri G, Casu B et al (2011) SST0001, a chemically modified heparin, inhibits myeloma growth and angiogenesis via disruption of the heparanase/syndecan-1 axis. Clin Cancer Res 17:1382–1393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigues-Junior DM, Pelarin MFA, Nader HB, Vettore AL, Pinhal MAS (2021) MicroRNA-1252-5p associated with extracellular vesicles enhances bortezomib sensitivity in multiple myeloma cells by targeting heparanase. OncoTargets Ther 14

    Google Scholar 

  • Roucourt B, Meeussen S, Bao J, Zimmermann P, David G (2015) Heparanase activates the syndecan-syntenin-ALIX exosome pathway. Cell Res 25:412–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruan J, Trotter TN, Nan L, Luo R, Javed A, Sanderson RD, Suva LJ, Yang Y (2013) Heparanase inhibits osteoblastogenesis and shifts bone marrow progenitor cell fate in myeloma bone disease. Bone 57(1):10–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salem KZ, Moschetta M, Sacco A, Imberti L, Rossi G, Ghobrial IM, Manier S, Roccaro AM (2016) Exosomes in tumor angiogenesis. Methods Mol Biol 1464:25–34

    Article  CAS  PubMed  Google Scholar 

  • Sanderson RD, Elkin M, Rapraeger AC, Ilan N, Vlodavsky I (2017) Heparanase regulation of cancer, autophagy and inflammation: new mechanisms and targets for therapy. FEBS J 284(1):42–55. https://doi.org/10.1111/febs.13932

    Article  CAS  PubMed  Google Scholar 

  • Sanderson RD, Bandari SK, Vlodavsky I (2019) Proteases and glycosidases on the surface of exosomes: newly discovered mechanisms for extracellular remodeling. Matrix Biol 75–76:160–169

    Article  PubMed  CAS  Google Scholar 

  • Schmidt EP, Yang Y, Janssen WJ, Gandjeva A, Perez MJ, Barthel L, Zemans RL, Bowman JC, Koyanagi DE, Yunt ZX, Smith LP, Cheng SS, Overdier KH, Thompson KR, Geraci MW, Douglas IS, Pearse DB, Tuder RM (2012) The pulmonary endothelial glycocalyx regulates neutrophil adhesion and lung injury during experimental sepsis. Nat Med 18:1217–1223

    Article  CAS  PubMed  Google Scholar 

  • Shteingauz A, Boyango I, Naroditsky I, Hammond E, Gruber M, Doweck I, Ilan N, Vlodavsky I (2015) Heparanase enhances tumor growth and chemoresistance by promoting autophagy. Cancer Res 75:3946–3957. [PubMed: 26249176]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shuman Moss LA, Jensen-Taubman S, Stetler-Stevenson WG (2012) Matrix metalloproteinases: changing roles in tumor progression and metastasis. Am J Pathol 181(6):1895–1899

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Simizu S, Ishida K, Wierzba MK, Osada H (2004) Secretion of heparanase protein is regulated by glycosylation in human tumor cell lines. J Biol Chem 279(4):2697–2703

    Article  CAS  PubMed  Google Scholar 

  • Singel KL, Segal BH (2016) Neutrophils in the tumor microenvironment: trying to heal the wound that cannot heal. Immunol Rev 273(1):329–343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spiegel A, Zcharia E, Vagima Y, Itkin T, Kalinkovich A, Dar A, Kollet O, Netzer N, Golan K, Shafat I, Ilan N, Nagler A, Vlodavsky I, Lapidot T (2008) Heparanase regulates retention and proliferation of primitive Sca-1+/c-kit+/Lin- cells via modulation of the bone marrow microenvironment. Blood 111(10):4934–4943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spyrou A, Kundu S, Haseeb L, Yu D, Olofsson T, Dredge K, Hammond E, Barash U, Vlodavsky I, Forsberg-Nilsson K (2017) Inhibition of heparanase in pediatric brain tumor cells attenuates their proliferation, invasive capacity, and in vivo tumor growth. Mol Cancer Ther 16:1705–1716

    Article  CAS  PubMed  Google Scholar 

  • Stetler-Stevenson WG, Yu AE (2001) Proteases in invasion: matrix metalloproteinases. Semin Cancer Biol 11(2):143–152

    Article  CAS  PubMed  Google Scholar 

  • Strieter RM, Burdick MD, Mestas J, Gomperts B, Keane MP, Belperio JA (2006) Cancer CXC chemokine networks and tumour angiogenesis. Eur J Cancer 42(6):768–778

    Article  CAS  PubMed  Google Scholar 

  • Szebeni GJ, Vizler C, Kitajka K, Puskas LG (2017) Inflammation and cancer: extra- and intracellular determinants of tumor-associated macrophages as tumor promoters. Mediators Inflamm 2017:9294018

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tang W, Nakamura Y, Tsujimoto M, Sato M, Wang X, Kurozumi K et al (2002) Heparanase: a key enzyme in invasion and metastasis of gastric carcinoma. Mod Pathol 15:593–598

    Article  PubMed  Google Scholar 

  • Theodoro TR, Matos LL, Cavalheiro RP, Justo GZ, Nader HB, Pinhal MAS (2019) Crosstalk between tumor cells and lymphocytes modulates heparanase expression. J Transl Med 17:103. https://doi.org/10.1186/s12967-019-1853-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Thompson CA, Purushothaman A, Ramani VC, Vlodavsky I, Sanderson RD (2013) Heparanase regulates secretion, composition, and function of tumor cell-derived exosomes. J Biol Chem 288:10093–10099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turturici G, Tinnirello R, Sconzo G, Geraci F (2014) Extracellular membrane vesicles as a mechanism of cell-to-cell communication: advantages and disadvantages. Am J Physiol Cell Physiol 306:C621–C633

    Article  CAS  PubMed  Google Scholar 

  • Vella LJ, Greenwood DL, Cappai R, Scheerlinck JP, Hill AF (2008) Enrichment of prion protein in exosomes derived from ovine cerebral spinal fluid. Vet Immunol Immunopathol 124:385–393

    Article  CAS  PubMed  Google Scholar 

  • Vlodavsky I, Miao HQ, Medalion B, Danagher P, Ron D (1996) Involvement of heparan sulfate and related molecules in sequestration and growth promoting activity of fibroblast growth factor. Cancer Metastasis Rev 15:177–186

    Article  CAS  PubMed  Google Scholar 

  • Vlodavsky I, Friedmann Y, Elkin M, Aingorn H, Atzmon R, Ishai-Michaeli R, Bitan M, Pappo O, Peretz T, Michal I, Spector L, Pecker I (1999) Mammalian heparanase: gene cloning, expression and function in tumor progression and metastasis. Nat Med 5(7):793–802

    Article  CAS  PubMed  Google Scholar 

  • Vlodavsky I, Beckhove P, Lerner I, Pisano C, Meirovitz A, Ilan N, Elkin M (2012) Significance of heparanase in cancer and inflammation. Cancer Microenviron 5(2):115–132

    Article  CAS  PubMed  Google Scholar 

  • Vlodavsky I, Singh P, Boyango I, Gutter-Kapon L, Elkin M, Sanderson RD, Ilan N (2016) Heparanase: from basic research to therapeutic applications in cancer and inflammation. Drug Resist Updat 29:54–75. https://doi.org/10.1016/j.drup.2016.10.001

    Article  PubMed  PubMed Central  Google Scholar 

  • Vlodavsky I, Ilan N, Sanderson RD (2020) Forty years of basic and translational heparanase research. In: Heparanase. Chapter first online: 10 April 2020 part of the Advances in experimental medicine and biology book series (AEMB, vol 1221). Springer, Cham, pp 3–59

    Google Scholar 

  • Waterman M, Ben-Izhak O, Eliakim R, Groisman G, Vlodavsky I, Ilan N (2007) Heparanase upregulation by colonic epithelium in inflammatory bowel disease. Mod Pathol 20(1):8–14

    Article  CAS  PubMed  Google Scholar 

  • Weissmann M, Arvatz G, Horowitz N, Feld S, Naroditsky I, Zhang Y et al (2016) Heparanase-neutralizing antibodies attenuate lymphoma tumor growth and metastasis. Proc Natl Acad Sci U S A 113:704–709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Witek RP, Yang L, Liu R, Jung Y, Omenetti A, Syn WK, Choi SS, Cheong Y, Fearing CM, Agboola KM, Chen W, Diehl AM (2009) Liver cell-derived microparticles activate hedgehog signaling and alter gene expression in hepatic endothelial cells. Gastroenterology 136:320–330

    Article  CAS  PubMed  Google Scholar 

  • Wong SY, Hynes RO (2006) Lymphatic or hematogenous dissemination: how does a metastatic tumor cell decide? Cell Cycle 5(8):812–817. https://doi.org/10.4161/cc.5.8.2646. Epub 2006 Apr 17

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Viola CM, Brzozowski AM, Davies GJ (2015) Structural characterization of human heparanase reveals insights into substrate recognition. Nat Struct Mol Biol 22(12):1016–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • **e M, Li J-P (2019) Heparan sulfate proteoglycan—a common receptor for diverse cytokines. Cell Signal 54:115–121

    Article  CAS  PubMed  Google Scholar 

  • Yang N, Friedl A (2016) Syndecan-1-Induced ECM Fiber alignment requires integrin αvβ3 and Syndecan-1 ectodomain and heparan sulfate chains. PLoS One 11(2):e0150132

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zahavi T, Salmon-Divon M, Salgado R, Elkin M, Hermano E, Rubinstein AM, Francis PA, Di Leo A, Viale G, de Azambuja E, Ameye L, Sotiriou C, Salmon A, Kravchenko-Balasha N, Sonnenblick A (2021) Heparanase: a potential marker of worse prognosis in estrogen receptor-positive breast cancer. NPJ Breast Cancer 7(1):67. https://doi.org/10.1038/s41523-021-00277-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zcharia E, Metzger S, Chajek-Shaul T, Aingorn H, Elkin M, Friedmann Y, Weinstein T, Li JP, Lindahl U, Vlodavsky I (2004) Transgenic expression of mammalian heparanase uncovers physiological functions of heparan sulfate in tissue morphogenesis, vascularization, and feeding behavior. FASEB J 18(2):252–263

    Article  CAS  PubMed  Google Scholar 

  • Zhang HG, Grizzle WE (2014) Exosomes: a novel pathway of local and distant intercellular communication that facilitates the growth and metastasis of neoplastic lesions. Am J Pathol 184:28–41. [PubMed: 24269592]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maurizio Onisto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Masola, V., Greco, N., Gambaro, G., Franchi, M., Onisto, M. (2022). Heparanase: A Paramount Enzyme for Cancer Initiation, Progression, and Metastasis. In: Kovalszky, I., Franchi, M., Alaniz, L.D. (eds) The Extracellular Matrix and the Tumor Microenvironment. Biology of Extracellular Matrix, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-030-99708-3_8

Download citation

Publish with us

Policies and ethics

Navigation