Computational Screw Dynamics of Multi-body-Systems

  • Conference paper
  • First Online:
Proceedings of the 2nd International Conference on Mechanical System Dynamics (ICMSD 2023)

Abstract

This research study focuses on a general application of dynamic analysis in screw coordinates formed by Newton–Euler equations. The utilization of screw coordinates enables the computation of absolute displacement and acceleration parameters by numerical integration and numerical differential interpolation from velocity parameters, individually. The dynamic equations can be established directly using the obtained absolute accelerations and displacements from the kinematic analysis. To demonstrate and validate the effectiveness of this dynamic analysis approach, the Gough-Stewart platform as a representative rigid multibody system is analyzed as a representative example. It should be emphasized that although this paper specifically examines the Gough-Stewart parallel mechanism, the proposed modeling method for kinematic and dynamic analysis can also be effectively used to establishing analysis algorithms for various mechanisms. Through a comparative analysis of computing time, the superiority of the method over conventional dynamic analysis method using displacement as a global variable are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 389.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gough VE, Whitehall SG (1962) Proceedings of 9th international congress FISITA. Institution of Mechanical Engineers, p 117

    Google Scholar 

  2. Stewart D (1965) Proceedings of the institution of mechanical engineers part I 180(15):371±386

    Google Scholar 

  3. Dasgupta B, Mruthyunjaya TS (2000) The Stewart platform manipulator: a review. Mech Mach Theory 35:15–40

    Article  MathSciNet  Google Scholar 

  4. Gan D, Dai JS, Dias J, Seneviratne L (2015) Forward kinematics solution distribution and analytic singularity-free workspace of linear-actuated symmetrical spherical parallel manipulators. J Mech Robot 7:041007

    Article  Google Scholar 

  5. Shen H, Chablat D, Zeng B, Li J, Wu G, Yang T-L (2020) A translational three-degrees-of-freedom parallel mechanism with partial motion decoupling and analytic direct kinematics

    Google Scholar 

  6. Kanaan D, Wenger P, Chablat D (2009) Kinematic analysis of a serial–parallel machine tool: the VERNE machine. Mech Mach Theory 44:487–498

    Article  Google Scholar 

  7. Gallardo-Alvarado J, Rico-Martínez JM (2009) Kinematics of a hyper-redundant manipulator by means of screw theory. Proc Inst Mech Eng Part K J Multi-body Dyn 223:325–334

    Google Scholar 

  8. Zhao J-S, Wei S, Ji J (2022) Kinematics of a planar slider-crank linkage in screw form. Proc Inst Mech Eng C J Mech Eng Sci 236:1588–1597

    Article  Google Scholar 

  9. Zhang C, Jiang H (2021) Rigid-flexible modal analysis of the hydraulic 6-DOF parallel mechanism. Energies 14:1604

    Article  Google Scholar 

  10. Niu A, Wang S, Sun Y, Qiu J, Qiu W, Chen H (2022) Dynamic modeling and analysis of a novel offshore gangway with 3UPU/UP-RRP series-parallel hybrid structure. Ocean Eng 266:113122

    Article  Google Scholar 

  11. Abdellatif H, Heimann B (2009) Computational efficient inverse dynamics of 6-DOF fully parallel manipulators by using the Lagrangian formalism. Mech Mach Theory 44:192–207

    Article  Google Scholar 

  12. Guo J, Wang J, Chen J, Ren G, Tian Q, Guo C (2023) Multibody dynamics modeling of human mandibular musculoskeletal system and its applications in surgical planning. Multibody Syst Dyn 57:299–325

    Article  MathSciNet  Google Scholar 

  13. Zhao J-S, Wei S-T, Sun X-C (2023) Dynamics of a 3-UPS-UPU-S parallel mechanism. Appl Sci 13:3912

    Article  Google Scholar 

  14. Wu-fa L, Zhen-bang G, Qin-que W (2005) Investigation on Kane dynamic equations based on screw theory for open-chain manipulators. Appl Math Mech 26:627–635

    Article  MathSciNet  Google Scholar 

  15. Mata V, Provenzano S, Cuadrado JL, Valero F (2002) Inverse dynamic problem in robots using Gibbs-Appell equations. Robotica 20:59–67

    Article  Google Scholar 

  16. Mirtaheri SM, Zohoor H (2021) Efficient formulation of the Gibbs-Appell equations for constrained multibody systems. Multibody Syst Dyn 53:303–325

    Article  MathSciNet  Google Scholar 

  17. Tian Q, **ao Q, Sun Y, Hu H, Liu H, Flores P (2015) Coupling dynamics of a geared multibody system supported by ElastoHydroDynamic lubricated cylindrical joints. Multibody Syst Dyn 33:259–284

    Article  MathSciNet  Google Scholar 

  18. Zhao Y, Qiu K, Wang S, Zhang Z (2015) Inverse kinematics and rigid-body dynamics for a three rotational degrees of freedom parallel manipulator. Rob Comput Integ Manuf 31:40–50

    Article  Google Scholar 

  19. Asadi F, Heydari A (2020) Analytical dynamic modeling of Delta robot with experimental verification. Proc Inst Mech Eng Part K J Multi-body Dyn 234:623–630

    Google Scholar 

  20. Liu C, Tian Q, Hu H (2011) Dynamics of a large scale rigid–flexible multibody system composed of composite laminated plates. Multibody Syst Dyn 26:283–305

    Article  Google Scholar 

  21. Lu H, Rui X, Ma Z, Ding Y, Chen Y, Chang Y, Zhang X (2022) Hybrid multibody system method for the dynamic analysis of an ultra-precision fly-cutting machine tool. Int J Mech Sys Dyn 2:290–307

    Article  Google Scholar 

  22. Rui X, Zhang J, Wang X, Rong B, He B, ** Z (2022) Multibody system transfer matrix method: the past, the present, and the future. Int J Mech Sys Dyn 2:3–26

    Article  Google Scholar 

  23. Rui X, Bestle D (2021) Reduced multibody system transfer matrix method using decoupled hinge equations. Int J Mech Sys Dyn 1:182–193

    Article  Google Scholar 

  24. Yang J, Wang Q, Zhang Z, Liu Z, Xu S, Li G (2022) Dynamic modeling and analysis of the looped space tether transportation system based on ANCF. Int J Mech Sys Dyn 2:204–213

    Article  Google Scholar 

  25. Bai Z, Xu F, Zhao J (2021) Numerical and experimental study on dynamics of the planar mechanical system considering two revolute clearance joints. Int J Mech Sys Dyn 1:256–266

    Article  Google Scholar 

  26. Dasgupta B, Mruthyunjaya TS (1998) A Newton-Euler formulation for the inverse dynamics of the Stewart platform manipulator. Mech Mach Theory 33:1135–1152

    Article  MathSciNet  Google Scholar 

  27. Dasgupta B, Mruthyunjaya TS (1998) Closed-form dynamic equations of the general stewart platform through the Newton-Euler approach. Mech Mach Theory 33:993–1012

    Article  MathSciNet  Google Scholar 

  28. Gallardo-Alvarado J, Aguilar-Nájera CR, Casique-Rosas L, Pérez-González L, Rico-Martínez JM (2008) Solving the kinematics and dynamics of a modular spatial hyper-redundant manipulator by means of screw theory. Multibody Syst Dyn 20:307–325

    Article  MathSciNet  Google Scholar 

  29. Gallardo-Alvarado J, Aguilar-Nájera CR, Casique-Rosas L, Rico-Martínez JM, Islam MdN (2008) Kinematics and dynamics of 2(3-RPS) manipulators by means of screw theory and the principle of virtual work. Mech Mach Theory 43:1281–1294

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **g-Shan Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, JS., Sun, XC., Wei, ST. (2024). Computational Screw Dynamics of Multi-body-Systems. In: Rui, X., Liu, C. (eds) Proceedings of the 2nd International Conference on Mechanical System Dynamics. ICMSD 2023. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-99-8048-2_36

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8048-2_36

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8047-5

  • Online ISBN: 978-981-99-8048-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation