Stochastic Dynamics of a Unilateral Vibro-impact System Driven by Gaussian White Noise

  • Conference paper
  • First Online:
Proceedings of the 2nd International Conference on Mechanical System Dynamics (ICMSD 2023)

Abstract

Vibro-impact has the vital influence on the dynamic properties, reliability and service life of the system, which exists widely in mechanical systems. The purpose of this paper is to investigate the stochastic stability of a unilateral vibro-impact system by solving the pth moment Lyapunov exponent and the largest Lyapunov exponent. Firstly, a stochastic dynamic model of the unilateral vibro-impact system under Gaussian white noise excitation is constructed. Then, the vibro-impact system is transformed into a smooth dynamic system by utilizing the Zhuravlev transformation. Thereafter, the perturbation method is utilized to derive the approximate analytical solution of the pth moment Lyapunov exponent, which is in excellent agreement with the numerical simulation result. The largest Lyapunov exponent and moment stability index are determined by further extension. Finally, this paper analyzes the impact of system parameters and noise on the stability of the system. Based on the obtained Lyapunov exponents, strategies to enhance system stability are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 389.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 499.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Babitsky VI (2013) Theory of vibro-impact systems and applications, 1st edn. Springer Science & Business Media

    Google Scholar 

  2. Xu W, Huang DM, **e WX (2016) Multi-valued responses and dynamic stability of a nonlinear vibro-impact system with a unilateral non-zero offset barrier. Chin Phys B 25(3):030502

    Article  Google Scholar 

  3. Ibrahim RA (2009) Vibro-impact dynamics: modeling, map** and applications, 1st edn. Springer Verlag, Berlin

    Book  Google Scholar 

  4. de Weger J, Binks D, M Olenaar J et al (1996) Generic behavior of grazing impact oscillators. Phys Rev Lett 76(21):3951

    Google Scholar 

  5. Budd C, Dux F (1994) Chattering and related behaviour in impact oscillators. Philos Trans Roy Soc: Phys Eng Sci 347(1683):365–389

    Google Scholar 

  6. Wagg DJ (2004) Rising phenomena and the multi-sliding bifurcation in a two-degree of freedom impact oscillator. Chaos, Solitons Fractals 22(3):541–548

    Article  Google Scholar 

  7. Luo G, Zhang Y, **e J (2007) Periodic motion and bifurcation of vibrating systems with symmetric rigid constraints. Eng Mech 7:44–52

    Google Scholar 

  8. Zhu W (1996) Stochastic averaging of quasi-Hamiltonian systems. Sci China 01:97–107

    MathSciNet  Google Scholar 

  9. Zhu W, Huang Z, Yin Z (2002) A Hamiltonian theoretical framework for nonlinear stochastic dynamics and control. Mech Pract 03:1–9

    Google Scholar 

  10. Li C, **e W, Wang L et al (2013) Stochastic responses of Duffing-Van der Pol vibro-impact system under additive colored noise excitation. Chin Phys B 22(11):163–169

    Article  Google Scholar 

  11. Lutes LD (1970) Approximate technique for treating random vibration of hysteretic systems. J Acoust Soc Am 48(1):299–306

    Article  Google Scholar 

  12. Shinozuka M (2005) Simulation of multivariate and multidimensional random processes. J Acoust Soc Am 49(1B):357–368

    Article  Google Scholar 

  13. Wehner MF (1983) Numerical evaluation of path integral solutions to Fokker-Planck equations with application to void formation, 1st edn. The University of Wisconsin-Madison

    Google Scholar 

  14. Nordmark AB (1997) Universal limit map** in grazing bifurcations. Phys Rev E 55(1):266

    Article  Google Scholar 

  15. Wen G, **e J, Xu D (2004) Onset of degenerate Hopf bifurcation of a vibro-impact oscillator. J Appl Mech 71(4):579–581

    Article  MathSciNet  Google Scholar 

  16. Li C, Xu W, Yue X (2014) Stochastic response of a vibro-impact system by path integration based on generalized cell map** method. Int J Bifurcat Chaos 24(10):1450129

    Article  MathSciNet  Google Scholar 

  17. Qian J, Chen L (2021) Random vibration of SDOF vibro-impact oscillators with restitution factor related to velocity under wide-band noise excitations. Mech Syst Signal Process 147:107082

    Article  Google Scholar 

  18. Zhu H (2015) Stochastic response of a vibro-impact duffing system under external poisson impulses. Nonlinear Dyn 82:1001–1013

    Article  MathSciNet  Google Scholar 

  19. Zhuravlev VF (1976) A method for analyzing vibration-impact systems by means of special functions. Mech Solids 11(2):23–27

    MathSciNet  Google Scholar 

  20. Ivanov AP (1994) Impact oscillations: linear theory of stability and bifurcations. J Sound Vib 178(3):361–378

    Article  MathSciNet  Google Scholar 

  21. Huang D, Xu W, ** forces. Nonlinear Dyn 81:641–658

    Article  Google Scholar 

  22. Dimentberg MF, Gaidai O, Naess A (2009) Random vibrations with strongly inelastic impacts: response PDF by the path integration method. Int J Non-Linear Mech 44(7):791–796

    Article  Google Scholar 

  23. Ren Z, Xu W, Wang D (2019) Dynamic and first passage analysis of ship roll motion with inelastic impacts via path integration method. Nonlinear Dyn 97:391–402

    Article  Google Scholar 

  24. Ren Z, Xu W, Qiao Y (2019) Local averaged path integration method approach for nonlinear dynamic systems. Appl Math Comput 344:68–77

    Article  MathSciNet  Google Scholar 

  25. Lu H, Wu Y, Yang S (1995) Computation of Lyapunov exponential spectrum based on time series. J Huazhong Univ Sci Technol 06:109–112

    Google Scholar 

  26. Guckenheimer J (1983) Toolkit for nonlinear dynamics. IEEE Trans Circuits Syst 30(8):586–590

    Article  MathSciNet  Google Scholar 

  27. Trevisan A, Pancotti F (1998) Periodic orbits, Lyapunov vectors, and singular vectors in the lorenz system. J Atmos Sci 55(3):390–398

    Article  MathSciNet  Google Scholar 

  28. Wolf A, Swift JB, Swinney HL et al (1985) Determining Lyapunov exponents from a time series. Phys D 16(3):285–317

    Article  MathSciNet  Google Scholar 

  29. Stefanski A (2000) Estimation of the largest Lyapunov exponent in systems with impacts. Chaos, Solitons Fractals 11(15):2443–2451

    Article  MathSciNet  Google Scholar 

  30. Galvanetto U (2000) Numerical computation of Lyapunov exponents in discontinuous maps implicitly defined. Comput Phys Commun 131(1–2):1–9

    Article  MathSciNet  Google Scholar 

  31. Feng J, Liu J (2015) Chaotic dynamics of the vibro-impact system under bounded noise perturbation. Chaos, Solitons Fractals 73:10–16

    Article  MathSciNet  Google Scholar 

  32. Li Z, Soh CB, Xu X (2000) Lyapunov stability of a class of hybrid dynamic systems. Automatica 36(2):297–302

    Article  MathSciNet  Google Scholar 

  33. Zhao L, Li W, Shang J (2019) Lyapunov exponential analysis of collision vibration system under random disturbance. J Lanzhou Jiaotong Univ 38(03):107–111

    Google Scholar 

  34. Li D, Ding W, Ding J et al (2020) Stability analysis of elastic constrained bumper vibration system based on Lyapunov exponent. J Lanzhou Jiaotong Univ 39(03):89–95

    Google Scholar 

  35. Li D, Ding W, Ding J et al (2021) Study on the control of coexisting attractor transitions in two-degree-of-freedom collisional vibration systems with elastic constraints. J Vib Eng 34(01):176–184

    Google Scholar 

  36. Zhang H, Zhang R, Zanoni A, Masarati P (2021) A generalized approach for implicit time integration of piecewise linear/nonlinear systems. Int J Mech Syst Dyn 1:108–120

    Article  Google Scholar 

  37. Wang B, Liu Y, Zhang B, Yang S (2022) Development and stability analysis of a high-speed train bearing system under variable speed conditions. Int J Mech Syst Dyn 2:352–362

    Article  Google Scholar 

  38. Yu X, Sun Y, Liu S, Wu S (2021) Fractal-based dynamic response of a pair of spur gears considering microscopic surface morphology. Int J Mech Syst Dyn 1:194–206

    Article  Google Scholar 

  39. Yousuf LS (2022) Nonlinear dynamics investigation of contact force in a cam–follower system using the Lyapunov exponent parameter, power spectrum analysis, and Poincaré maps. Int J Mech Syst Dyn 2:214–230

    Article  Google Scholar 

  40. Arnold L (1984) A formula connecting sample and moment stability of linear stochastic systems. SIAM J Appl Math 44(4):793–802

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 12272122) and the Fundamental Research Funds for the Central Universities (Grant No. B220202039).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongliang Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hu, H., Hu, D., Sun, W. (2024). Stochastic Dynamics of a Unilateral Vibro-impact System Driven by Gaussian White Noise. In: Rui, X., Liu, C. (eds) Proceedings of the 2nd International Conference on Mechanical System Dynamics. ICMSD 2023. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-99-8048-2_114

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8048-2_114

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8047-5

  • Online ISBN: 978-981-99-8048-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation