Mathematical Models for Optimization of Anaerobic Digestion and Biogas Production

  • Chapter
  • First Online:
Zero Waste Biorefinery

Abstract

Current energy demand compels us to develop alternative energy options that reduce environmental pollution concerns and global warming. Biogas is a sustainable energy source mainly made up of methane produced through the anaerobic digestion of organic materials. Biogas modeling may offer dynamic data on the condition of anaerobic fermentation, such as biogas yield forecasts and process optimization. Models can be classified as the comprehensive white-box models (such as the anaerobic digestion model), simplifications and abstractions of grey box anaerobic digestion models (such as optimization), and highly simplified black-box process models (such as Monod’s). Recently, machine learning has developed as a novel technique to model development that might be used to anticipate and regulate anaerobic digestion performance. Biogas modeling may be used to estimate biogas output or enhance the anaerobic digestion process by providing dynamic information on the condition of the anaerobic digestion process. Many operational factors, separately or in combination, can impact anaerobic digestion's effectiveness in terms of biogas output and quality maximization. Improvements in the existing models and the development of new models will always be welcomed for better process control, understanding and prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 149.79
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 192.59
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 192.59
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agustini CB, Spier F, da Costa M, Gutterres M (2018) Biogas production for anaerobic co-digestion of tannery solid wastes under presence and absence of the tanning agent. Resour Conserv Recycl 130:51–59

    Article  Google Scholar 

  • Akbaş H, Bilgen B, Turhan AM (2015) An integrated prediction and optimization model of biogas production system at a wastewater treatment facility. Bioresour Technolol 196:566–576

    Article  Google Scholar 

  • Andrews JF (1969) Dynamic model of the anaerobic digestion process. J Sanit Eng Div 95(1):95–116

    Article  CAS  Google Scholar 

  • Andriani D, Wresta A, Atmaja TD, Saepudin A (2014) A review on optimization production and upgrading biogas through CO2 removal using various techniques. Appl Biochem Biotechnol 172:1909–1928

    Article  CAS  Google Scholar 

  • Aragaw T, Gessesse A (2013) Co-digestion of cattle manure with organic kitchen waste to increase biogas production using rumen fluid as inoculums. Inter J Hysical Sci 8:443–450

    CAS  Google Scholar 

  • Balat M, Balat H (2009) Biogas as a renewable energy source—a review. Energy Sour Part A 31(14):1280–1293

    Article  CAS  Google Scholar 

  • Banos R, Manzano-Agugliaro F, Montoya F, Gil C, Alcayde A, Gómez J (2011) Optimization methods applied to renewable and sustainable energy: a review. Renew Sustain Energy Rev 15:1753–1766

    Article  Google Scholar 

  • Barik D, Murugan S (2015) An artificial neural network and genetic algorithm optimized model for biogas production from co-digestion of seed cake of karanja and cattle dung. Waste Biomass Valorization 6:1015–1027

    Article  CAS  Google Scholar 

  • Batstone DJ, Pind PF, Angelidaki I (2003) Kinetics of thermophilic, anaerobic oxidation of straight and branched chain butyrate and valerate. Biotechnol Bioeng 84(2):195–204

    Article  CAS  Google Scholar 

  • Blumensaat F, Keller J (2005) Modelling of two-stage anaerobic digestion using the IWA Anaerobic Digestion Model No. 1 (ADM1). Wat Res 39:171–183

    Google Scholar 

  • Bollon J, Le-Hyaric R, Benbelkacem H, Buffiere P (2011) Development of a kinetic model for anaerobic dry digestion processes: focus on acetate degradation and moisture content. Biochem Eng J 56:212–218

    Article  CAS  Google Scholar 

  • Breig SJM, Luti KJK (2021) Response surface methodology: a review on its applications and challenges in microbial cultures. Mater Today: Proc (2021)

    Google Scholar 

  • Bryant M (1979) Microbial methane production—theoretical aspects. J Anim Sci 48(1):193–201

    Article  CAS  Google Scholar 

  • Chang C-C, Chen W-C, Ho T-F, Wu H-S, Wei Y-H (2011) Development of natural anti-tumor drugs by microorganisms. J Biosci Bioeng 111:501–511

    Article  CAS  Google Scholar 

  • Chibueze U, Okorie N, Oriaku O, Isu J, Peters E (2017) The production of biogas using cow dung and food waste. Inter J Mater Chem 7:21–24

    CAS  Google Scholar 

  • Chiu SL, Lo IM (2016) Reviewing the anaerobic digestion and co-digestion process of food waste from the perspectives on biogas production performance and environmental impacts. Environ Sci Pollut Res 23:24435–24450

    Article  CAS  Google Scholar 

  • De Clercq D, Wen Z, Fei F, Caicedo L, Yuan K, Shang R (2020) Interpretable machine learning for predicting biomethane production in industrial-scale anaerobic co-digestion. Sci Total Environ 712:134574

    Google Scholar 

  • Dach J, Koszela K, Boniecki P, Zaborowicz M, Lewicki A, Czekała W, Skwarcz J, Qiao W, Piekarska-Boniecka H, Białobrzewski I (2016) The use of neural modelling to estimate the methane production from slurry fermentation processes. Renew Sustain Energy Rev 56:603–610

    Article  CAS  Google Scholar 

  • Derbal K, Bencheikh-Lehocine M, Cecchi F, Meniai A-H, Pavan P (2009) Application of the IWA ADM1 model to simulate anaerobic co-digestion of organic waste with waste activated sludge in mesophilic condition. Biores Technol 100:1539–1543

    Article  CAS  Google Scholar 

  • Dhanya B, Mishra A, Chandel AK, Verma ML (2020) Development of sustainable approaches for converting the organic waste to bioenergy. Sci Total Environ 723:138109

    Google Scholar 

  • Esposito G, Frunzo L, Giordano A, Liotta F, Panico A, Pirozzi F (2012) Anaerobic co-digestion of organic wastes. Rev Environ Sci Bio/techno 11:325–341

    Article  CAS  Google Scholar 

  • Gaden EL Jr (1959) Fermentation process kinetics. J Biochem Microbiol Technol Eng 1(4):413–429

    Article  CAS  Google Scholar 

  • Gerber M, Span R (2008) An analysis of available mathematical models for anaerobic digestion of organic substances for production of biogas. Proc. IGRC, Paris

    Google Scholar 

  • Hagos K, Zong J, Li D, Liu C, Lu X (2017) Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives. Renew Sustain Energy Rev 76:1485–1496

    Article  CAS  Google Scholar 

  • Haugen F, Bakke R, Lie B (2013) Adapting dynamic mathematical models to a pilot anaerobic digestion reactor

    Google Scholar 

  • Isci A, Demirer GN (2007) Biogas production potential from cotton wastes. Renew Energy 32:750–757

    Article  CAS  Google Scholar 

  • Kamalinasab M, Vakili A (2014) Utilization of genetic algorithm to optimize biogas production from livestock waste to use in a CHP Plant in agricultural farms. Biotechnol J Int 1149–1164s

    Google Scholar 

  • Kiely G, Tayfur G, Dolan C, Tanji K (1997) Physical and mathematical modelling of anaerobic digestion of organic wastes. Water Res 31(3):534–540

    Article  CAS  Google Scholar 

  • Kleerebezem R, Van Loosdrecht M (2006) Waste characterization for implementation in ADM1. Water Sci Technol 54:167–174

    Article  CAS  Google Scholar 

  • Krogh A (2008) What are artificial neural networks? Nat Biotechnol 26:195–197

    Article  CAS  Google Scholar 

  • Kusiak A, Wei X (2014) Prediction of methane production in wastewater treatment facility: a data-mining approach. Ann Oper Res 216:71–81

    Article  Google Scholar 

  • Kythreotou N, Florides G, Tassou SA (2014) A review of simple to scientific models for anaerobic digestion. Renew Energy 71:701–714

    Article  CAS  Google Scholar 

  • Lakshmi C, Vijayalakshmi S (2017) Studies on biogas production using withered flowers as a substrate. Res J Pharm Technol 10:4223–4226

    Article  Google Scholar 

  • Lauwers J, Appels L, Thompson IP, Degrève J, Van Impe JF, Dewil R (2013) Mathematical modelling of anaerobic digestion of biomass and waste: power and limitations. Prog Energy Combust Sci 39:383–402

    Article  Google Scholar 

  • Lawrence AW, McCarty PL (1969) Kinetics of methane fermentation in anaerobic treatment. J Water Pollut Control Fed R1-R17

    Google Scholar 

  • Li C, Bai J, Cai Z, Ouyang F (2002) Optimization of a cultural medium for bacteriocin production by Lactococcus lactis using response surface methodology. J Biotechnol 93:27–34

    Article  CAS  Google Scholar 

  • Lindmark J, Thorin E, Fdhila RB, Dahlquist E (2014) Effects of mixing on the result of anaerobic digestion. Renew Sustain Energy Rev 40:1030–1047

    Article  CAS  Google Scholar 

  • Lindmark J, Bel Fdhila R, Thorin E (2009) On modelling the mixing in a digester for biogas production. In: MATHMOD 09, 6th international conference on mathematical modelling. Vienna, Austria

    Google Scholar 

  • Lindmark J, Bel Fdhila R, Thorin E (2011) Retention time and nutrient tracking inside a digester for biogas production. In: 52nd international conference of scandinavian simulation society ScanSIMS, pp 29–30

    Google Scholar 

  • Loganath R, Mazumder D (2020) Development of a simplified mathematical model for anaerobic digestion. In: Sustain Waste Manage Policies Case Stud, Springer, pp 571–578

    Google Scholar 

  • Lübken M, Wichern M, Schlattmann M, Gronauer A, Horn H (2007) Modelling the energy balance of an anaerobic digester fed with cattle manure and renewable energy crops. Water Res 41:4085–4096

    Article  Google Scholar 

  • Markowski M, Białobrzewski I, Zieliński M, Dębowski M, Krzemieniewski M (2014) Optimizing low-temperature biogas production from biomass by anaerobic digestion. Renew Energy 69:219–225

    Article  CAS  Google Scholar 

  • McLeod JD, Othman MZ, Beale DJ, Joshi D (2015) The use of laboratory scale reactors to predict sensitivity to changes in operating conditions for full-scale anaerobic digestion treating municipal sewage sludge. Biores Technol 189:384–390

    Article  CAS  Google Scholar 

  • Mendes C, da Silva Magalhes R, Esquerre K, Queiroz LM (2015) Artificial neural network modeling for predicting organic matter in a full-scale up-flow anaerobic sludge blanket (UASB) reactor. Environ Model Assess 20:625–635

    Article  Google Scholar 

  • Meroney RN, Colorado P (2009) CFD simulation of mechanical draft tube mixing in anaerobic digester tanks. Water Res 43:1040–1050

    Article  CAS  Google Scholar 

  • Monod J (1949) The growth of bacterial cultures: annual reviews in microbiology 3

    Google Scholar 

  • Montgomery DC, Peck EA, Vining GG (2021) Introduction to linear regression analysis. Wiley, New York

    Google Scholar 

  • Morales-Polo C, Cledera-Castro MDM, Moratilla Soria BY (2018) Reviewing the anaerobic digestion of food waste: from waste generation and anaerobic process to its perspectives. Appl Sci 8:1804

    Google Scholar 

  • Mosey F (1983) Mathematical modelling of the anaerobic digestion process: regulatory mechanisms for the formation of short-chain volatile acids from glucose. Water Sci Technol 15(8–9):209–232

    Article  CAS  Google Scholar 

  • Nair VV, Dhar H, Kumar S, Thalla AK, Mukherjee S, Wong JW (2016) Artificial neural network based modeling to evaluate methane yield from biogas in a laboratory-scale anaerobic bioreactor. Biores Technol 217:90–99

    Article  CAS  Google Scholar 

  • Portugal I, Alencar P, Cowan D (2018) The use of machine learning algorithms in recommender systems: a systematic review. Expert Syst Appl 97:205–227

    Article  Google Scholar 

  • Qdais HA, Hani KB, Shatnawi N (2010) Modeling and optimization of biogas production from a waste digester using artificial neural network and genetic algorithm. Resour Conserv Recycl 54:359–363

    Article  Google Scholar 

  • Ramachandran A, Rustum R, Adeloye AJ (2019) Review of anaerobic digestion modeling and optimization using nature-inspired techniques. Processes 7:953

    Article  CAS  Google Scholar 

  • Ramírez J, Santos I, Morales O, Morrissey M, Vázquez M (2000) Application of microbial transglutaminase to improve mechanical properties of surimi from silver carp utilizaciónde transglutaminasa microbiana paramellora-laspropiedades mecánicas de surimide carpaplateada utilizaciónde transglutaminasamicrobiana paramejorarlaspropiedades mecánicas de surimide carpaplateada. CYTA-J Food 3:21–28

    Google Scholar 

  • Shin H-S, Song Y-C (1995) A model for evaluation of anaerobic degradation characteristics of organic waste: focusing on kinetics, rate-limiting step. Environ Technol 16(8):775–784

    Article  CAS  Google Scholar 

  • Stazi V, Tomei MC (2018) Enhancing anaerobic treatment of domestic wastewater: state of the art, innovative technologies and future perspectives. Sci Total Environ 635:78–91

    Article  CAS  Google Scholar 

  • Thorin E, Nordlander E, Lindmark J, Dahlquist E, Yan J, Bel Fdhila R (2012) Modeling of the biogas production process-a review. In: International conference on applied energy ICAE 2012, Suzhou, China, 5–8 Jul 2012

    Google Scholar 

  • Tortora GJ, Funke BR, Case CL, Weber D, Bair W (2004) Microbiology: an introduction. Benjamin Cummings San Francisco, CA

    Google Scholar 

  • Veeken A, Hamelers B (1999) Effect of temperature on hydrolysis rates of selected biowaste components. Biores Technol 69(3):249–254

    Article  CAS  Google Scholar 

  • Velázquez-Martí B, Meneses-Quelal OW, Gaibor-Chavez J, Niño-Ruiz Z (2018) Review of mathematical models for the anaerobic digestion process. In: Anaerobic digestion, IntechOpen

    Google Scholar 

  • Walid F, El Fkihi S, Benbrahim H, Tagemouati H (2021) Modeling and optimization of anaerobic digestion: a review. In: E3S web of conferences. EDP Sciences, p 01022

    Google Scholar 

  • Wang X, Yang G, Li F, Feng Y, Ren G, Han X (2013) Evaluation of two statistical methods for optimizing the feeding composition in anaerobic co-digestion: Mixture design and central composite design. Biores Technol 131:172–178

    Article  CAS  Google Scholar 

  • Wang L, Long F, Liao W, Liu H (2020) Prediction of anaerobic digestion performance and identification of critical operational parameters using machine learning algorithms. Bioresour Technol 298:122495

    Google Scholar 

  • Ward A (2010) Biogas potential of fish wax with cattle manure. Department of Biosystems Engineering, Fakulty of Agricultural Sciences, University of Aarhus, Internal Report-Animal Science

    Google Scholar 

  • Wu B (2012) CFD simulation of mixing for high-solids anaerobic digestion. Biotechnol Bioeng 109:2116–2126

    Article  CAS  Google Scholar 

  • **e S, Hai FI, Zhan X, Guo W, Ngo HH, Price WE, Nghiem LD (2016) Anaerobic co-digestion: a critical review of mathematical modelling for performance optimization. Biores Technol 222:498–512

    Article  CAS  Google Scholar 

  • Yan N, Ren B, Wu B, Bao D, Zhang X, Wang J (2016) Multi-objective optimization of biomass to biomethane system. Green Energy Environ 1:156–165

    Article  Google Scholar 

  • Yu L, Wensel PC, Ma J, Chen S (2013) Mathematical modeling in anaerobic digestion (AD). J Bioremed Biodegradation S 4

    Google Scholar 

  • Zagorskis A, Baltrėnas P, Misevičius A, Baltrėnaitė E (2012) Biogas production by anaerobic treatment of waste mixture consisting of cattle manure and vegetable remains. Environ Eng Manag J 11:849–856

    Article  CAS  Google Scholar 

  • Zhang Q, Hu J, Lee D-J (2016) Biogas from anaerobic digestion processes: research updates. Renew Energy 98:108–119

    Article  CAS  Google Scholar 

  • Zhou H, Löffler D, Kranert M (2011) Model-based predictions of anaerobic digestion of agricultural substrates for biogas production. Biores Technol 102:10819–10828

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Ms. Venkata Naga Surya Gunasri Appala acknowledges Dr. B.R. Ambedkar National Institute of Technology Jalandhar for providing financial support from the Ministry of Education (MoE), Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitin Naresh Pandhare .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Appala, V.N.S.G., Pandhare, N.N., Bajpai, S. (2022). Mathematical Models for Optimization of Anaerobic Digestion and Biogas Production. In: Nandabalan, Y.K., Garg, V.K., Labhsetwar, N.K., Singh, A. (eds) Zero Waste Biorefinery. Energy, Environment, and Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-16-8682-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-8682-5_21

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-8681-8

  • Online ISBN: 978-981-16-8682-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation