Valorization of Leather Industry Solid Waste for Sustainability Through a Biorefinery Approach

  • Chapter
  • First Online:
From Waste to Wealth

Abstract

The leather industry generates $150 billion USD annually. The industry that processes animal hides or skins for finished leather goods generates a lot more solid waste than its main output, leather. The current ineffective disposal of these solid wastes (via open dum**, incineration, and landfilling) results in pollution, which obstructs the industry’s path to sustainable expansion. Interestingly, recycling waste into usable form seems like a potential option. Leather biomass contains collagen, keratin, and fat and can be used to produce sustainable bioproducts and replace petroleum-based materials. This chapter provides an extensive perspective on the effective reutilization of diverse forms of leather waste (keratin waste, untanned/fleshing waste, chrome-tanned waste, and tannery waste sludge) that are generated at various stages of processing the leather. However, there is still a sizable difference between the stated targets for sustainable leather technology and the levels that have been reached, despite ongoing research efforts. The chapter concludes that solid waste, which is generated from the tannery industry, is a gold mine that can be immediately used to make money while closing the loop.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amdouni, S., Trabelsi, A. B. H., Elasmi, A. M., Chagtmi, R., Haddad, K., Jamaaoui, F., Khedhira, H., & Chérif, C. (2021). Tannery fleshing wastes conversion into high-value-added biofuels and biochars using a pyrolysis process. Fuel, 294, 120423.

    Article  CAS  Google Scholar 

  • Appala, V. G., Pandhare, N. N., & Bajpai, S. (2022a). Biorefining of leather solid waste to harness energy and materials—A review. Biomass Conversion and Biorefinery, 1–18.

    Google Scholar 

  • Appala, V. N. S. G., Pandhare, N. N., & Bajpai, S. (2022b). Mathematical models for optimization of anaerobic digestion and biogas production. Springer.

    Book  Google Scholar 

  • Arcibar-Orozco, J. A., Saldaña-Robles, A., Rangel-Méndez, R., Nielsen, L., Baltazar-Campos, H., Garduño-Cruces, E. A., Hernandez-López, B. V., & Caballero-Briones, F. (2023). Revalorization of chromium-tanned leather shavings into carbon materials and re-tanning solution. Biomass Conversion and Biorefinery, 1–13.

    Google Scholar 

  • Ayele, M., Limeneh, D. Y., Tesfaye, T., Mengie, W., Abuhay, A., Haile, A., & Gebino, G. (2021). A review on utilization routes of the leather industry biomass. Advances in Materials Science and Engineering, 2021, 1–15.

    Article  Google Scholar 

  • Bhardwaj, M., Ram, N. R., & Nikhil, G. (2023). Systematic metabolic pathway analysis of selective hydrolytic strains for anaerobic fermentation of food waste and identification of molecular markers during stress response. Materials Today: Proceedings.

    Google Scholar 

  • Bhavanam, A., Kumar, A., Neeraj, & Nikhil, G. (2021). Biological and thermochemical strategies for building biorefinery platform. In International conference on chemical, bio and environmental engineering (pp. 33–56). Springer.

    Google Scholar 

  • Booramurthy, V. K., Kasimani, R., Subramanian, D., & Pandian, S. (2020). Production of biodiesel from tannery waste using a stable and recyclable nano-catalyst: Optimization and kinetic study. Fuel, 260, 116373.

    Article  CAS  Google Scholar 

  • Buljan, J., Reich, G. & Ludvik, J. (2000). Mass balance in leather processing. United Nations industrial development Organization. Regional programme for pollution control in the tanning industry in South-East Asia.

    Google Scholar 

  • Cataldo, A., Grieco, A., Prete, A. D., Cannazza, G., & Benedetto, E. D. (2016). Innovative method for traceability of hides throughout the leather manufacturing process. The International Journal of Advanced Manufacturing Technology, 86, 3563–3570.

    Article  Google Scholar 

  • Catalina, M., Attenburrow, G. E., Cot, J., Covington, A. D., & Antunes, A. P. M. (2011). Influence of crosslinkers and crosslinking method on the properties of gelatin films extracted from leather solid waste. Journal of Applied Polymer Science, 119, 2105–2111.

    Article  CAS  Google Scholar 

  • Catalina, M., Cot, J., Balu, A. M., Serrano-Ruiz, J. C., & Luque, R. (2012). Tailor-made biopolymers from leather waste valorization. Green Chemistry, 14, 308–312.

    Article  CAS  Google Scholar 

  • Chen, N., Brown, E. M., & Liu, C.-K. (2021). Conversion of tannery waste into value-added products. ACS Publications.

    Book  Google Scholar 

  • Chen, L., Qiang, T., Chen, X., Ren, W., & Zhang, H. J. (2022a). Gelatin from leather waste to tough biodegradable packaging film: One valuable recycling solution for waste gelatin from leather industry. Waste Management, 145, 10–19.

    Article  CAS  Google Scholar 

  • Chen, X., Xu, L., Ren, Z., Jia, F., & Yu, Y. (2022b). Sustainable supply chain management in the leather industry: A systematic literature review. International Journal of Logistics Research and Applications, 1–41.

    Google Scholar 

  • Chilakamarry, C. R., Mahmood, S., Saffe, S. N. B. M., Arifin, M. A. B., Gupta, A., Sikkandar, M. Y., Begum, S. S., & Narasaiah, B. (2021). Extraction and application of keratin from natural resources: a review. 3 Biotech, 11, 1–12.

    Google Scholar 

  • China, C. R., Maguta, M. M., Nyandoro, S. S., Hilonga, A., Kanth, S. V., & Njau, K. N. (2020). Alternative tanning technologies and their suitability in curbing environmental pollution from the leather industry: A comprehensive review. Chemosphere, 254, 126804.

    Article  CAS  Google Scholar 

  • Chojnacka, K., Skrzypczak, D., Mikula, K., Witek-Krowiak, A., Izydorczyk, G., Kuligowski, K., Bandrów, P., & Kułażyński, M. (2021). Progress in sustainable technologies of leather wastes valorization as solutions for the circular economy. Journal of Cleaner Production, 313, 127902.

    Article  Google Scholar 

  • De Souza, F. D. R., Benvenuti, J., Meyer, M., Wulf, H., Klüver, E., & Gutterres, M. (2022). Extraction of keratin from unhairing of bovine hide. Chemical Engineering Communications, 209, 118–126.

    Article  Google Scholar 

  • Dumitra, C. M., Deselnicu, D. C., & Semenescu, A. (2023). Waste from the leather industry-a research in current context. Nonconventional Technologies Review/Revista de Tehnologii Neconventionale, 27.

    Google Scholar 

  • Dwivedi, A., Agrawal, D., & Madaan, J. (2019). Sustainable manufacturing evaluation model focusing leather industries in India: A TISM approach. Journal of Science and Technology Policy Management, 10, 319–359.

    Article  Google Scholar 

  • Ferreira, M. J., & Almeida, M. F. (2011). Recycling of leather waste containing chromium—A review. Materials Science Research Journal, 5, 327.

    CAS  Google Scholar 

  • Gomes, C. S., Repke, J. U., & Meyer, M. (2020). The effect of various pre-treatment methods of chromium leather shavings in continuous biogas production. Engineering in Life Sciences, 20, 79–89.

    Article  Google Scholar 

  • Hossain, A., Sultana, R., Moktadir, A., & Hossain, A. (2023). A novel bio-adsorbent development from tannery solid waste derived biodegradable keratin for the removal of hazardous chromium: A cleaner and circular economy approach. Journal of Cleaner Production, 137471.

    Google Scholar 

  • Jiang, H., Liu, J., & Han, W. (2016). The status and developments of leather solid waste treatment: A mini-review. Waste Management & Research, 34, 399–408.

    Article  Google Scholar 

  • John Sundar, V., Gnanamani, A., Muralidharan, C., Chandrababu, N. K., & Mandal, A. B. (2011). Recovery and utilization of proteinous wastes of leather making: A review. Reviews in Environmental Science and Bio/technology, 10, 151–163.

    Article  Google Scholar 

  • Joseph, K., & Nithya, N. (2009). Material flows in the life cycle of leather. Journal of Cleaner Production, 17, 676–682.

    Article  CAS  Google Scholar 

  • Kanagaraj, J., Senthilvelan, T., Panda, R., & Kavitha, S. (2015). Eco-friendly waste management strategies for greener environment towards sustainable development in leather industry: A comprehensive review. Journal of Cleaner Production, 89, 1–17.

    Article  CAS  Google Scholar 

  • Karthikeyan, R., Balaji, S., & Sehgal, P. (2007). Industrial applications of keratins–A review.

    Google Scholar 

  • Kolomaznik, K., Barinova, M., & Fürst, T. (2009). Possibility of using tannery waste for biodiesel production. Journal of the American Leather Chemists Association, 104, 177–182.

    CAS  Google Scholar 

  • Koppiahraj, K., Bathrinath, S., & Saravanasankar, S. (2019). Leather waste management scenario in developed and develo** nations. International Journal of Engineering and Advanced Technology, 9, 852–857.

    Article  Google Scholar 

  • Kumar, V. K., Mahendiran, R., Subramanian, P., Karthikeyan, S., & Surendrakumar, A. (2022). Optimization of inoculum to substrate ratio for enhanced methane yield from leather fleshings in a batch study. Journal of the Indian Chemical Society, 99, 100384.

    Article  Google Scholar 

  • Li, A., Ge, W., Liu, L., & Qiu, G. (2022). Preparation, adsorption performance and mechanism of MgO-loaded biochar in wastewater treatment: A review. Environmental Research, 212, 113341.

    Article  CAS  Google Scholar 

  • Li, Y., Guo, R., Lu, W., & Zhu, D. (2019). Research progress on resource utilization of leather solid waste. Journal of Leather Science and Engineering, 1, 1–17.

    Article  Google Scholar 

  • Mella, B., Benvenuti, J., Oliveira, R. F., & Gutterres, M. (2019). Preparation and characterization of activated carbon produced from tannery solid waste applied for tannery wastewater treatment. Environmental Science and Pollution Research, 26, 6811–6817.

    Article  CAS  Google Scholar 

  • Mohan, S. V., Nikhil, G., Chiranjeevi, P., Reddy, C. N., Rohit, M., Kumar, A. N., & Sarkar, O. J. B. T. (2016). Waste biorefinery models towards sustainable circular bioeconomy: Critical review and future perspectives, 215, 2–12.

    Google Scholar 

  • Moktadir, M. A., Ahmadi, H. B., Sultana, R., Liou, J. J., & Rezaei, J. (2020). Circular economy practices in the leather industry: A practical step towards sustainable development. Journal of Cleaner Production, 251, 119737.

    Article  Google Scholar 

  • Moktadir, M. A., & Rahman, M. M. (2022). Energy production from leather solid wastes by anaerobic digestion: A critical review. Renewable and Sustainable Energy Reviews, 161, 112378.

    Google Scholar 

  • Moza, A., Ram, N. R., Srivastava, N., & Nikhil, G. (2022). Bioprocessing of low-value food waste to high-value volatile fatty acids for applications in energy and materials: A review on process-flow. Bioresource Technology Reports, 101123.

    Google Scholar 

  • Mozhiarasi, V., Krishna, B. B., Nagabalaji, V., Srinivasan, S. V., Bhaskar, T., & Suthanthararajan, R. (2021). Leather industry waste based biorefinery. Elsevier.

    Book  Google Scholar 

  • Muralidharan, V., Palanivel, S., & Balaraman, M. (2022). Turning problem into possibility: A comprehensive review on leather solid waste intra-valorization attempts for leather processing. Journal of Cleaner Production, 133021.

    Google Scholar 

  • Nazer, D. W., & Siebel, M. A. (2006). Reducing the environmental impact of the unhairing–liming process in the leather tanning industry. Journal of Cleaner Production, 14, 65–74.

    Article  Google Scholar 

  • Omoloso, O., Mortimer, K., Wise, W. R., & Jraisat, L. (2021). Sustainability research in the leather industry: A critical review of progress and opportunities for future research. Journal of Cleaner Production, 285, 125441.

    Article  Google Scholar 

  • Omoloso, O., Wise, W., Mortimer, K., Jraisat, L., & Omoloso, S. (2020). Corporate sustainability disclosure: A leather industry perspective. Emerging Science Journal, 4, 1–11.

    Article  Google Scholar 

  • Ossai, I. C., Hamid, F. S., & Hassan, A. (2022). Valorisation of keratinous wastes: A sustainable approach towards a circular economy. Waste Management, 151, 81–104.

    Article  Google Scholar 

  • Parisi, M., Nanni, A., & Colonna, M. (2021). Recycling of chrome-tanned leather and its utilization as polymeric materials and in polymer-based composites: A review. Polymers, 13, 429.

    Article  CAS  Google Scholar 

  • Patel, K., Munir, D., & Santos, R. M. (2022). Beneficial use of animal hides for abattoir and tannery waste management: A review of unconventional, innovative, and sustainable approaches. Environmental Science and Pollution Research, 1–17.

    Google Scholar 

  • Pati, A., Chaudhary, R., & Subramani, S. (2014). A review on the management of chrome-tanned leather shavings: A holistic paradigm to combat the environmental issues. Environmental Science and Pollution Research, 21, 11266–11282.

    Article  CAS  Google Scholar 

  • Piccin, J. S., Gomes, C. S., Mella, B., & Gutterres, M. (2016). Color removal from real leather dyeing effluent using tannery waste as an adsorbent. Journal of Environmental Chemical Engineering, 4, 1061–1067.

    Article  CAS  Google Scholar 

  • Priebe, G., Kipper, E., Gusmão, A., Marcilio, N., & Gutterres, M. (2016). Anaerobic digestion of chrome-tanned leather waste for biogas production. Journal of Cleaner Production, 129, 410–416.

    Article  CAS  Google Scholar 

  • Ram, N. R., & Nikhil, G. (2022). A critical review on sustainable biogas production with focus on microbial-substrate interactions: Bottlenecks and breakthroughs. Bioresource Technology Reports, 101170.

    Google Scholar 

  • Reddy, C. C., Khilji, I. A., Gupta, A., Bhuyar, P., Mahmood, S., Al-Japairai, K. A. S., & Chua, G. K. (2021). Valorization of keratin waste biomass and its potential applications. Journal of Water Process Engineering, 40, 101707.

    Article  Google Scholar 

  • Rigueto, C. V. T., Rosseto, M., Krein, D. D. C., Ostwald, B. E. P., Massuda, L. A., Zanella, B. B., & Dettmer, A. (2020). Alternative uses for tannery wastes: A review of environmental, sustainability, and science. Journal of Leather Science and Engineering, 2, 1–20.

    Article  Google Scholar 

  • Sai Bhavya, K., Selvarani, A., V Samrot, A., Javad, M., Thevarkattil, P., & Vvss, A. (2019). Leather processing, its effects on environment, and alternatives of chrome tanning. International Journal of Advanced Research in Engineering and Technology (IJARET), 10.

    Google Scholar 

  • Saira, G., & Shanthakumar, S. (2023). Zero waste discharge in tannery industries–An achievable reality? A recent review. Journal of Environmental Management, 335, 117508.

    Article  CAS  Google Scholar 

  • Sathish, M., Madhan, B., & Rao, J. R. (2019). Leather solid waste: An eco-benign raw material for leather chemical preparation–A circular economy example. Waste Management, 87, 357–367.

    Article  CAS  Google Scholar 

  • Senthilkumar, N., Chowdhury, S., & Sanpui, P. (2023). Extraction of keratin from keratinous wastes: Current status and future directions. Journal of Material Cycles and Waste Management, 25, 1–16.

    Article  Google Scholar 

  • Shanmugam, P., & Horan, N. (2009). Optimising the biogas production from leather fleshing waste by co-digestion with MSW. Bioresource Technology, 100, 4117–4120.

    Article  CAS  Google Scholar 

  • Sharma, N., & Vuppu, S. (2023). Computational modelling and molecular docking of industrial leather enzymes. Molecular Biotechnology, 1–19.

    Google Scholar 

  • Sharma, S., & Gupta, A. (2016). Sustainable management of keratin waste biomass: Applications and future perspectives. Brazilian Archives of Biology and Technology, 59.

    Google Scholar 

  • Shaw, S., Chattopadhyay, P. K., Singha, N. R., & Mukherjee, G. (2022). Resource utilisation of solid leather waste: Part I. Journal of the Society of Leather Technologists and Chemists, 106, 137–144.

    CAS  Google Scholar 

  • Simioni, T., Agustini, C. B., Dettmer, A., & Gutterres, M. (2022). Enhancement of biogas production by anaerobic co-digestion of leather waste with raw and pretreated wheat straw. Energy, 253, 124051.

    Article  CAS  Google Scholar 

  • Sivaram, N., & Barik, D. (2019). Toxic waste from leather industries. Elsevier.

    Book  Google Scholar 

  • Sultana, R., Dwivedi, A., & Moktadir, M. A. (2022). Investigating the role of consumers, producers, and policymakers: A case of leather supply chain towards sustainable chemistry. Current Opinion in Green and Sustainable Chemistry, 100724.

    Google Scholar 

  • Suresh, V., Kanthimathi, M., Thanikaivelan, P., Rao, J. R., & Nair, B. U. (2001). An improved product-process for cleaner chrome tanning in leather processing. Journal of Cleaner Production, 9, 483–491.

    Article  Google Scholar 

  • Taghipour, M., & Jalali, M. (2016). Influence of organic acids on kinetic release of chromium in soil contaminated with leather factory waste in the presence of some adsorbents. Chemosphere, 155, 395–404.

    Article  CAS  Google Scholar 

  • Tang, Y., Zhao, J., Zhang, Y., Zhou, J., & Shi, B. (2021). Conversion of tannery solid waste to an adsorbent for high-efficiency dye removal from tannery wastewater: A road to circular utilization. Chemosphere, 263, 127987.

    Article  CAS  Google Scholar 

  • Velvizhi, G., Ranjitha, J., Vijayalakshmi, S., & Nikhil, G. (2020). Advancements in nanobiocatalysis for bioenergy and biofuel production. CRC Press.

    Book  Google Scholar 

  • Verma, S. K., & Sharma, P. C. (2022). Current trends in solid tannery waste management. Critical Reviews in Biotechnology, 1–18.

    Google Scholar 

  • Wang, Y.-N., Zeng, Y., Zhou, J., Zhang, W., Liao, X., & Shi, B. (2016). An integrated cleaner beamhouse process for minimization of nitrogen pollution in leather manufacture. Journal of Cleaner Production, 112, 2–8.

    Article  CAS  Google Scholar 

  • Yang, M., Yan, L., Li, Y., Huang, P., Han, W., & Dang, X. (2022). An environment-friendly leather waste-based liquid film mulching and its application for facilitating the growth of maize crops. Process Safety and Environmental Protection, 159, 1236–1244.

    Article  CAS  Google Scholar 

  • Yuliana, M., Santoso, S. P., Soetaredjo, F. E., Ismadji, S., Ayucitra, A., Angkawijaya, A. E., Ju, Y.-H., & Tran-Nguyen, P. L. (2020). A one-pot synthesis of biodiesel from leather tanning waste using supercritical ethanol: Process optimization. Biomass and Bioenergy, 142, 105761.

    Article  CAS  Google Scholar 

  • Yuliana, M., Santoso, S. P., Soetaredjo, F. E., Ismadji, S., Ayucitra, A., Gunarto, C., Angkawijaya, A. E., Ju, Y.-H., & Truong, C.-T. (2021). Efficient conversion of leather tanning waste to biodiesel using crab shell-based catalyst: WASTE-TO-ENERGY approach. Biomass and Bioenergy, 151, 106155.

    Article  CAS  Google Scholar 

  • Zhang, C., **a, F., Long, J., & Peng, B. (2017). An integrated technology to minimize the pollution of chromium in wet-end process of leather manufacture. Journal of Cleaner Production, 154, 276–283.

    Article  CAS  Google Scholar 

  • Zhang, X., Chattha, S. A., Song, J., Zhang, C., & Peng, B. (2022). An integrated pickling-bating technology for reducing ammonia-nitrogen and chloride pollution in leather manufacturing. Journal of Cleaner Production, 375, 134070.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitin Naresh Pandhare .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Appala, V.N.S.G., Pandhare, N.N., Bajpai, S., Nikhil, G.N. (2024). Valorization of Leather Industry Solid Waste for Sustainability Through a Biorefinery Approach. In: Arya, R.K., Verros, G.D., Verma, O.P., Hussain, C.M. (eds) From Waste to Wealth. Springer, Singapore. https://doi.org/10.1007/978-981-99-7552-5_51

Download citation

Publish with us

Policies and ethics

Navigation