Electrochemical Properties of Nanocarbon

  • Chapter
  • First Online:
NanoCarbon: A Wonder Material for Energy Applications

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 135 Accesses

Abstract

Carbon materials are essential for a wide variety of electrochemical utilisations due to the fact that their electron-transfer and charge-storage capabilities may be tuned. In order to rationally build various high-performance electrochemical devices, it is essential to engage in careful structural manipulation of carbon in order to control its chemical, electrical, and crystalline properties. This study focuses on three different forms of carbon nanomaterials that have recently gained interest in the field of electrochemistry. These are carbon nanofibres, carbon nanotubes (CNTs), and graphene. The focus of this chapter is on the ways in which the structural differences among these carbon nanomaterials influence the electrochemical activities they exhibit. In this Chapter, after providing a brief summary of the recent developments in the fields of Nano carbon and nanofibres, Nano carbon and composites for energy applications, and the future perspectives of Nano carbon electrochemistry, this study will move on to discuss these topics in more depth. Focus is placed on delineating the ways in which the electrical structure of carbon affects the electrochemical activity of the element. Notice some of the modification approaches applicable to over one utilization area through the examination of various electrochemical devices; as a result, structural manipulation approaches utilized in one class of electrochemical devices can be extended to other types of electrochemical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Spain)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 181.89
Price includes VAT (Spain)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 228.79
Price includes VAT (Spain)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nayak, A.K., Tiwari, S.K. (eds.): Nanocarbon Allotropes Beyond Graphene. IOP Publishing (2023). https://doi.org/10.1088/978-0-7503-5177-5.

  2. Talebian, S., Rodrigues, T., Das Neves, J., Sarmento, B., Langer, R., Conde, J.: Facts and figures on materials science and nanotechnology progress and investment. ACS Nano 15, 15940–15952 (2021). https://doi.org/10.1021/acsnano.1c03992.

  3. Muralee Gopi, C.V.V., Ravi, S., Rao, S.S., Eswar Reddy, A., Kim, H.J.: Carbon nanotube/metal-sulfide composite flexible electrodes for high-performance quantum dot-sensitized solar cells and supercapacitors. Sci. Rep. 7, 1–12 (2017). https://doi.org/10.1038/srep46519.

  4. Liang, Y.N., Oh, W.-D., Li, Y., Hu, X.: Nanocarbons as platforms for develo** novel catalytic composites: overview and prospects. Appl. Catal. A Gen. 562, 94–105 (2018). https://doi.org/10.1016/j.apcata.2018.05.021

    Article  CAS  Google Scholar 

  5. Pandey, R., Tiwari, S.K.: Recent advances in nanocarbons: status and prospect. In: Nanocarbon Allotropes Beyond Graphene, pp. 1-1–1-57. IOP Publishing (2023). https://doi.org/10.1088/978-0-7503-5177-5ch1

  6. Astié, V., Millon, C., Decams, J.-M., Bartasyte, A.: Direct liquid injection chemical vapor deposition. In: Chemical Vapor Deposition for Nanotechnology. IntechOpen (2019). https://doi.org/10.5772/intechopen.80244

  7. Gautam, R., Sahoo, A., Pant, K.K., Mohanty, K.: Graphene nanoparticles and their derivatives for oil spill treatment. In: Materials Horizons: From Nature to Nanomaterials, pp. 229–249. Springer Nature (2023). https://doi.org/10.1007/978-981-99-4382-1_11

  8. Mao, X., Rutledge, G.C., Hatton, T.A.: Nanocarbon-based electrochemical systems for sensing, electrocatalysis, and energy storage. Nano Today 9, 405–432 (2014). https://doi.org/10.1016/j.nantod.2014.06.011

    Article  CAS  Google Scholar 

  9. Kim, S.K., Mao, A., Sen, S., Kim, S.: Fast Na-ion conduction in a chalcogenide glass-ceramic in the ternary system Na2Se–Ga2Se3–GeSe2. Chem. Mater. 26, 5695–5699 (2014). https://doi.org/10.1021/cm502542p

    Article  CAS  Google Scholar 

  10. Palmeri, M.J., Putz, K.W., Ramanathan, T., Brinson, L.C.: Multi-scale reinforcement of CFRPs using carbon nanofibers. Compos. Sci. Technol. 71, 79–86 (2011). https://doi.org/10.1016/j.compscitech.2010.10.006

    Article  CAS  Google Scholar 

  11. Yilmaz, A.C., Ozen, M.S., Sancak, E., Erdem, R., Erdem, O., Soin, N.: Analyses of the mechanical, electrical and electromagnetic shielding properties of thermoplastic composites doped with conductive nanofillers. J. Compos. Mater. 52, 1423–1432 (2018). https://doi.org/10.1177/0021998317752503

    Article  CAS  Google Scholar 

  12. Luo, J., Fang, C.-C., Wu, N.-L.: High polarity poly(vinylidene difluoride) thin coating for dendrite-free and high-performance lithium metal anodes. Adv. Energy Mater. 8, 1701482 (2018). https://doi.org/10.1002/aenm.201701482

    Article  CAS  Google Scholar 

  13. Jayavardhan, M.L., Bharath Kumar, B.R., Doddamani, M., Singh, A.K., Zeltmann, S.E., Gupta, N.: Development of glass microballoon/HDPE syntactic foams by compression molding. Compos. Part B Eng. 130, 119–131 (2017). https://doi.org/10.1016/j.compositesb.2017.07.037

  14. Bharath, H.S., Bonthu, D., Prabhakar, P., Doddamani, M.: Three-dimensional printed lightweight composite foams. ACS Omega 5, 22536–22550 (2020). https://doi.org/10.1021/acsomega.0c03174

  15. Gama, N., Ferreira, A., Barros-Timmons, A.: 3D printed cork/polyurethane composite foams. Mater. Des. 179, 107905 (2019). https://doi.org/10.1016/j.matdes.2019.107905

    Article  CAS  Google Scholar 

  16. Chatkunakasem, P., Luangjuntawong, P., Pongwisuthiruchte, A., Aumnate, C., Potiyaraj, P.: Tuning of HDPE properties for 3D printing. Key Eng. Mater. 773, 67–71 (2018). https://doi.org/10.4028/www.scientific.net/KEM.773.67

    Article  Google Scholar 

  17. Wang, S., De Clerck, K., Cardon, L.: Polylactic acid poly-3-hydroxybutyrate applications in extrusion based additive manufacturing. In: International Conference on Polymers and Moulds Innovations, pp. 1–5 (2018)

    Google Scholar 

  18. Idowu, A., Boesl, B., Agarwal, A.: 3D graphene foam-reinforced polymer composites—a review. Carbon N. Y. 135, 52–71 (2018). https://doi.org/10.1016/j.carbon.2018.04.024

    Article  CAS  Google Scholar 

  19. Khare, P., Singh, A., Verma, S., Bhati, A., Sonker, A.K., Tripathi, K.M., Sonkar, S.K.: Sunlight-induced selective photocatalytic degradation of methylene blue in bacterial culture by pollutant soot derived nontoxic graphene nanosheets. ACS Sustain. Chem. Eng. 6, 579–589 (2018). https://doi.org/10.1021/acssuschemeng.7b02929

    Article  CAS  Google Scholar 

  20. Gao, X., Han, S., Zhang, R., Liu, G., Wu, J.: Progress in electrospun composite nanofibers: composition, performance and applications for tissue engineering. J. Mater. Chem. B. 7, 7075–7089 (2019). https://doi.org/10.1039/C9TB01730E

    Article  CAS  PubMed  Google Scholar 

  21. Wang, Y., Ding, Y., Guo, X., Yu, G.: Conductive polymers for stretchable supercapacitors. Nano Res. 12, 1978–1987 (2019). https://doi.org/10.1007/s12274-019-2296-9

    Article  CAS  Google Scholar 

  22. Kausar, A., Ahmad, I., Maaza, M., Eisa, M.H.: State-of-the-art of polymer/fullerene C60 nanocomposite membranes for water treatment: conceptions, structural diversity and topographies. Membranes (Basel) 13, 27 (2022). https://doi.org/10.3390/membranes13010027

    Article  CAS  PubMed  Google Scholar 

  23. Wang, T., Chen, Z., Gong, W., Xu, F., Song, X., He, X., Fan, M.: Electrospun carbon nanofibers and their applications in several areas. ACS Omega 8, 22316–22330 (2023). https://doi.org/10.1021/acsomega.3c01114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang, H., Wang, H.S., Ma, C., Chen, L., Jiang, C., Chen, C., **e, X., Li, A.-P., Wang, X.: Graphene nanoribbons for quantum electronics. Nat. Rev. Phys. 3, 791–802 (2021). https://doi.org/10.1038/s42254-021-00370-x

    Article  CAS  Google Scholar 

  25. Kim, W.Y., Kim, K.S.: Prediction of very large values of magnetoresistance in a graphene nanoribbon device. Nat. Nanotechnol. 3, 408–412 (2008). https://doi.org/10.1038/nnano.2008.163

    Article  CAS  PubMed  Google Scholar 

  26. Chen, Z., Narita, A., Müllen, K.: Graphene nanoribbons: on-surface synthesis and integration into electronic devices. Adv. Mater. 32, 1–26 (2020). https://doi.org/10.1002/adma.202001893

    Article  CAS  Google Scholar 

  27. Llinas, J.P., Fairbrother, A., Borin Barin, G., Shi, W., Lee, K., Wu, S., Yong Choi, B., Braganza, R., Lear, J., Kau, N., Choi, W., Chen, C., Pedramrazi, Z., Dumslaff, T., Narita, A., Feng, X., Müllen, K., Fischer, F., Zettl, A., Ruffieux, P., Yablonovitch, E., Crommie, M., Fasel, R., Bokor, J.: Short-channel field-effect transistors with 9-atom and 13-atom wide graphene nanoribbons. Nat. Commun. 8, 633 (2017). https://doi.org/10.1038/s41467-017-00734-x

  28. Koch, M., Ample, F., Joachim, C., Grill, L.: Voltage-dependent conductance of a single graphene nanoribbon. Nat. Nanotechnol. 7, 713–717 (2012). https://doi.org/10.1038/nnano.2012.169

    Article  CAS  PubMed  Google Scholar 

  29. Li, Y., Liu, Q., Li, W., Meng, H., Lu, Y., Li, C.: Synthesis and supercapacitor application of alkynyl carbon materials derived from CaC2 and polyhalogenated hydrocarbons by interfacial mechanochemical reactions. ACS Appl. Mater. Interfaces 9, 3895–3901 (2017). https://doi.org/10.1021/acsami.6b13610

    Article  CAS  PubMed  Google Scholar 

  30. Cui, W., Zhang, M., Wang, N., He, J., Yu, J., Long, Y., Yan, S., Huang, C.: High-performance field-effect transistor based on novel conjugated P-o-Fluoro-p-alkoxyphenyl-substituted polymers by graphdiyne do**. J. Phys. Chem. C 121, 23300–23306 (2017). https://doi.org/10.1021/acs.jpcc.7b07364

    Article  CAS  Google Scholar 

  31. Tiwari, S.K., Sahoo, S., Wang, N., Huczko, A.: Graphene research and their outputs: status and prospect. J. Sci. Adv. Mater. Devices 5, 10–29 (2020). https://doi.org/10.1016/j.jsamd.2020.01.006

    Article  Google Scholar 

  32. Zhu, M.J., Kretinin, A.V., Thompson, M.D., Bandurin, D.A., Hu, S., Yu, G.L., Birkbeck, J., Mishchenko, A., Vera-Marun, I.J., Watanabe, K., Taniguchi, T., Polini, M., Prance, J.R., Novoselov, K.S., Geim, A.K., Ben Shalom, M.: Edge currents shunt the insulating bulk in gapped graphene. Nat. Commun. 8, 14552 (2017). https://doi.org/10.1038/ncomms14552

  33. Li, J., **e, Z., **ong, Y., Li, Z., Huang, Q., Zhang, S., Zhou, J., Liu, R., Gao, X., Chen, C., Tong, L., Zhang, J., Liu, Z.: Architecture of β-graphdiyne-containing thin film using modified Glaser-Hay coupling reaction for enhanced photocatalytic property of TiO2. Adv. Mater. 29, 1700421 (2017). https://doi.org/10.1002/adma.201700421

    Article  CAS  Google Scholar 

  34. Li, J., Gao, X., Jiang, X., Li, X.-B., Liu, Z., Zhang, J., Tung, C.-H., Wu, L.-Z.: Graphdiyne: a promising catalyst-support to stabilize cobalt nanoparticles for oxygen evolution. ACS Catal. 7, 5209–5213 (2017). https://doi.org/10.1021/acscatal.7b01781

    Article  CAS  Google Scholar 

  35. Chernozatonskii, L.A., Demin, V.A., Kvashnin, D.G.: Fully hydrogenated and fluorinated bigraphenes–diamanes: theoretical and experimental studies. C 7, 17 (2021). https://doi.org/10.3390/c7010017

  36. Li, H., Li, Q., Wen, P., Williams, T.B., Adhikari, S., Dun, C., Lu, C., Itanze, D., Jiang, L., Carroll, D.L., Donati, G.L., Lundin, P.M., Qiu, Y., Geyer, S.M.: Retracted: colloidal cobalt phosphide nanocrystals as trifunctional electrocatalysts for overall water splitting powered by a zinc–air battery. Adv. Mater. 30 (2018). https://doi.org/10.1002/adma.201705796

  37. Gao, X., Ren, H., Zhou, J., Du, R., Yin, C., Liu, R., Peng, H., Tong, L., Liu, Z., Zhang, J.: Synthesis of hierarchical graphdiyne-based architecture for efficient solar steam generation. Chem. Mater. 29, 5777–5781 (2017). https://doi.org/10.1021/acs.chemmater.7b01838

    Article  CAS  Google Scholar 

  38. Chen, L., Hernandez, Y., Feng, X., Müllen, K.: From nanographene and graphene nanoribbons to graphene sheets: chemical synthesis. Angew. Chem. Int. Ed. 51, 7640–7654 (2012). https://doi.org/10.1002/anie.201201084

    Article  CAS  Google Scholar 

  39. Hou, C., Wang, J., Du, W., Wang, J., Du, Y., Liu, C., Zhang, J., Hou, H., Dang, F., Zhao, L., Guo, Z.: One-pot synthesized molybdenum dioxide–molybdenum carbide heterostructures coupled with 3D holey carbon nanosheets for highly efficient and ultrastable cycling lithium-ion storage. J. Mater. Chem. A 7, 13460–13472 (2019). https://doi.org/10.1039/C9TA03551F

    Article  CAS  Google Scholar 

  40. Liu, X., An, Y., Feng, J., Zhu, X., Li, F.: Preparation and properties of carbon nanofiber modified emulsified asphalt based on ultrasonication and surfactant and the impact of SBR and NH4Cl. Front. Mater. 7, 1–9 (2020). https://doi.org/10.3389/fmats.2020.00209

    Article  Google Scholar 

  41. Pandit, B., Pande, S.A., Sankapal, B.R.: Facile SILAR processed Bi2S3:PbS solid solution on MWCNTs for high-performance electrochemical supercapacitor. Chinese J. Chem. 37, 1279–1286 (2019). https://doi.org/10.1002/cjoc.201900222

    Article  CAS  Google Scholar 

  42. Muralee Gopi, C.V.V., Ravi, S., Rao, S.S., Eswar Reddy, A., Kim, H.-J.: Carbon nanotube/metal-sulfide composite flexible electrodes for high-performance quantum dot-sensitized solar cells and supercapacitors. Sci. Rep. 7, 46519 (2017). https://doi.org/10.1038/srep46519

  43. Pande, S.A., Pandit, B., Sankapal, B.R.: Facile chemical route for multiwalled carbon nanotube/mercury sulfide nanocomposite: high performance supercapacitive electrode. J. Colloid Interface Sci. 514, 740–749 (2018). https://doi.org/10.1016/j.jcis.2017.12.068

    Article  CAS  PubMed  Google Scholar 

  44. Voigt, D., Primavera, G., Uphoff, H., Rethmeier, J.A., Schepp, L., Bredol, M.: Ternary chalcogenide-based quantum dots and carbon nanotubes: establishing a toolbox for controlled formation of nanocomposites. J. Phys. Chem. C 126, 9076–9090 (2022). https://doi.org/10.1021/acs.jpcc.2c01142

    Article  CAS  Google Scholar 

  45. Chong, T.V., Loh, S.K., Liow, C.H., Abd-Shukor, R.: Effects of carbon nanotubes addition on the superconducting properties and critical current density of NdBa2Cu3O7−δ. Appl. Phys. A 128, 740 (2022). https://doi.org/10.1007/s00339-022-05877-3

    Article  CAS  Google Scholar 

  46. Banerjee, R., Gebrekrstos, A., Orasugh, J.T., Ray, S.S.: Nanocarbon-containing polymer composite foams: a review of systems for applications in electromagnetic interference shielding, energy storage, and piezoresistive sensors. Ind. Eng. Chem. Res. 62, 6807–6842 (2023). https://doi.org/10.1021/acs.iecr.3c00089

    Article  CAS  Google Scholar 

  47. Radwan, A., **, H., He, D., Mu, S.: Design engineering, synthesis protocols, and energy applications of MOF-derived electrocatalysts. Nano-Micro Lett. 13, 132 (2021). https://doi.org/10.1007/s40820-021-00656-w

    Article  CAS  Google Scholar 

  48. Zhong, M., Zhang, M., Li, X.: Carbon nanomaterials and their composites for supercapacitors. Carbon Energy 4, 950–985 (2022). https://doi.org/10.1002/cey2.219

    Article  CAS  Google Scholar 

  49. Wang, Q., Zhou, Y., Zhao, X., Chen, K., Bingni, G., Yang, T., Zhang, H., Yang, W., Chen, J.: Tailoring carbon nanomaterials via a molecular scissor. Nano Today 36, 101033 (2021). https://doi.org/10.1016/j.nantod.2020.101033

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shilpa Pande .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pande, S., Pandit, B., Shaikh, S.F., Ubaidullah, M. (2024). Electrochemical Properties of Nanocarbon. In: Gupta, R.K. (eds) NanoCarbon: A Wonder Material for Energy Applications. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-99-9935-4_3

Download citation

Publish with us

Policies and ethics

Navigation