Application of Methano Bacteria for Production of Biogas

  • Chapter
  • First Online:
Emerging Trends and Techniques in Biofuel Production from Agricultural Waste

Part of the book series: Clean Energy Production Technologies ((CEPT))

  • 127 Accesses

Abstract

A competitive, practical, and typically sustainable energy source is biogas. Since 2010, there has been a considerable growth in the capacity of biogas-based electricity; with 65 GW in 2010 to 120 GW in 2019, there has been a 90% increase in the ability of biogas-based energy generation. Biogas is a crucial component of the development of environmentally friendly energy because it may be utilised as a raw material to produce hydrogen, fuel for vehicles, and electricity directly in fuel cells. Refined bioenergy or biomethane can be put in containers or injected into gas supply mains for use as renewable natural gas. It is feasible to use biogas directly for power generation, cooking, and lighting. As they develop and function, microbes produce a variety of gaseous by products. Particular bacteria that grow anaerobically on cellulose materials also produce substantial volumes of methane, along with other gases like carbon dioxide and hydrogen sulphide. Methanobacterium is an example of a type of bacteria known as a methanogen, which produces a variety of gases. The aforementioned bacteria are typically found in the anaerobic sludge after sewage treatment. Additionally, cattle rumens contain methano bacteria. The rumen is where cellulose-rich food is kept. These rumen bacteria help break down cellulose and are essential for the nutrition of cattle. These bacteria are common in gobar, which is another name for cow or cattle dung. Biogas also referred to as gobar gas, can be produced from dung. We discussed numerous bacterial species and how they might be used to make biogas, different factors involved in biogas production in this essay.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 127.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 159.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbasi T, Abbasi SA, Tauseef SM (2012) Biogas energy. Springer Science, New York

    Book  Google Scholar 

  • Adarme OFH, Baêta BEL, Lima DRS, Gurgel LVA, de Aquino SF (2017) Methane and hydrogen production from anaerobic digestion of soluble fraction obtained by sugarcane bagasse ozonation. Ind Crop Prod 109:288–299

    Article  CAS  Google Scholar 

  • Agler MT et al (2011) Waste to bioproduct conversion with undefined mixed cultures: the carboxylate platform. Trends Biotechnol 29(2):70–78

    Article  CAS  PubMed  Google Scholar 

  • Ahring B, Ibrahim AA, Mladenovska Z (2001) Effect of temperature increase from 55 to 65°C on performance and microbial population dynamics of an anaerobic reactor treating cattle manure. Water Resour 35:2446–2452

    CAS  Google Scholar 

  • Barton LL, Hamilton WA (2010) Sulphate-reducing bacteria: environmental and engineered systems. Cambridge University Press, Cambridge

    Google Scholar 

  • Baserga U (1998) Landwirtschaftliche Co-Vergärungs-biogasanlagen, Biogasaus organischen Reststoffen und Energiegras, FATBerichte no. 512. Eidgenössische Forschungsanstalt für Agrarwirtschaft und Landtechnik (FAT), Tänikon

    Google Scholar 

  • Batstone DJ, Keller J, Angelidaki I, Kalyuzhnyi SV, Pavlostathis SG, Rozzi A, Sanders WTM, Siegrist H, Vavilin VA (2002) The IWA anaerobic digestion model no 1 (ADM 1). Water Sci Technol 45(10):65–73

    Article  CAS  PubMed  Google Scholar 

  • Braun R (2007) Anaerobic digestion: a multi-faceted process for energy, environmental management and rural development. In: Ranalli P (ed) Improvement of crop plants for industrial end uses. Springer, Dordrecht, pp 335–415

    Chapter  Google Scholar 

  • California Environmental Protection Agency (n.d.) Recommendations to the California Public Utilities Commission Regarding Health Protective Standards for the Injection of Biomethane into the Common Carrier Pipeline

    Google Scholar 

  • Chen C, Zheng D, Liu GJ, Deng LW, Long Y, Fan ZH (2015) Continuous dry fermentation of swine manure for biogas production. Waste Manag 38:436–442

    Article  CAS  PubMed  Google Scholar 

  • Choorit W, Wisarnwan P (2007) Effect of temperature on the anaerobic digestion of palm oil mill effluent. Electron J Biotechnol 10:376–385

    Article  CAS  Google Scholar 

  • Chozhavendhan S, Gnanavel G, Karthiga DG, Subbaiya R, Praveen Kumar R, Bharathiraja B (2020) Enhancement of feedstock composition and fuel properties for biogas production. In: Praveen Kumar R, Bharathiraja B, Kataki R, Moholkar V (eds) Biomass valorization to bioenergy, Energy, environment, and sustainability. Springer, Singapore, pp 113–131

    Chapter  Google Scholar 

  • Eckenfelder WW Jr (2009) Industrial water-pollution control. McGraw-Hill Higher Education, Boston

    Google Scholar 

  • Fehrenbach H, Giegrich J, Reinhardt G, Sayer U, Gretz M, Lanje K et al (2008) Kriterien einer nachhaltigen Bioenergienutzung im globalen Maßstab. UBA-Forschungsbericht 206:41–112

    Google Scholar 

  • Garg S, Clomburg JM, Gonzalez R (2018) A modular approach for high-flux lactic acid production from methane in an industrial medium using engineered methylomicrobium buryatense 5GB1. J Ind Microbiol Biotechnol 45:379–391

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Lahoz C, Fernandez GB, Garcia HF, Rodriguez MJM, Vereda AC (2007) Biomethanization of mixtures of fruits and vegetables solid wastes and sludge from a municipal waste water treatment plant. J Environ Sci Health A Tox Hazard Subst Environ Eng 42(4):481–487

    Article  CAS  PubMed  Google Scholar 

  • Henard CA, Smith H, Dowe N, Kalyuzhnaya MG, Pienkos PT, Guarnieri MT (2016) Bioconversion of methane to lactate by an obligate methanotrophic bacterium. Sci Rep 6:1–9

    Article  Google Scholar 

  • Henard CA, Smith HK, Guarnieri MT (2017) Phosphoketolase overexpression increases biomass and lipid yield from methane in an obligate methanotrophic biocatalyst. Metab Eng 41:152–158

    Article  CAS  PubMed  Google Scholar 

  • Hijazi O, Munro S, Zerhusen B, Effenberger M (2016) Review of life cycle assessment for biogas production in Europe. Renew Sustain Energy Rev 54:1291–1300

    Article  CAS  Google Scholar 

  • Igoni AH, Ayotamuno MJ, Eze CL, Ogaji SOT, Probert SD (2008) Designs of anaerobic digesters for producing biogas from municipal solid-waste. Appl Energy 85:430–438

    Article  CAS  Google Scholar 

  • Jain SR, Mattiasson B (1998) Acclimatization of methanogenic consortia for low pH biomethanation process. Biotechnol Lett 20:771–775

    Article  CAS  Google Scholar 

  • Kadam R, Panwar NL (2017) Recent advancement in biogas enrichment and its applications. Renew Sust Energ Rev 73:892–903

    Article  CAS  Google Scholar 

  • Kahaynian M, Lindenauer K, Hardy S, Tchobanoglous G (1991) Two-stage process combines anaerobic and aerobic methods. Biocycle 32:48

    Google Scholar 

  • Kalyuzhnaya MG, Puri AW, Lidstrom ME (2015) Metabolic engineering in methanotrophic bacteria. Metab Eng 29:142–152

    Article  CAS  PubMed  Google Scholar 

  • Kigozi R, Muzenda E, Aboyade AO (2014) Biogas technology: current trends, opportunities and challenges. In: Proceedings of 6th international conference on Green Technology, Renewable Energy and Environmental Engineering (ICGTREEE’2014), 24–28 Nov 2014, Cape Town, South Africa, pp 311–317

    Google Scholar 

  • Krich K, Augenstein D, Batmale JP, Benemann J, Rutledge B, Salour D (2005) Biomethane from dairy waste: a sourcebook for the production and use of renewable natural gas in California. USDA Rural Development, Washington, DC

    Google Scholar 

  • Kumar S (2012) Biogas. Rijeka, Intech. https://www.intechopen.com/books/biogas

    Book  Google Scholar 

  • Kumar A, Miglani P, Gupta RK, Bhattacharya TK (2006) Impact of Ni (II), Zn(II) and Cd(II) on biogassification of potato waste. J Environ Biol 27(1):61–66

    CAS  PubMed  Google Scholar 

  • Kushkevych I (2016) Dissimilatory sulfate reduction in the intestinal sulfate-reducing bacteria. Studia Biologica 10(1):197–228

    Article  Google Scholar 

  • Maciejewska A, Veringa H, Sanders J, Peteves SD (2006) Co-firing of biomass with coal: constraints and role of biomass pretreatment. DG JRC Institute for Energy Report, EUR 22461 EN

    Google Scholar 

  • Meisam Tabatabaei HG (2018) Biogas: fundamentals, process and operation, Biofuel and biorefinery technologies, vol 6. Springer, Cham

    Book  Google Scholar 

  • Meyer A, Ehimen E, Holm-Nielsen J (2018) Future European biogas: animal manure, straw and grass potentials for a sustainable European biogas production. Biomass Bioenergy 111:154–164

    Article  Google Scholar 

  • Milbrandt A (2013) A biogas potential in the United States (fact sheet), energy analysis. National Renewable Energy Laboratory, Golden

    Google Scholar 

  • Mshandete A, Bjornsson L, Kivaisi AK, Rubindamayugi MST, Mattiasson B (2006) Effect of particle size on biogas yield from sisal fibre waste. Renew Energy 31:2385–2392

    Article  CAS  Google Scholar 

  • Mudhoo A (2012) Anaerobic digestion: pretreatments of substrates. In: Biogas production: pretreatment methods in anaerobic digestion. Wiley, Hoboken, pp 199–212

    Chapter  Google Scholar 

  • NAS (1977) Methane generation from human, animal and agricultural waste. National Academy of Sciences, Washington, DC

    Google Scholar 

  • Nielsen JBH, Seadi TA, Popiel PO (2009) The future of anaerobic digestion and biogas utilization. Bioresour Technol 100(22):5478–5484

    Article  Google Scholar 

  • Parker N, Williams R, Dominguez-Faus R, Scheitrum D (2017) Renewable natural gas in California: an assessment of the technical and economic potential. Energy Policy 111:235–245

    Article  Google Scholar 

  • Pieja AJ, Morse MC, Cal AJ (2017) Sciencedirect methane to bioproducts: the future of the bioeconomy? Curr Opin Chem Biol 41:123–131

    Article  CAS  PubMed  Google Scholar 

  • Poeschl M, Ward S, Owende P (2012a) Environmental impacts of biogas deployment—part II: life cycle assessment of multiple production and utilization pathways. J Cleaner Product 24:184–201

    Article  CAS  Google Scholar 

  • Poeschl M, Ward S, Owende P (2012b) Environmental impacts of biogas deployment—part I: life cycle inventory for evaluation of production process emissions to air. J Cleaner Product 24:168–183

    Article  CAS  Google Scholar 

  • Rajendran K, Aslanzade S, Taherzadeh J (2012) Household biogas digesters: a review. Energies 5(8):2911–2942

    Article  CAS  Google Scholar 

  • Rapport J, Zhang R, Jenkins BM, Williams RB (2008) Current anaerobic digestion technologies used for treatment of municipal organic solid waste. Contractor report to the California Integrated Waste Management Board. Department of Biological and Agricultural Engineering, University of California, Davis

    Google Scholar 

  • Saratale RG, Kumar G, Banu R, **a A, Periyasamy S, Saratale GD (2018) A critical review on anaerobic digestion of microalgae and macroalgae and co-digestion of biomass for enhanced methane generation. Bioresour Technol 262:319–332

    Article  Google Scholar 

  • Sharma SK, Mishra IM, Sharma MP, Saini JS (1988) Effect of particle size on biogas generation from biomass residues. Biomass 17:251–263

    Article  CAS  Google Scholar 

  • Steadman P (1975) Energy, environment and building: a report to the Academy of Natural Sciences of Philadelphia. Cambridge University Press, Cambridge

    Google Scholar 

  • Strong PJ, **e S, Clarke WP (2015) Methane as a resource: can the methanotrophs add value? Environ Sci Technol 49:4001–4018

    Article  CAS  PubMed  Google Scholar 

  • Strong PJ, Kalyuzhnaya M, Silverman J, Clarke WP (2016) A methanotroph-based biorefinery: potential scenarios for generating multiple products from a single fermentation. Bioresour Technol 215:314–323

    Article  CAS  PubMed  Google Scholar 

  • Treichel H, Fongaro G (2019) Improving biogas production: technological challenges, alternative sources, future developments, Biofuel and biorefinery. Springer, Cham

    Book  Google Scholar 

  • Tufaner F, Avşar Y (2016) Effects of co-substrate on biogas production from cattle manure: a review. Int J Environ Sci Technol 13:2303–2312

    Article  CAS  Google Scholar 

  • Turco M, Ausiello A, Micoli L (2016) Treatment of biogas for feeding high temperature fuel cells: removal of harmful compounds by adsorption processes. Springer, Cham

    Book  Google Scholar 

  • Van Stephan F, Mathot M, Decruyenaere V, Loriers A, Delcour A, Planchon V et al (2016) Consequential environmental life cycle assessment of a farm-scale biogas plant. J Environ Manag 175:20–32

    Article  Google Scholar 

  • Venkata Mohan S, Lalit Babu V, Sarma PN (2008) Effect of various pretreatment methods on anaerobic mixed microflora to enhance biohydrogen production utilizing dairy wastewater as substrate. Bioresour Technol 99:59–67

    Article  CAS  PubMed  Google Scholar 

  • Viessman W Jr, Hammer MJ (1993) Water supply and pollution control. Harper Collins College Publishers, New York

    Google Scholar 

  • Ward AJ, Hobbs PJ, Holliman PJ, Jones DL (2008) Optimisation of the anaerobic digestion of agricultural resources. Bioresour Technol 99(17):7928–7940

    Article  CAS  PubMed  Google Scholar 

  • Weiland P (2010) Biogas production: current state and perspectives. Appl Microbiol Biotechnol 85:849–860

    Article  CAS  PubMed  Google Scholar 

  • Wellinger A, Murphy J, Baxter D (2013) The biogas handbook: science, production and applications. Woodhead Publishing, Oxford

    Google Scholar 

  • Yong Z, Dong Y, Zhang X, Tan T (2015) Anaerobic codigestion of food waste and straw for biogas production. Renew Energy 78:527–530

    Article  CAS  Google Scholar 

  • Zabed HM, Akter S, Yun J, Zhang G, Zhang Y, Qi X (2020) Biogas from microalgae: technologies, challenges and opportunities. Renew Sust Energ Rev 117:109503

    Article  CAS  Google Scholar 

  • Ziemiński K, Frąc M (2012) Methane fermentation process as anaerobic digestion of biomass: transformations, stages and microorganisms. Afr J Biotech 11(18):4127–4139

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, S., Dwivedi, K., Gupta, S., Shukla, N. (2024). Application of Methano Bacteria for Production of Biogas. In: Singh, P. (eds) Emerging Trends and Techniques in Biofuel Production from Agricultural Waste. Clean Energy Production Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-99-8244-8_3

Download citation

Publish with us

Policies and ethics

Navigation