Recent Updates on Biopolymers: Precursors, Process, Properties, Challenge, and Future Perspectives

  • Chapter
  • First Online:
Biomass Conversion and Sustainable Biorefinery

Abstract

Fossil sources are common raw materials in the polymer industry because they are cost-effective and ensure a straightforward manufacturing process. However, the insufficient supply of fossil sources failed to afford adequate feedstock for polymer production in the future. Fossil sources are projected to reach a saturation point where supply would be less than demand due to the increasing human population. Another important concern is the fact that fossil-based polymer creates several environmental problems, such as non-degradable products, air pollution, and wastewater contamination (Okkerse and Bekkum 1999). These two main reasons are the main factors why the switch of the raw materials of polymers from fossil to renewable materials is necessary, and the research on biobased polymeric materials becomes an interesting yet urgent topic. In this chapter, we review the current updates on the development of biopolymers. The precursors, technological processes, and updates on the currently available biopolymers are being reviewed. Challenges and future perspectives are also being discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aayush K, McClements DJ, Sharma S, Sharma R, Singh GP, Sharma K, Oberoi K (2022) Innovations in the development and application of edible coatings for fresh and minimally processed apple. Food Control 141:109188. https://doi.org/10.1016/j.foodcont.2022.109188

    Article  CAS  Google Scholar 

  • Agwamba EC (2021) Taguchi optimization of plasticisation process for glycerol and TEA based thermoplastic mango starch biofilms. Res Sq 1–13. https://doi.org/10.21203/rs.3.rs-932373/v1

  • Area MR, Rico M, Montero B, Barral L, Bouza R, López J, Ramírez C (2019) Corn starch plasticized with isosorbide and filled with microcrystalline cellulose: processing and characterization. Carbohydr Polym 206:726–733. https://doi.org/10.1016/j.carbpol.2018.11.055

    Article  CAS  PubMed  Google Scholar 

  • Ashothaman A, Sudha J, Senthilkumar N (2021) A comprehensive review on biodegradable polylactic acid polymer matrix composite material reinforced with synthetic and natural fibers. Mater Today Proc. https://doi.org/10.1016/j.matpr.2021.07.047

  • Bangar SP, Whiteside WS, Ashogbon AO, Kumar M (2021) Recent advances in thermoplastic starches for food packaging: a review. Food Packag Shelf Life 30:100743. https://doi.org/10.1016/j.fpsl.2021.100743

    Article  CAS  Google Scholar 

  • Baran A, Fričová O, Vrábel P, Popovič Ľ, Peidayesh H, Chodák I, Hutníková M, Kovaľaková M (2022) Effects of urea and glycerol mixture on morphology and molecular mobility in thermoplastic starch/montmorillonite-type nanofiller composites studied using XRD and NMR. J Polym Res 29:1–12. https://doi.org/10.1007/s10965-022-03110-6

    Article  CAS  Google Scholar 

  • Bayón B, Berti IR, Gagneten AM, Castro GR (2018) Biopolymers from wastes to high-value products in biomedicine. In: Waste to wealth. Springer, pp 1–44

    Google Scholar 

  • Cao N, Yang X, Fu Y (2009) Effects of various plasticizers on mechanical and water vapor barrier properties of gelatin films. Food Hydrocoll 23:729–735. https://doi.org/10.1016/j.foodhyd.2008.07.017

    Article  CAS  Google Scholar 

  • Carina D, Sharma S, Jaiswal AK, Jaiswal S (2021) Trends in food science & technology seaweeds polysaccharides in active food packaging: a review of recent progress. Trends Food Sci Technol 110:559–572. https://doi.org/10.1016/j.tifs.2021.02.022

    Article  CAS  Google Scholar 

  • Carothers WH (1936) Linear polyamides and their production

    Google Scholar 

  • Carothers WH (1937) Linear condensation polymers

    Google Scholar 

  • Carvalho AJF, Gandini A, Curvelo AAS, Ro AL Da (2006) The effect of plasticizers on thermoplastic starch compositions obtained by melt processing 63:417–424. https://doi.org/10.1016/j.carbpol.2005.09.017

  • Castillo L, López O, López C, Zaritzky N, García MA, Barbosa S, Villar M (2013) Thermoplastic starch films reinforced with talc nanoparticles. Carbohydr Polym 95:664–674. https://doi.org/10.1016/j.carbpol.2013.03.026

    Article  CAS  PubMed  Google Scholar 

  • Caylı G, Kusefoglu S (2008) Biobased polyisocyanates from plant oil triglycerides: synthesis, polymerization, and characterization. J Appl Polym Sci 109:2948–2955. https://doi.org/10.1002/app.28401

    Article  CAS  Google Scholar 

  • Chai JM, Amelia TS, Mouriya GK, Bhubalan K, Amirul A-AA, Vigneswari S, Ramakrishna S (2021) Surface-modified highly biocompatible bacterial-poly(3-hydroxybutyrate-co-4-hydroxybutyrate): a review on the promising next-generation biomaterial. Polymers (Basel) 13

    Google Scholar 

  • Chang I, Im J, Cho G-C (2016) Introduction of microbial biopolymers in soil treatment for future environmentally-friendly and sustainable geotechnical engineering. Sustainability 8:251

    Article  Google Scholar 

  • Chotiprayon P, Chaisawad B, Yoksan R (2020) Thermoplastic cassava starch/poly(lactic acid) blend reinforced with coir fibres. Int J Biol Macromol 156:960–968. https://doi.org/10.1016/j.ijbiomac.2020.04.121

    Article  CAS  PubMed  Google Scholar 

  • Chudasama NA, Sequeira RA, Moradiya K, Prasad K (2021) Seaweed polysaccharide based products and materials: an assessment on their production from a sustainability point of view. Molecules 26. https://doi.org/10.3390/molecules26092608

  • Cordier P, Tournilhac F, Soulié-Ziakovic C, Leibler L (2008) Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451:977–980. https://doi.org/10.1038/nature06669

    Article  CAS  PubMed  Google Scholar 

  • Das A, Ringu T, Ghosh S, Pramanik N (2022) A comprehensive review on recent advances in preparation, physicochemical characterization, and bioengineering applications of biopolymers. Polym Bull 1–66

    Google Scholar 

  • de Jong E, Jungmeier G (2015) Biorefinery concepts in comparison to petrochemical refineries. In: Industrial biorefineries & white biotechnology. Elsevier, pp 3–33

    Google Scholar 

  • de Oliveira JP, Bruni GP, Fabra MJ, da Rosa ZE, López-Rubio A, Martínez-Sanz M (2019) Development of food packaging bioactive aerogels through the valorization of Gelidium sesquipedale seaweed. Food Hydrocoll 89:337–350. https://doi.org/10.1016/j.foodhyd.2018.10.047

    Article  CAS  Google Scholar 

  • Drobny JG (2015) Handbook of thermoplastic elastomers, 2nd edn. Elsevier

    Google Scholar 

  • Ebnesajjad S (2012) Handbook of biopolymers and biodegradable plastics: properties, processing and applications. William Andrew

    Google Scholar 

  • Edhirej A, Sapuan SM, Jawaid M, Zahari NI (2017) Preparation and characterization of cassava bagasse reinforced thermoplastic cassava starch. Fibers Polym 18:162–171. https://doi.org/10.1007/s12221-017-6251-7

    Article  CAS  Google Scholar 

  • Encalada K, Aldás MB, Proaño E, Valle V (2018) An overview of starch-based biopolymers and their biodegradability Una revisión sobre biopolímeros con base en almidón y su biodegradabilidad. Cienc e Ing 39:245–258

    Google Scholar 

  • Falkenburg LB, Teeter HM, Skell PS, Cowan JC (1945) Polyamides from polymeric fat acids. Oil Soap 22:143–148

    Article  CAS  Google Scholar 

  • Fan X, Deng Y, Waterhouse J, Pfromm P (1997) Synthesis and characterization of polyamide resins from soy-based dimer acids and different amides 305–314

    Google Scholar 

  • FAO (2021) Global status of seaweed prduction, trade and utilization. Food Agric rganization United Nations

    Google Scholar 

  • Foroughi-dahr M, Mostoufi N, Sotudeh-gharebagh R, De Montre P, Chaouki J (2017) Particle coating in fluidized beds. Elsevier Inc.

    Google Scholar 

  • Gajula S, Reddy CRK (2021) More sustainable biomass production and biorefining to boost the bioeconomy. Biofuels Bioprod Biorefining 15:1221–1232

    Article  CAS  Google Scholar 

  • Gaska K, Xu X, Gubanski S, Kádár R (2017) Electrical, mechanical, and thermal properties of LDPE graphene nanoplatelets composites produced by means of melt extrusion process. Polymers (Basel) 9:30–40. https://doi.org/10.3390/polym9010011

  • Geyer R (2020) Production, use, and fate of synthetic polymers. In: Plastic waste and recycling. Elsevier, pp 13–32

    Google Scholar 

  • Gurr M., Harwood J, Frayn K. (2002) Lipid biochemistry: an introduction

    Google Scholar 

  • Hablot E, Matadi R, Ahzi S, Avérous L (2010) Renewable biocomposites of dimer fatty acid-based polyamides with cellulose fibres: thermal, physical and mechanical properties. Compos Sci Technol 70:504–509. https://doi.org/10.1016/j.compscitech.2009.12.001

    Article  CAS  Google Scholar 

  • Hojabri L, Kong X, Narine SS (2010) Novel long chain unsaturated diisocyanate from fatty acid: synthesis, characterization, and application in bio-based polyurethane. J Polym Sci Part A Polym Chem 48:3302–3310. https://doi.org/10.1002/pola.24114

    Article  CAS  Google Scholar 

  • Hussein Ziedan ES, El Zahaby HM, Maswada HF, El Rafh Zoeir EHA (2018) Agar-agar a promising edible coating agent for management of postharvest diseases and improving banana fruit quality. J Plant Prot Res 58. https://doi.org/10.24425/122938

  • Ibrahim N, Wahab MKA, Uylan DN, Ismail H (2017) Physical and degradation properties of polylactic acid and thermoplastic starch blends—Effect of citric acid treatment on starch structures. BioResources 12:3076–3087. https://doi.org/10.15376/biores.12.2.3076-3087

  • Isikgor FH, Becer CR (2015) Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym Chem 6:4497–4559. https://doi.org/10.1039/c5py00263j

    Article  CAS  Google Scholar 

  • Janssen L, Moscicki L (2009) Termoplastic starch (A green material for various industries). Wiley-VCH, Germany

    Book  Google Scholar 

  • Jiang T, Duan Q, Zhu J, Liu H, Yu L (2020) Starch-based biodegradable materials: challenges and opportunities. Adv Ind Eng Polym Res 3:8–18. https://doi.org/10.1016/j.aiepr.2019.11.003

    Article  Google Scholar 

  • Jiménez L, Mena MJ, Prendiz J, Salas L, Vega-Baudrit J (2019) Polylactic acid (PLA) as a bioplastic and its possible applications in the food industry. J Food Sci Nutr 5:2–6

    Google Scholar 

  • Junming X, Jianchun J, **g L (2012) Preparation of polyester polyols from unsaturated fatty acid. J Appl Polym Sci 126:1377–1384. https://doi.org/10.1002/app.36740

    Article  CAS  Google Scholar 

  • JS, Harrison ZO (2002) Introduction Types of Plasticizers. Encycl Polym Sci Technol 3:518

    Google Scholar 

  • Khan B, Bilal Khan Niazi M, Samin G, Jahan Z (2017) Thermoplastic starch: a possible biodegradable food packaging material—A review. J Food Process Eng 40. https://doi.org/10.1111/jfpe.12447

  • Lemoigne M, Girard H (1943) Reserves lipidiques-hydroxybutyriques chez Azotobacter chroococcum. C. Rmcad Sci Paris 217:537–558

    Google Scholar 

  • Liu Y, Qin Y, Bai R, Zhang X, Yuan L, Liu J (2019) pH-sensitive and antioxidant packaging fi lms based on κ -carrageenan and mulberry polyphenolic extract. Int J Biol Macromol 134:993–1001. https://doi.org/10.1016/j.ijbiomac.2019.05.175

  • Ma X, Chang PR, Yu J, Stumborg M (2009) Properties of biodegradable citric acid-modified granular starch/thermoplastic pea starch composites. Carbohydr Polym 75:1–8. https://doi.org/10.1016/j.carbpol.2008.05.020

    Article  CAS  Google Scholar 

  • Magallanes-Cruz PA, Flores-Silva PC, Bello-Perez LA (2017) Starch structure influences its digestibility: a review. J Food Sci 82:2016–2023. https://doi.org/10.1111/1750-3841.13809

    Article  CAS  PubMed  Google Scholar 

  • Mallakpour S, Rafiee Z (2012) Green solvents fundamental and industrial applications BT—Green solvents I: properties and applications in chemistry. Springer, Netherlands

    Google Scholar 

  • Maraveas C (2020) Production of sustainable and biodegradable polymers from agricultural waste. Polymers (Basel) 12:1127

    Article  CAS  PubMed  Google Scholar 

  • Martin L, Gonz A (2017) D-isosorbide and 1, 3-propanediol as plasticizers for starch-based films: Characterization and aging study. J Appl Polym Sci 44793:1–10. https://doi.org/10.1002/app.44793

    Article  CAS  Google Scholar 

  • Meereboer KW, Misra M, Mohanty AK (2020) Review of recent advances in the biodegradability of polyhydroxyalkanoate (PHA) bioplastics and their composites. Green Chem 22:5519–5558. https://doi.org/10.1039/D0GC01647K

    Article  CAS  Google Scholar 

  • Mesias R, Murillo EA (2020) Properties of the thermoplastic starch/polylactic acid blends compatibilized by hyperbranched polyester. J Phys Conf Ser 1587. https://doi.org/10.1088/1742-6596/1587/1/012001

  • Mikus M, Galus S (2022) Biopolymers from agriculture waste and by-products. In: Biopolymers. Springer, pp 111–128

    Google Scholar 

  • Moghaddam RA, Mohammad, Mohammad Ali Razavi S, Jahani Y (2018) Optimization of the effects of thermoplastic starch and glycerol concentration on physicomechanical properties of polylactic acid/thermoplastic starch blend by response surface methodology. J Res Innov Food Sci Technol 7:309–322. https://doi.org/10.22101/JRIFST.2018.10.20.736

  • Mohan S, Oluwafemi OS, Kalarikkal N, Thomas S, Songca SP (2016) Biopolymers—Application in nanoscience and nanotechnology. In: Perveen FK (ed) IntechOpen, Rijeka, p Ch. 3

    Google Scholar 

  • Mohanty AK, Wu F, Mincheva R, Hakkarainen M, Raquez J-M, Mielewski DF, Narayan R, Netravali AN, Misra M (2022) Sustainable polymers. Nat Rev Methods Prim 2:1–27

    Google Scholar 

  • Mohapatra S, Vishwakarma K, Joshi NC, Maity S, Kumar R, Ramchander M, Pattnaik S, Samantaray DP (2021) A review on PHAs: the future biopolymer. In: Environmental and agricultural microbiology, pp 83–100

    Google Scholar 

  • Moradali MF, Rehm BHA (2020) Bacterial biopolymers: from pathogenesis to advanced materials. Nat Rev Microbiol 18:195–210. https://doi.org/10.1038/s41579-019-0313-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • More AS, Lebarbe T, Maisonneuve L, Gadenne B, Alfos C, Cramail H (2013) Novel fatty acid based di-isocyanates towards the synthesis of thermoplastic polyurethanes. Eur Polym J 49:823–833. https://doi.org/10.1016/j.eurpolymj.2012.12.013

    Article  CAS  Google Scholar 

  • Nanni A, Parisi M, Colonna M (2021) Wine by-products as raw materials for the production of biopolymers and of natural reinforcing fillers: a critical review. Polymers (Basel) 13:381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nduko JM, Taguchi S (2021) Microbial production of biodegradable lactate-based polymers and oligomeric building blocks from renewable and waste resources. Front Bioeng Biotechnol 8

    Google Scholar 

  • Niazi MBK, Zijlstra M, Broekhuis AA (2015) Influence of plasticizer with different functional groups on thermoplastic starch. J Appl Polym Sci 132:1–12. https://doi.org/10.1002/app.42012

    Article  CAS  Google Scholar 

  • Nurhamiyah Y, Amir A, Finnegan M, Themistou E, Edirisinghe M, Chen B (2021a) Wholly biobased, highly stretchable, hydrophobic, and self-healing thermoplastic elastomer. ACS Appl Mater Interfaces 13:6720–6730. https://doi.org/10.1021/acsami.0c23155

    Article  CAS  PubMed  Google Scholar 

  • Nurhamiyah Y, Irvine G, Themistou E, Chen B (2021b) Novel biobased polyamide thermoplastic elastomer with medium hardness. Macromol Chem Phys 222:2100218. https://doi.org/10.1002/macp.202100218

  • Okkerse C, Van Bekkum H (1999) From fossil to green. Green Chem 1:107–114. https://doi.org/10.1039/a809539f

    Article  CAS  Google Scholar 

  • Ortelli S, Costa AL, Torri C, Samorì C, Galletti P, Vineis C, Varesano A, Bonura L, Bianchi G (2019) Innovative and sustainable production of biopolymers BT—Factories of the future: the Italian Flagship initiative. In: Tolio T, Copani G, Terkaj W (eds). Springer International Publishing, Cham, pp 131–148

    Google Scholar 

  • Padam BS, Chye FY (2020) Sustainable seaweed technologies. Elsevier Inc.

    Google Scholar 

  • Paula GA, Benevides NMB, Cunha AP, Vit A, Morais S, Azeredo HMC, Pinto AMB (2015) Development and characterization of edible fi lms from mixtures of k-carrageenan, i-carrageenan, and alginate 47:140–145. https://doi.org/10.1016/j.foodhyd.2015.01.004

  • Perera KY, Sharma S, Pradhan D, Jaiswal AK, Jaiswal S (2021) Seaweed polysaccharide in food contact materials (Active packaging, intelligent packaging, edible films, and coatings). Foods 10:1–22. https://doi.org/10.3390/foods10092088

    Article  CAS  Google Scholar 

  • Pokhrel S (2015) A review on introduction and applications of starch and its biodegradable polymers. Int J Environ 4:114–125. https://doi.org/10.3126/ije.v4i4.14108

    Article  Google Scholar 

  • Pond CM (1998) Fats of life. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Popa VI (2018) Biomass for fuels and biomaterials. In: Biomass as renewable raw material to obtain bioproducts of high-tech value. Elsevier, pp 1–37

    Google Scholar 

  • Prachayawarakorn J, Sangnitidej P, Boonpasith P (2010) Properties of thermoplastic rice starch composites reinforced by cotton fiber or low-density polyethylene. Carbohydr Polym 81:425–433. https://doi.org/10.1016/j.carbpol.2010.02.041

    Article  CAS  Google Scholar 

  • Quinzler D, Mecking S (2010) Linear semicrystalline polyesters from fatty acids by complete feedstock molecule utilization. Angew Chemie Int Ed 49:4306–4308. https://doi.org/10.1002/anie.201001510

    Article  CAS  Google Scholar 

  • Rai R, Tallawi M, Grigore A, Boccaccini AR (2012) Synthesis, properties and biomedical applications of poly(glycerol sebacate) (PGS): a review. Prog Polym Sci 37:1051–1078. https://doi.org/10.1016/j.progpolymsci.2012.02.001

  • Rajeswari A, Stobel Christy EJ, Pius A (2021) Chapter 5—Biopolymer blends and composites: processing technologies and their properties for industrial applications. In: Thomas S, Gopi S, Amalraj ABT-B, IA (eds). Elsevier, pp 105–147

    Google Scholar 

  • Ranakoti L, Gangil B, Mishra SK, Singh T, Sharma S, Ilyas RA, El-Khatib S (2022) Critical review on polylactic acid: properties, structure, processing, biocomposites, and nanocomposites. Materials (Basel) 15

    Google Scholar 

  • Ranganathan S, Dutta S, Moses JA, Anandharamakrishnan C (2020) Utilization of food waste streams for the production of biopolymers. Heliyon 6:e04891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Revati R, Majid MSA, Normahira M (2016) Biodegradable poly(lactic acid) scaffold for tissue engineering: a brief review

    Google Scholar 

  • Rix E, Grau E, Chollet G, Cramail H (2016) Synthesis of fatty acid-based non-isocyanate polyurethanes, NIPUs, in bulk and mini-emulsion. Eur Polym J 84:863–872. https://doi.org/10.1016/j.eurpolymj.2016.07.006

    Article  CAS  Google Scholar 

  • Santoro O, Zhang X, Redshaw C (2020) Synthesis of biodegradable polymers: a review on the use of schiff-base metal complexes as catalysts for the ring opening polymerization (ROP) of cyclic esters. Catalysts 10

    Google Scholar 

  • Sharma M, Dhingra HK (2021) An overview of microbial derived polyhydroxybutyrate (PHB): production and characterization. Microb Polym 143–176

    Google Scholar 

  • Sharma V, Sehgal R, Gupta R (2021) Polyhydroxyalkanoate (PHA): properties and modifications. Polymer (Guildf) 212:123161. https://doi.org/10.1016/j.polymer.2020.123161

  • Sjoo M, Nillsson L (2018) Starch in food (structure, function and applications), 2nd edn. Woodhead Publishing

    Google Scholar 

  • Sriroth K, Sangseethong K (2006) Biodegradable plastics from cassava starch. Acta Hortic 703:145–151. https://doi.org/10.17660/actahortic.2006.703.16

  • Stempfle F, Ortmann P, Mecking S (2016) Long-chain aliphatic polymers to bridge the gap between semicrystalline polyolefins and traditional polycondensates. Chem Rev 116:4597–4641. https://doi.org/10.1021/acs.chemrev.5b00705

    Article  CAS  PubMed  Google Scholar 

  • Stempfle F, Quinzler D, Heckler I, Mecking S (2011) Long-chain linear C19 and C23 monomers and polycondensates from unsaturated fatty acid esters. Macromolecules 44:4159–4166. https://doi.org/10.1021/ma200627e

    Article  CAS  Google Scholar 

  • Subramanian V, Varade D (2017) Thermoelectric properties of biopolymer composites. Elsevier Inc.

    Google Scholar 

  • Tan HW, Abdul Aziz AR, Aroua MK (2013) Glycerol production and its applications as a raw material: a review. Renew Sustain Energy Rev 27:118–127. https://doi.org/10.1016/j.rser.2013.06.035

  • Testud B, Pintori D, Grau E, Taton D, Cramail H (2017) Hyperbranched polyesters by polycondensation of fatty acid-based ABn-type monomers. Green Chem 19:259–269. https://doi.org/10.1039/C6GC02294D

    Article  CAS  Google Scholar 

  • Thi H, Boonyaritthongchai P, Buanong M (2021) Scientia Horticulturae Chitosan- and κ-carrageenan-based composite coating on dragon fruit ( Hylocereus undatus ) pretreated with plant growth regulators maintains bract chlorophyll and fruit edibility. Sci Hortic (amsterdam) 281:109916. https://doi.org/10.1016/j.scienta.2021.109916

    Article  CAS  Google Scholar 

  • Tran TTB, Roach P, Nguyen MH, Pristijono P, Vuong QV (2020) Development of biodegradable films based on seaweed polysaccharides and Gac pulp (Momordica cochinchinensis), the waste generated from Gac oil production. Food Hydrocoll 99:105322. https://doi.org/10.1016/j.foodhyd.2019.105322

    Article  CAS  Google Scholar 

  • Trzaskowski J, Quinzler D, Bährle C, Mecking S (2011) Aliphatic long-chain C20 polyesters from olefin metathesis. Macromol Rapid Commun 32:1352–1356. https://doi.org/10.1002/marc.201100319

    Article  CAS  PubMed  Google Scholar 

  • Türünç O, Firdaus M, Klein G, Meier MAR (2012) Fatty acid derived renewable polyamides via thiol–ene additions. Green Chem 14:2577. https://doi.org/10.1039/c2gc35982k

    Article  CAS  Google Scholar 

  • USDA Foreign Agricultural Services (2021) Oilseeds: world markets and trade

    Google Scholar 

  • Vilela C, Silvestre AJD, Meier MAR (2012) Plant oil-based long-chain C 26 monomers and their polymers. Macromol Chem Phys 213:2220–2227. https://doi.org/10.1002/macp.201200332

    Article  CAS  Google Scholar 

  • Wang Y, Ameer GA, Sheppard BJ, Langer R (2002) A tough biodegradable elastomer. Nat Biotechnol 20:602–606. https://doi.org/10.1038/nbt0602-602

    Article  CAS  PubMed  Google Scholar 

  • Yildirim S, Röcker B, Pettersen MK, Nilsen-Nygaard J, Ayhan Z, Rutkaite R, Radusin T, Suminska P, Marcos B, Coma V (2018) Active packaging applications for food. Compr Rev Food Sci Food Saf 17:165–199. https://doi.org/10.1111/1541-4337.12322

    Article  PubMed  Google Scholar 

  • Young RJ, Lovell PA (2011) Introduction to polymers. CRC Press

    Book  Google Scholar 

  • Zhao H (2018) Enzymatic ring-opening polymerization (ROP) of polylactones: roles of non-aqueous solvents. J Chem Technol Biotechnol 93:9–19. https://doi.org/10.1002/jctb.5444

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeyen Nurhamiyah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hanifah, A., Arfiathi, Mahardika, M., Sumirat, R., Nissa, R.C., Nurhamiyah, Y. (2024). Recent Updates on Biopolymers: Precursors, Process, Properties, Challenge, and Future Perspectives. In: Lubis, M.A.R., et al. Biomass Conversion and Sustainable Biorefinery. Green Energy and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-99-7769-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7769-7_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7768-0

  • Online ISBN: 978-981-99-7769-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics

Navigation