Enhancement of Feedstock Composition and Fuel Properties for Biogas Production

  • Chapter
  • First Online:
Biomass Valorization to Bioenergy

Abstract

Biogas production has materialized as an auspicious technology for the conversion of renewable energy sources such as agricultural, animal, industrial and municipal wastes into a beneficial form of energy. Biogas production is a very attractive and changeling task because of its slower degradation and requires higher retention time via anaerobic digestion (AD) process. Additionally, there is a chance of toxic intermediates in some of these feedstock may result in the decline of the biogas production process. This Biogas technology can be integrated with various strategies to mitigate the environmental pollution. high availability and low cost of these feedstocks promote new strategies for the minimization of waste. Considerable efforts in chic research are undertaken in order to upgrade the composition of the feedstock, efficiency in terms of fuel property and flexibility of biogas production to enhance the economic viability of biogas plants. Along with the methane, biogas consists of various compounds like CO2, H2S, water vapor, nitrogen, hydrogen and oxygen which tend to pull down the calorific value when compared with natural gas. Absorption, adsorption, cryogenic method and membrane-based gas permeation are several technologies employed to increase the fuel property of biogas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 106.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 106.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alexis N (2016) Mini review: update on bioaugmentation in anaerobic processes for biogas production. Anaerobe 46:3–12

    Google Scholar 

  • Appels L, Joost L, Degreve J, Helsen L, Lievens B, Willems K, Impe VJ, Dewil R (2011) Anaerobic digestion in global bio-energy production: potential and research changes. Renew Sustain Energy Rev 15:4295–4301

    Google Scholar 

  • Augelletti R, Conti M, Annesini MC (2017) Pressure swing adsorption for biogas upgrading. A new process configuration for the separation of biomethane and carbon dioxide. J Clean Prod 140:1390–1398

    Article  CAS  Google Scholar 

  • Baba Y, Tada C, Fukuda Y, Nakai Y (2013) Improvement of methane production from waste paper by pretreatment with rumen fluid. Bioresour Technol 128:94–99

    Article  CAS  Google Scholar 

  • Bahaa TS, Manal GM, Eman AG, Asker MMS, Ibrahim GS (2011) Enzymatic hydrolysis of rice straw and corn stalks for monosugars production. J Genet Eng Biotechnol 9:59–63

    Article  CAS  Google Scholar 

  • Baker R, Lokhandwala K (2008) Natural gas processing with membranes: an overview. Ind Eng Chem Res 47:2109–2121

    Article  CAS  Google Scholar 

  • Bassani I, Kougias P, Treu L (2015) Biogas upgrading via hydrogenotrophic methanogenesis in two-stage continuous stirred tank reactors at mesophilic and thermophilic conditions. Environ Sci Technol 49:12585–12593

    Article  CAS  Google Scholar 

  • Bauer F, Persson T, Hulteberg C, Tamm D (2013) Biogas upgrading—technology overview, comparison and perspectives for the future. Biofuels, Bioprod Biorefin 7:499–511

    Article  CAS  Google Scholar 

  • Bernal O, Llabres P, Cecchi F, Mata-Alvarez J (1992) A comparative study of the thermophilic biomethanization of putrescible organic wastes. Waste waters 1:197–206

    Google Scholar 

  • Bertero M, de la Puente G, Sedran U (2012) Fuels from bio-oils: bio-oil production from different residual sources, characterization and thermal conditioning. Fuel 95:263–271

    Article  CAS  Google Scholar 

  • Bharathiraja B, Sudharsana T, Jayamuthunagai J, Praveenkumar R, Chozhavendhan S, Iyyappan S (2018) Biogas production—a review on composition, fuel properties, feed stock and principles of anaerobic digestion. Renew Sustain Energy Rev 90:570–582

    Article  CAS  Google Scholar 

  • Bharathiraja B, Sudharsanaa T, Bhargavi A, Jayamuthunagai J, Praveenkumar R (2016) Biohydrogen and biogas—an overview of feedstock and enhancement process. Fuel 185:810–828

    Article  CAS  Google Scholar 

  • Campanaro S, Treu L (2016) Metagenomic analysis and functional characterization of the biogas microbiome using high throughput shotgun sequencing and a novel binning strategy. Biotechnol Biofuels 9:1–26

    Article  CAS  Google Scholar 

  • Carlsson M, Lagerkvist A, Morgan-Sagastume F (2012) The effects of substrate pretreatment on anaerobic digestion systems: a review. Waste Manag 32:1634–1650

    Article  CAS  Google Scholar 

  • Carrere H, Sialve B, Bernet N (2009) Improving pig manure conversion into biogas by thermal and thermo-chemical pretreatments. Bioresour Technol 100:3690–3694

    Article  CAS  Google Scholar 

  • Chaudhary PP, Brablcova L, Buriankova I, Rulik M (2013) Molecular diversity and tools for ciphering the methanogen community structure and diversity in freshwater sediments. Appl Microbiol Biotechnol 97:7553–7562

    Article  CAS  Google Scholar 

  • Chen C, Zheng D, Liu GJ, Deng LW, Long Y, Fan ZH (2015) Continuous dry fermentation of swine manure for biogas production. Waste Manag 38:436–442

    Article  CAS  Google Scholar 

  • Cheng C, Wenshan G, Huu N, Duu-Jong L, Kuo-Lun T, Pengkang J, Jie W, Yun W (2016) Challenges in biogas production from anaerobic membrane bioreactors. Renew Energy 98:120–134

    Article  CAS  Google Scholar 

  • Collet P, Flottes E, Favre A, Raynal L, Pierre H, Capela S, Peregrina C (2017) Techno-economic and life cycle assessment of methane production via biogas upgrading and power to gas technology. Appl Energy 192:282–295

    Article  CAS  Google Scholar 

  • Cozma P, Ghinea C, Mămăligă I, Wukovits W, Friedl A, Gavrilescu M (2013) Environmental impact assessment of high pressure water scrubbing biogas upgradation technology. Clean 41:917–927

    CAS  Google Scholar 

  • Del BA, Converti A, Palazzi E, Del Borghi M (1999) Hydrolysis and thermophilic anaerobic digestion of sewage sludge and organic fraction of municipal solid waste. Bioprocess Eng 20:553–560

    Article  Google Scholar 

  • Deng L, Hägg MB (2010) Techno-economic evaluation of biogas upgrading process using CO2 facilitated transport membrane. Int J Greenh Gas Control 4:638–646

    Article  CAS  Google Scholar 

  • Desika P, Subha SK, Varshini TM, Thangavel M, Gopalakrishnan K, Eldon RR, Arivalagan P (2018) Pretreatment technologies for industrial effluents: critical review on bioenergy production and environmental concerns. J Environ Manage 218:165–180

    Article  CAS  Google Scholar 

  • Eze JI, Agbo KE (2010) Maximizing the potentials of biogas through upgrading. Am J Sci Ind Res 1:604–649

    Google Scholar 

  • Facchin V, Cavinato C, Fatone F, Pavan P, Cecchi F, Bolzonella D (2013) Effect of trace element supplementation on the mesophilic anaerobic digestion of food waste in batch trials: the influence of inoculums origin. Biochem Eng J 70:71–77

    Article  CAS  Google Scholar 

  • Ferrer I, Ponsa S, Vazquez F, Font X (2008) Increasing biogas production by thermal (70 °C) sludge pre-treatment prior to thermophilic anaerobic digestion. Biochem Eng J 42:186–192

    Article  CAS  Google Scholar 

  • Fu**o J, Morita A, Matsuoka Y, Sawayama S (2005) Vision for utilization of livestock residue as bioenergy resource in Japan. Biomass Bioenergy 29:367–374

    Article  Google Scholar 

  • Ganzoury MA, Allam NK (2015) Impact of nanotechnology on biogas production: a mini-review. Renew Sustain Energy Rev 50:1392–1404

    Article  CAS  Google Scholar 

  • Gomez-Lahoz C, Fernandez GB, Garcia HF, Rodriguez MJM, Vereda AC (2007) Biomethanization of mixtures of fruits and vegetables solid wastes and sludge from a municipal waste water treatment plant. J Environ Sci Health 42:481–487

    Article  CAS  Google Scholar 

  • Hassan M, Ding W, Shi Z, Zhao S (2016) Methane enhancement through co-digestion of chicken manure and thermo-oxidative cleaved wheat straw with waste activated sludge: a C/N optimization case. Biores Technol 211:534–554

    Article  CAS  Google Scholar 

  • He Y, Bagley DM, Leung KT, Liss SN, Liao BQ (2012) Recent advances in membrane technologies for biorefining and bioenergy production. Biotechnol Adv 30:817–858

    Article  CAS  Google Scholar 

  • Imran UK, Othman MHD, Hashim H, Matsuura T, Ismail AF, DashtArzhandi MR, Azelee IW (2017) Biogas as a renewable energy fuel—a review of biogas upgrading, utilization and storage. Energy Convers Manag 150:277–294

    Article  CAS  Google Scholar 

  • Iqbal HMN, Ahmed I, Zia MA, Irfan M (2011) Purification and characterization of the kinetic parameters of cellulase produced from wheat straw by Trichodermaviride under SSF and its detergent compatibility. Adv Biosci Biotechnol 2:149–156

    Article  CAS  Google Scholar 

  • Iqbal HMN, Kyazze G, Keshavarz T (2013) Advances in valorization of lignocellulosic materials by bio-technology: an overview. Bio Resources Technol 8:3157–3176

    Google Scholar 

  • Jaafarzadeh N, Ghanbari F, Ahmadi M, Omidinasab M (2017) Efficient integrated processes for pulp and paper wastewater treatment and phytotoxicity reduction: permanganate, electro-fenton and Co3O4/UV/peroxymonosulfate. Chem Eng J 308:142–150

    Article  CAS  Google Scholar 

  • Jain S, Jain S, Wolf IT, Lee J, Tong YW (2015) A comprehensive review on operating parameters and different pretreatment methodologies for anaerobic digestion of municipal solid waste. Renew Sustain Energy Rev 52:142–154

    Article  Google Scholar 

  • Jiang J, Zhang Y, Li K, Wang Q, Gong C, Li M (2013) Volatile fatty acids production from food waste: effects of pH, temperature, and organic loading rate. Biores Technol 143:525–530

    Article  CAS  Google Scholar 

  • Kadam R, Panwar NL (2017) Recent advancement in biogas enrichment and its applications. Renew Sustain Energy Rev 73:892–903

    Article  CAS  Google Scholar 

  • Kapdi SS, Vijay VK, Rajesh SK, Prasad R (2005) Biogas scrubbing, compression and storage: perspective and prospectus in Indian context. Renew Energ 30:1195–1202

    Article  CAS  Google Scholar 

  • Kapoor R, Subbarao PMV, Vijay VK, Shah G, Sahota S, Singh D, Verma M (2017) Factors affecting methane loss from a water scrubbing based biogas upgrading system. Appl Energ 208:1379–1388

    Article  CAS  Google Scholar 

  • Kinnarinen T, Golmaei M, Jernstrcom E, Hcakkinen A (2016) Separation, treatment and utilization of inorganic residues of chemical pulp mills. J Clean Prod 133:953–964

    Article  CAS  Google Scholar 

  • Klemm D, Schmauder HP, Heinze T (2005) Cellulose Biopolym 6:277–312

    Google Scholar 

  • Koçar GK, Civas N (2013) An overview of biofuels from energy crops. Renew Sustain Energy Rev 28:900–916

    Article  CAS  Google Scholar 

  • Kong L, Hasanbeigi A, Price L (2016) Assessment of emerging energy-efficiency technologies for the pulp and paper industry: a technical review. J Clean Prod 122:5–28

    Article  CAS  Google Scholar 

  • Kothari R, Pandeya K, Kumar S, Tyagi VV, Tyagi SK (2014) Different aspects of dry anaerobic digestion for bio-energy: an overview. Renew Sustain Energy Rev 39:174–195

    Article  CAS  Google Scholar 

  • Kumar A, Miglani P, Gupta RK, Bhattacharya TK (2006) Impact of Ni (II), Zn (II) and Cd (II) on bio gasification of potato waste. J Environ Biol 27:61–66

    CAS  Google Scholar 

  • Ladisch R, Mosier NS, Kim Y, **menes E, Hogsett D (2010) Converting cellulose to biofuels. SBE Spec Suppl Biofuels 106:56–63

    CAS  Google Scholar 

  • Laureano-Perez L, Teymouri F, Alizadeh H, Dale BE (2005) Understanding factors that limit enzymatic hydrolysis of biomass. Appl Biochem Biotechnol 2005:1081–1099

    Article  Google Scholar 

  • Li D, Liu S, Mi L, Li Z, Yuan Y, Yan Z, Liu X (2015) Effects of feedstock ratio and organic loading rate on the anaerobic mesophilic co-digestion of rice straw and cow manure. Bioresour Technol 189:319–326

    Article  CAS  Google Scholar 

  • Mao C, Feng Y, Wang X, Ren G (2015) Review on research achievements of biogas from an aerobic digestion. Renew Sustain Energy Rev 45:540–555

    Article  CAS  Google Scholar 

  • Merlin Christy P, Gopinath LR, Divya D (2014) A review on anaerobic decomposition and enhancement of biogas production through enzymes and microorganisms. Renew Sustain Energy Rev 34:167–173

    Article  CAS  Google Scholar 

  • Mouneimne AH, Carrere H, Bernet N, Delgenes JP (2003) Effect of saponification on the anaerobic digestion of solid fatty residues. Bioresour Technol 90:89–94

    Article  CAS  Google Scholar 

  • Mshandete A, Bjornsson L, Kivaisi AK, Rubindamayugi MST, Matthiasson B (2006) Effect of particle size on biogas yield from sisal fibre waste. Renew Energy 31:2385–2392

    Article  CAS  Google Scholar 

  • Muller JA, Winter A, Strunkmann G (2004) Investigation and assessment of sludge pre-treatment processes. Water Sci Technol 49:97–104

    Article  CAS  Google Scholar 

  • Neshat SA, Maedeh M, Najafpour GD, Pooya L (2017) Anaerobic co-digestion of animal manures and lignocellulosic residues as a potent approach for sustainable biogas production. Renew Sustain Energy Rev 79:308–332

    Article  CAS  Google Scholar 

  • Nkemka VN, Murto M (2013) Biogas production from wheat straw in batch and UASB reactors: the roles of pretreatment and seaweed hydrolysate as a co-substrate. Bioresour Technol 128:164–172

    Article  CAS  Google Scholar 

  • Patterson T, Esteves S, Dinsdale R, Guwy A (2011) An evaluation of the policy and techno-economic factors affecting the potential for biogas upgradation for transport fuel use in the UK. Energy Policy 39:1806–1816

    Article  Google Scholar 

  • Pham TN, Nam WJ, Jeon YJ, Yoon HH (2012) Volatile fatty acids production from marine macroalgae by anaerobic fermentation. Bioresour Technol 124:500–503

    Article  CAS  Google Scholar 

  • Richards BK, Herndon FG, Jewell WJ, Cummings RJ, White TE (1994) In situ methane enrichment in methanogenic energy crop digesters. Biomass Bioenergy 6:275–282

    Article  CAS  Google Scholar 

  • Risberg K, Sun L, Levén L, Horn SJ, Schnürer A (2013) Biogas production from wheat straw and manure–impact of pretreatment and process operating parameters. Bioresour Technol 149:232–237

    Article  CAS  Google Scholar 

  • Rongwong W, Boributh S, Assabumrungrat S, Laosiripojana N, Jiraratananon R (2012) Simultaneous absorption of CO2 and H2S from biogas by capillary membrane contactor. J Memb Sci 393:38–47

    Article  CAS  Google Scholar 

  • Ruben TF, Pierre B, Remy B (2016) Ensiling for biogas production: critical parameters. A Rev Biomass Bioenergy 94:94–104

    Article  CAS  Google Scholar 

  • Ryckebosch E, Drouillon M, Vervaeren H (2011) Techniques for transformation of biogas to biomethane. Biomass Bioenergy 35:1633–1645

    Article  CAS  Google Scholar 

  • Saha M, Eskicioglu C, Marin J (2011) Microwave, ultrasonic and chemomechanical pretreatments for enhancing methane potential of pulp mill waste water treatment sludge. Bioresour Technol 102:7815–7826

    Article  CAS  Google Scholar 

  • Sanchez E, Borja R, Weiland P, Travieso L, Martín A (2001) Effect of substrate concentration and temperature on the anaerobic digestion of piggery waste in a tropical climate. Process Biochem 37:483–489

    Article  Google Scholar 

  • Schattauer A, Abdoun E, Weiland P, Plol M, Heiermann M (2011) Abundance of trace elements in demonstration biogas plants. Biosyst Eng 108:57–65

    Article  Google Scholar 

  • Scholz M, Melin T, Wessling M (2013) Transforming biogas into biomethane using membrane technology. Renew Sustain Energy Rev 17:199–212

    Article  CAS  Google Scholar 

  • Shivali S, Goldy S, Pooja G, Rimika K, Subhanjan S, Priyanka S, Vandit V, Arunaditya S, Virendra Kumar V, Indu ST (2018) Review of trends in biogas upgradation technologies and future perspectives. Biores Technol 1:79–88

    Google Scholar 

  • Sivagurunathan P, Anburajan P, Kumar G, Arivalagan P, Bakonyi P, Kim SH (2017) Improvement of hydrogen fermentation of galactose by combined inoculation strategy. J Biosci Bioeng 123:353–357

    Article  CAS  Google Scholar 

  • Sivers MV, Zacchi G (1995) A techno-economical comparison of three processes for the production of ethanol from pine. Bioresour Technol 51:43–52

    Article  Google Scholar 

  • Sumphanwanich J, Leepipatpiboon N, Srinorakutara T, Akaracharanya A (2008) Evaluation of dilute-acid pretreated bagasse, corn cob and rice straw for ethanol fermentation by Saccharomyces cerevisiae. Ann Microbiol 58:219–225

    Article  CAS  Google Scholar 

  • Sun Q, Li H, Yan J, Liu L, Yu Z, Yu X (2015) Selection of appropriate biogas upgrading technology—a review of biogas cleaning, upgrading and utilization. Renew Sustain Energy Rev 51:521–532

    Article  CAS  Google Scholar 

  • Tiehm A, Nickel K, Zellhorn M, Neis U (2001) Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization. Water Res 35:2003–2009

    Article  CAS  Google Scholar 

  • Tufaner F, Avşar Y (2016) Effects of co-substrate on biogas production from cattle manure: a review. Int J Environ Sci Technol 13:2303–2312

    Article  CAS  Google Scholar 

  • Van Stephan F, Mathot M, Decruyenaere V, Loriers A, Delcour A, Planchon V, Goffart JP, Stilmant D (2016) Consequential environmental life cycle assessment of a farm-scale biogas plant. J Environ Manage 175:20–32

    Article  CAS  Google Scholar 

  • Verdonk M, Dieperink C, Faaiji APC (2007) Governance of the emerging bio-energy markets. Energy Pol 35:3909–3924

    Article  Google Scholar 

  • Voice AK, Closmann F, Rochelle GT (2013) Oxidative degradation of amines with high-temperature cycling. Energy Procedia 37:2118–2132

    Article  CAS  Google Scholar 

  • Vrbová V, Karel C (2017) Upgrading biogas to biomethane using membrane separation. Energy Fuels 31:9393–9401

    Article  CAS  Google Scholar 

  • Wang X, Yang G, Feng Y, Ren G, Han X (2012) Optimizing feeding composition and carbon–nitrogen ratios for improved methane yield during anaerobic co-digestion of dairy, chicken manure and wheat straw. Bioresour Technol 120:78–83

    Article  CAS  Google Scholar 

  • Ward AJ, Hobbs PJ, Holliman PJ, Jones DL (2008) Optimisation of the anaerobic digestion of agricultural resources. Bioresour Technol 99:7928–7940

    Article  CAS  Google Scholar 

  • Weiland P (2010) Biogas production: current state and perspectives. Appl Microbiol Biotechnol 85:849–860

    Article  CAS  Google Scholar 

  • **ao W, Clarkson WW (1997) Acid solubilization of lignin and bioconversion of treated newsprint to methane. Biodegradation 8:61–66

    Article  CAS  Google Scholar 

  • Yang L, Ge X, Wan C, Yu F, Li Y (2014) Progress and perspectives in converting biogas to transportation fuels. Renew Sustain Energy Rev 40:1133–1152

    Article  CAS  Google Scholar 

  • Ye S, Jiayang C (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Biores Technol 83:1–11

    Article  Google Scholar 

  • Zanganeh KE, Shafeen A, Salvador C (2009) CO2 capture and development of an advanced pilot-scale cryogenic separation and compression unit. Energy Procedia 1:247–252

    Article  CAS  Google Scholar 

  • Zhai N, Zhang T, Yin D, Yang G, Wang X, Ren G, **aojiao W, Guangxin R, Yongzhong F (2015) Effect of initial pH on anaerobic co-digestion of kitchen waste and cow manure. Waste Manag 38:126–31

    Google Scholar 

  • Zhang C, Su H, Baeyens J, Tan T (2014) Reviewing the anaerobic digestion of food waste for biogas production. Renew Sustain Energy Rev 38:383–392

    Article  CAS  Google Scholar 

  • Zhang C, **ao G, Peng L, Su H, Tan T (2013) The anaerobic co-digestion of food waste and cattle manure. Bioresour Technol 129:170–176

    Article  CAS  Google Scholar 

  • Zhang Q, Hu J, Lee D (2016) Biogas from anaerobic digestion processes: research updates. Renew Energy 98:108–119

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Chozhavendhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chozhavendhan, S., Gnanavel, G., Karthiga Devi, G., Subbaiya, R., Praveen Kumar, R., Bharathiraja, B. (2020). Enhancement of Feedstock Composition and Fuel Properties for Biogas Production. In: Praveen Kumar, R., Bharathiraja, B., Kataki, R., Moholkar, V. (eds) Biomass Valorization to Bioenergy. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-15-0410-5_9

Download citation

Publish with us

Policies and ethics

Navigation