Wind Turbine Dynamic Response in an Offshore Wind Farm with Wake Effects

  • Conference paper
  • First Online:
Proceedings of the 2nd International Conference on Mechanical System Dynamics (ICMSD 2023)

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Included in the following conference series:

  • 5 Accesses

Abstract

This paper establishes a multi-body dynamic simulation model of a 3.3 MW offshore WT with single pile foundation using aero-hydro-sevo-elastic approach in OpenFAST. This multi-body dynamic model is coupled with the wake model to establish a wind farm simulation model. It is verified using SCADA data from a real offshore wind farm. The simulation attempts to investigate the load response of multiple WTs under wake effects. The simulation shows that the wake generated by the upstream turbine will increase the vibration and bending deformation of the blade tip along the flapwise direction of the downstream turbine. The uneven distribution of inflow wind speed on the downstream turbine will increase the aerodynamic thrust of the blades. The yaw control of the upstream turbine help to increase the output power of the downstream turbine while it resulted in an increase of the vibrational amplitude and the bending moment of the blade root in the flapwise direction of the downstream turbine. The unbalanced force on the blades led to an increase of total load. The results obtained in this paper provide useful reference for load reduction and control optimization of an offshore wind farms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 389.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nwaigwe N (2022) Assessment of wind energy technology adoption, application and utilization: a critical review. Int J Environ Sci Technol 19(5):4525–4536

    Article  Google Scholar 

  2. ChongWei Z, ChongYin L, **g P et al (2016) An overview of global ocean wind energy resource evaluations. Renew Sustain Energy Rev 53(1):1240–1251

    Google Scholar 

  3. Li Z, Zhou S, Yang Z (2022) Recent progress on flutter-based wind energy harvesting. Int J Mech Syst Dyn 2:82–98

    Article  Google Scholar 

  4. Passon P, Kühn M, Butterfield S et al (2007) OC3—Benchmark exercise of aero-elastic offshore wind turbine codes. J Phys: Conf Ser 75(1):012071. IOP Publishing

    Google Scholar 

  5. Sayed M, Klein L, Lutz T et al (2019) The impact of the aerodynamic model fidelity on the aeroelastic response of a multi-megawatt wind turbine. Renew Energy 140(9):304–318

    Article  Google Scholar 

  6. Thomsen JB, Bergua R, Jonkman J et al (2021) Modeling the TetraSpar floating offshore wind turbine foundation as a flexible structure in OrcaFlex and OpenFAST. Energies 14(23):7866

    Article  Google Scholar 

  7. Abbas NJ, Wright A, Pao L (2020) An update to the national renewable energy laboratory baseline wind turbine controller. J Phys: Conf Ser 1452(1):012002. IOP Publishing

    Google Scholar 

  8. Shaler K, Branlard E, Platt A et al (2020) Preliminary introduction of a free vortex wake method into OpenFAST. J Phys: Conf Ser 1452(1):012064. IOP Publishing

    Google Scholar 

  9. Rakib MI, Evans SP, Clausen PD (2020) Simulating the response of a small horizontal-axis wind turbine during wind gust using FAST. J Phys: Conf Ser 1452(1):012086. IOP Publishing

    Google Scholar 

  10. Jensen NO (1983) A note on wind generator interaction. Risø National Laboratory, Roskilde, Denmark

    Google Scholar 

  11. Frandsen S, Barthelmie R, Pryor S et al (2006) Analytical modelling of wind speed deficit in large offshore wind farms. Wind Energy: Int J Prog Appl Wind Power Convers Technol 9(1–2):39–53

    Article  Google Scholar 

  12. Churchfield MJ, Lee S, Moriarty PJ et al (2015) A comparison of the dynamic wake meandering model, large-eddy simulation, and field data at the egmond aan Zee offshore wind plant. 33rd Wind Energy Symposium 0724

    Google Scholar 

  13. Yang X, Sotiropoulos F (2019) A review on the meandering of wind turbine wakes. Energies 12(24):4725

    Article  Google Scholar 

  14. Madsen HA, Thomsen K, Larsen GC (2003) A new method for prediction of detailed wake loads. Proceedings of the IEA Joint Action of Wind Turbines 16th Symposium, pp 171‒188

    Google Scholar 

  15. Larsen GC, Aagaard Madsen H, Larsen TJ et al (2008) Wake modeling and simulation

    Google Scholar 

  16. Madsen HA, Larsen GC, Larsen TJ et al (2010) Calibration and validation of the dynamic wake meandering model for implementation in an aeroelastic code. J Sol Energy Eng 132(4)

    Google Scholar 

  17. Larsen TJ, Madsen HA, Larsen GC et al (2013) Validation of the dynamic wake meander model for loads and power production in the Egmond aan Zee wind farm. Wind Energy 16(4):605–624

    Article  Google Scholar 

  18. Keck RE, Veldkamp D, Wedelheinen, et al (2014) A consistent turbulence formulation for the dynamic wake meandering model in the atmospheric boundary layer. J Phys: Conf Ser 524(1):012127

    Google Scholar 

  19. Keck RE, Veldkamp D, Madsen HA et al (2012) Implementation of a mixing length turbulence formulation into the dynamic wake meandering model. J Sol Energy Eng 134(2):12–21

    Article  Google Scholar 

  20. Keck RE, deMaré M, Churchfield MJ et al (2014) On atmospheric stability in the dynamic wake meandering model. Wind Energy 17(11):1689–1710

    Article  Google Scholar 

  21. Keck RE, De Maré M, Churchfield MJ et al (2015) Two improvements to the dynamic wake meandering model: including the effects of atmospheric shear on wake turbulence and incorporating turbulence build-up in a row of wind turbines. Wind Energy 18(1):111–132

    Article  Google Scholar 

  22. Keck RE (2015) Validation of the standalone implementation of the dynamic wake meandering model for power production. Wind Energy 18(9):1579–1591

    Article  Google Scholar 

  23. Keck RE, Undheim O (2015) A pragmatic approach to wind farm simulations using the dynamic wake meandering model. Wind Energy 18(9):1671–1682

    Article  Google Scholar 

Download references

Acknowledgements

This is a research work funded by the National Key R&D Program of China (Grant No.2019YFE0104800), Major Research Plan of the National Natural Science Foundation of China (Grant No.92270101), Youth Fund of Jiangsu Natural Science Foundation of China (Grant No.BK20220920).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingning Qiu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cen, S., Qiu, Y., Li, M., Feng, Y. (2024). Wind Turbine Dynamic Response in an Offshore Wind Farm with Wake Effects. In: Rui, X., Liu, C. (eds) Proceedings of the 2nd International Conference on Mechanical System Dynamics. ICMSD 2023. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-99-8048-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8048-2_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8047-5

  • Online ISBN: 978-981-99-8048-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation