Intelligent Protection

  • Chapter
  • First Online:
The Intelligent Safety of Automobile

Part of the book series: Key Technologies on New Energy Vehicles ((KTNEV))

  • 258 Accesses

Abstract

Intelligent protection (IP) refers to the identification of collision severity and damage risk in dangerous driving scenarios based on damage mechanism and key influencing factors of human-vehicle system, and the adaptive adjustment of on-board safety systems for effective protection of traffic participants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now
Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 149.79
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 192.59
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. WHO., Global launch: decade of action for road safety 2011–2020. 2011, World Health Organization: Geneva.

    Google Scholar 

  2. WHO, Global status report on road safety 2018: Summary. 2018, World Health Organization.

    Google Scholar 

  3. Kamnik, R., M.N. Perc, D. Topolšek, Using the scanners and drone for comparison of point cloud accuracy at traffic accident analysis. Accident Analysis Prevention, 2020. 135: p. 105391.

    Article  Google Scholar 

  4. Su, S., W. Liu, K. Li, G. Yang, C. Feng, J. Ming, G. Liu, S. Liu, Z. Yin, Develo** an unmanned aerial vehicle-based rapid map** system for traffic accident investigation. Australian journal of forensic sciences, 2016. 48(4): p. 454–468.

    Article  Google Scholar 

  5. IRTAD. Available from: https://www.itf-oecd.org/IRTAD.

  6. GIDAS. Available from: https://www.gidas.org/en/willkommen/.

  7. CIDAS. Available from: http://www.c-ncap.org/cncap/yqlj.

  8. NAIS. Available from: https://www.dpac.org.cn/NAIS/.

  9. CISS. Available from: https://www.nhtsa.gov/crash-data-systems/crash-investigation-sampling-system.

  10. NASS. Available from: https://www.nhtsa.gov/research-data/national-automotive-sampling-system-nass.

  11. NTHSA. Available from: https://www.nhtsa.gov/crash-data-systems.

  12. PCDS. Available from: https://catalog.data.gov/sv/dataset/the-pedestrian-crash-data-study-pcds.

  13. WADB. Available from: https://www.fia.com/wadb-world-accident-database.

  14. Sun Chuan, Research on vehicle driving risk identification and control based on natural driving data 2016. Wuhan University of Technology: Wuhan [in Chinese].

    Google Scholar 

  15. EuroFOT. Available from: https://www.eurofot-ip.eu/.

  16. SHRP2. Available from: https://www.shrp2nds.us/.

  17. Zhan, W., L. Sun, D. Wang, H. Shi, A. Clausse, M. Naumann, J. Kummerle, H. Konigshof, C. Stiller, A. de La Fortelle, Interaction dataset: An international, adversarial and cooperative motion dataset in interactive driving scenarios with semantic maps. ar**v preprint ar**v:1910.03088, 2019.

  18. National Bureau of Statistics of the People’s Republic of China. Available from: http://www.stats.gov.cn/tjsj/ndsj/2020/indexch.htm [in Chinese].

  19. Shi, L., Y. Han, H. Huang, J. Davidsson, R. Thomson, Evaluation of injury thresholds for predicting severe head injuries in vulnerable road users resulting from ground impact via detailed accident reconstructions. Biomechanics and Modeling in Mechanobiology, 2020. 19(5): p. 1845–1863.

    Article  Google Scholar 

  20. CIREN. Available from: https://one.nhtsa.gov/Research/Crash-Injury-Research-(CIREN).

  21. Wang, S., Z. Li, Y. Guo, Exploring the mechanism of crashes with automated vehicles using statistical modeling approaches. PLoS ONE, 2019. 14(3).

    Google Scholar 

  22. Bucsuházy, K., E. Matuchová, R. Zůvala, P. Moravcová, M. Kostíková, R. Mikulec, Human factors contributing to the road traffic accident occurrence. Transportation research procedia, 2020. 45: p. 555–561.

    Article  Google Scholar 

  23. Dingus, T.A., F. Guo, S. Lee, J.F. Antin, M. Perez, M. Buchanan-King, J. Hankey, Driver crash risk factors and prevalence evaluation using naturalistic driving data. Proceedings of the National Academy of Sciences, 2016. 113(10): p. 2636–2641.

    Article  Google Scholar 

  24. Lombardi, D.A., W.J. Horrey, T.K. Courtney, Age-related differences in fatal intersection crashes in the United States. Accident Analysis & Prevention, 2017. 99: p. 20–29.

    Article  Google Scholar 

  25. Martín, L., L. Baena, L. Garach, G. López, J. De Oña, Using data mining techniques to road safety improvement in Spanish roads. Procedia-social and behavioral sciences, 2014. 160: p. 607–614.

    Article  Google Scholar 

  26. Li, L., S. Shrestha, G. Hu. Analysis of road traffic fatal accidents using data mining techniques. in 2017 IEEE 15th International Conference on Software Engineering Research, Management and Applications (SERA). 2017. IEEE.

    Google Scholar 

  27. Chen, C., G. Zhang, R. Tarefder, J. Ma, H. Wei, H. Guan, A Multinomial Logit Model-Bayesian Network Hybrid Approach for Driver Injury Severity Analyses in Rear-End Crashes. Accident Analysis & Prevention, 2015. 80(jul.): p. 76–88.

    Google Scholar 

  28. Das, S., A. Dutta, I. Tsapakis, Automated vehicle collisions in California: Applying Bayesian latent class model. IATSS Research, 2020. 44(4): p. 300–308.

    Article  Google Scholar 

  29. Kockelman, K.M., Y.J. Kweon, Driver injury severity: an application of ordered probit models. Accident Analysis & Prevention, 2002. 34(3): p. 313–321.

    Article  Google Scholar 

  30. Abu-Zidan, F.M., H.O. Eid, Factors affecting injury severity of vehicle occupants following road traffic collisions. Injury, 2015. 46(1): p. 136–141.

    Article  Google Scholar 

  31. Kröyer, H.R., Is 30 km/ha ‘safe’speed? Injury severity of pedestrians struck by a vehicle and the relation to travel speed and age. IATSS research, 2015. 39(1): p. 42–50.

    Article  Google Scholar 

  32. Ji Peijun, Research on occupant crash protection based on balanced constraint concept. 2016, Tsinghua University: Bei**g [in Chinese].

    Google Scholar 

  33. Longhitano, D., B. Henary, K. Bhalla, J. Ivarsson, J. Crandall, Influence of vehicle body type on pedestrian injury distribution. SAE transactions, 2005: p. 2283–2288.

    Google Scholar 

  34. Shang, S., D. Otte, G. Li, C. Simms, Detailed assessment of pedestrian ground contact injuries observed from in-depth accident data. Accident Analysis & Prevention, 2018. 110: p. 9–17.

    Article  Google Scholar 

  35. Otte, D., Influence of the fronthood length for the safety of pedestrians in car accidents and demands to the safety of small vehicles. SAE transactions, 1994: p. 1923–1933.

    Google Scholar 

  36. Howson, J.E., D. Lord, D.L. Bullard. The effect of driver height on the death rate in single-vehicle rollover accidents. in Transportation Research Board 91st Annual Meeting. 2012.

    Google Scholar 

  37. Zhu, S., J.E. Kim, X. Ma, A. Shih, D.B. Allison, BMI and Risk of Serious Upper Body Injury Following Motor Vehicle Crashes: Concordance of Real-World and Computer-Simulated Observations. PLoS Medicine, 2010. 7(3): p. e1000250.

    Article  Google Scholar 

  38. Itti, L., C. Koch, Computational modelling of visual attention. Nature Reviews Neuroscience, 2001. 2(3): p. 194–203.

    Article  Google Scholar 

  39. Ruan, J.S., P. Prasad, Head injury potential assessment in frontal impacts by mathematical modeling. SAE Transactions, 1994: p. 1677–1687.

    Google Scholar 

  40. Nahum, A.M., J.W. Melvin, Accidental Injury: Biomechanics and Prevention. 2012, New York: Springer-Verlag New York.

    Google Scholar 

  41. Ruan, J., R. El-Jawahri, L. Chai, S. Barbat, P. Prasad, Prediction and analysis of human thoracic impact responses and injuries in cadaver impacts using a full human body finite element model. 2003, SAE Technical Paper.

    Google Scholar 

  42. Crandall, J.R., B.S. Myers, D.F. Meaney, S.Z. Schmidtke, Pediatric injury biomechanics: archive & textbook. 2012: Springer Science & Business Media.

    Google Scholar 

  43. Moran, S.G., G. McGwin Jr, J.S. Metzger, J.E. Alonso, L.W. Rue III, Relationship between age and lower extremity fractures in frontal motor vehicle collisions. Journal of Trauma and Acute Care Surgery, 2003. 54(2): p. 261–265.

    Article  Google Scholar 

  44. Kuppa, S., O. Fessahaie, An overview of knee-thigh-hip injuries in frontal crashes in the United States. National Highway Traffic Safety Administration, ISSI, 2003. 416: p. 1–9.

    Google Scholar 

  45. Woo, S.L., R.E. Debski, J.D. Withrow, M.A. Janaushek, Biomechanics of knee ligaments. The American journal of sports medicine, 1999. 27(4): p. 533–543.

    Article  Google Scholar 

  46. Woo, S.L.-Y., S.D. Abramowitch, R. Kilger, R. Liang, Biomechanics of knee ligaments: injury, healing, and repair. Journal of biomechanics, 2006. 39(1): p. 1–20.

    Article  Google Scholar 

  47. Weiss, J.A., J.C. Gardiner, Computational modeling of ligament mechanics. Critical Reviews™ in Biomedical Engineering, 2001. 29(3).

    Google Scholar 

  48. Henninger, H.B., C.J. Underwood, S.J. Romney, G.L. Davis, J.A. Weiss, Effect of elastin digestion on the quasi‐static tensile response of medial collateral ligament. Journal of Orthopaedic Research, 2013. 31(8): p. 1226–1233.

    Article  Google Scholar 

  49. Wan, C., Z. Hao, S. Wen, A review on research on development of ligament constitutive relations on macro, meso, and micro levels. Acta Mechanica Solida Sinica, 2013. 26(4): p. 331–343.

    Article  Google Scholar 

  50. Fung, Y.-C., Bio-viscoelastic solids, in Biomechanics. 1981, Springer, New York: New York. p. 196–260.

    Google Scholar 

  51. Seeman, E., P.D. Delmas, Bone quality—the material and structural basis of bone strength and fragility. New England journal of medicine, 2006. 354(21): p. 2250–2261.

    Article  Google Scholar 

  52. Meachim, G., Effect of age on the thickness of adult articular cartilage at he shoulder joint. Annals of the rheumatic diseases, 1971. 30(1): p. 43.

    Article  Google Scholar 

  53. Accardi, M.A., S.D. McCullen, A. Callanan, S. Chung, P.M. Cann, M.M. Stevens, D. Dini, Effects of fiber orientation on the frictional properties and damage of regenerative articular cartilage surfaces. Tissue Engineering Part A, 2013. 19(19–20): p. 2300–2310.

    Article  Google Scholar 

  54. Burstein, A.H., J. Zika, K. Heiple, L. Klein, Contribution of collagen and mineral to the elastic-plastic properties of bone. JBJS, 1975. 57(7): p. 956–961.

    Article  Google Scholar 

  55. Sun **ngleng. Multi-scale experimental study on mechanical behavior and deformation mechanism of cortical bone materials under combined load. 2018, Jilin University: Changchun [in Chinese].

    Google Scholar 

  56. Wang, X., X. Xu, Assessing the relationship between self-reported driving behaviors and driver risk using a naturalistic driving study. Accident Analysis & Prevention, 2019. 128: p. 8–16.

    Article  Google Scholar 

  57. Haufe, S., J.-W. Kim, I.-H. Kim, A. Sonnleitner, M. Schrauf, G. Curio, B. Blankertz, Electrophysiology-based detection of emergency braking intention in real-world driving. Journal of neural engineering, 2014. 11(5): p. 056011.

    Article  Google Scholar 

  58. Deng, T., H. Yan, L. Qin, T. Ngo, B. Manjunath, How do drivers allocate their potential attention? driving fixation prediction via convolutional neural networks. IEEE Transactions on Intelligent Transportation Systems, 2019. 21(5): p. 2146–2154.

    Article  Google Scholar 

  59. Fang, J., D. Yan, J. Qiao, J. Xue, H. Yu, DADA: Driver Attention Prediction in Driving Accident Scenarios. IEEE Transactions on Intelligent Transportation Systems, 2021.

    Google Scholar 

  60. Choi, H.Y., S.J. Sah, B. Lee, Experimental and numerical studies of muscular activations of bracing occupant. 2005: p. 10–10.

    Google Scholar 

  61. Kallieris, D., D. Otte, R. Mattern, P. Wiedmann. Comparison of Sled Tests with Real Traffic Accidents. in Stapp Car Crash Conference. 1995.

    Google Scholar 

  62. Begeman, P.C., A.I. King, R.S. Levine, D.C. Viano. Biodynamic Response of the Musculoskeletal System to Impact Acceleration. in Stapp Car Crash Conference. 1980.

    Google Scholar 

  63. Shaw, G., D. Lessley, J. Crandall, R. Kent, L. Kitis, Elimination of thoracic muscle tensing effects for frontal crash dummies. SAE Transactions, 2005. 2005(724): p. 177–191.

    Google Scholar 

  64. Huber, P., M. Christova, G.A. D’Addetta, E. Gallasch, S. Kirschbichler, C. Mayer, A. Prüggler, A. Rieser, W. Sinz, D. Wallner. Muscle activation onset latencies and amplitudes during lane change in a full vehicle test. in Proceedings of the IRCOBI Conference. 2013.

    Google Scholar 

  65. Jonas Östh, Marín Ólafsdóttir, J. Davidsson, K. Brolin. Driver kinematic and muscle responses in braking events with standard and reversible pre-tensioned restraints: validation data for human models. in Stapp Car Crash Conference. 2013. SAE Technical Paper.

    Google Scholar 

  66. Ejima, S., Y. Zama, F. Satou, S. Holcombe, K. Ono, K. Kaneoka, I. Shiina. Prediction of the physical motion on human body based on muscle activities during Pre-ImpactIn. in IRCOBI Conference. 2008.

    Google Scholar 

  67. Nie, B., Q. Zhou, Can new passenger cars reduce pedestrian lower extremity injury? A review of geometrical changes of front-end design before and after regulatory efforts. Traffic injury prevention, 2016. 17(7): p. 712–719.

    Article  Google Scholar 

  68. Mizuno, K., J.T. Andrish, A.J. van den Bogert, S.G. McLean, Gender dimorphic ACL strain in response to combined dynamic 3D knee joint loading: implications for ACL injury risk. The Knee, 2009. 16(6): p. 432–440.

    Article  Google Scholar 

  69. Huang, Y., Q. Zhou, C. Koelper, Q. Li, B. Nie, Are riders of electric two-wheelers safer than bicyclists in collisions with motor vehicles? Accident Analysis & Prevention, 2020. 134: p. 105336.

    Article  Google Scholar 

  70. Hu, J., K.D. Klinich, Toward designing pedestrian-friendly vehicles. International Journal of Vehicle Safety, 2015. 8(1): p. 22–54.

    Article  Google Scholar 

  71. Yang, J., Review of Injury Biomechanics in Car-Pedestrian Collisions. International Journal of Vehicle Safety, 2005. 1.

    Google Scholar 

  72. Kramer, M., K. Burow, A. Heger, Fracture Mechanism of Lower Legs Under Impact Load. 1973.

    Google Scholar 

  73. Klinich, K., Biomechanics of pedestrian injuries related to lower extremity injury assessment tools: a review of the literature and analysis of pedestrian crash database. 2003.

    Google Scholar 

  74. Chou, C.C., R.J. Howell, B.Y. Chang, A Review and Evaluation of Various HIC Algorithms. 1988, SAE International.

    Google Scholar 

  75. Huang Jun, Research on rapid optimization design of vehicle front-end structure for pedestrian lower limb collision protection. 2013, Tsinghua University: Bei**g [in Chinese].

    Google Scholar 

  76. Yu Tongxi, Lu Guoxing, Zhang **ong, Energy absorption: energy absorption of materials and structures. 2019, Bei**g: Science Press [in Chinese].

    Google Scholar 

  77. Forrestal, M., D. Wesenberg, Elastic-Plastic Response of Simply Supported 1018 Steel Beams to Impulse Loads. Journal of Applied Mechanics, 1977. 44.

    Google Scholar 

  78. Forrestal, M.J., M.J. Sagartz, Elastic-Plastic Response of 304 Stainless Steel Beams to Impulse Loads. Journal of Applied Mechanics, 1978. 45.

    Google Scholar 

  79. Symonds, P.S., Viscoplastic behavior in response of structures to dynamic loading//HUFFINGTON N. Behavior of materials under dynamic loading. New York:ASME: 106–124. 1965.

    Google Scholar 

  80. Bodner, S., W.G. Speirs, Dynamic plasticity experiments on aluminium cantilever beams at elevated temperature. Journal of The Mechanics and Physics of Solids - J MECH PHYS SOLIDS, 1963. 11: p. 65–68.

    Article  Google Scholar 

  81. Krempl, E., F. Khan, Rate (time)-dependent deformation behavior: an overview of some properties of metals and solid polymers. International Journal of Plasticity, 2003. 19(7): p. 1069–1095.

    Article  MATH  Google Scholar 

  82. Yu Tongxi, Lu Guoxing, Energy absorption: energy absorption of materials and structures. 2006, Bei**g: Chemical Industry Press [in Chinese].

    Google Scholar 

  83. Andrews, K.R.F., G.L. England, E. Ghani, Classification of the axial collapse of cylindrical tubes under quasi-static loading. International Journal of Mechanical Sciences, 1983. 25(9): p. 687–696.

    Article  Google Scholar 

  84. Alexander, J., An approximate analysis of the collapse of thin cylindrical shells under axial loading. Quarterly Journal of Mechanics and Applied Mathematics - QUART J MECH APPL MATH, 1960. 13: p. 10–15.

    Article  MathSciNet  MATH  Google Scholar 

  85. Stronge, W.J., Impact on metal tubes: Indentation and perforation, in structural crashworthiness and failure. International Journal of Solids and Structures, 1993: p. 165–188.

    Google Scholar 

  86. Singace, A., Axial crushing analysis of tubes deforming in the multi-lobe mode. International Journal of Mechanical Sciences - INT J MECH SCI, 1999. 41: p. 865–890.

    Article  MATH  Google Scholar 

  87. Guillow, S.R., G. Lu, R.H. Grzebieta, Quasi-static axial compression of thin-walled circular aluminium tubes. International Journal of Mechanical Sciences, 2001. 43(9): p. 2103–2123.

    Article  MATH  Google Scholar 

  88. Feng Xuning, Induction and expansion mechanism, modeling and prevention and control of thermal runaway of vehicle lithium-ion power battery. 2016, Tsinghua University: Bei**g [in Chinese].

    Google Scholar 

  89. Wen, J., Y. Yu, C. Chen, A review on lithium-ion batteries safety issues: existing problems and possible Solutions. Materials Express, 2012. 2(3): p. 197–212.

    Article  Google Scholar 

  90. Crandall, J.R., D. Bose, J. Forman, C.D. Untaroiu, C. Arregui‐Dalmases, C.G. Shaw, J. Kerrigan, Human surrogates for injury biomechanics research. Clinical anatomy, 2011. 24(3): p. 362–371.

    Article  Google Scholar 

  91. Carter, P.M., C.A. Flannagan, M.P. Reed, R.M. Cunningham, J.D. Rupp, Comparing the effects of age, BMI and gender on severe injury (AIS 3+) in motor-vehicle crashes. Accident Analysis & Prevention, 2014. 72: p. 146–160.

    Article  Google Scholar 

  92. Zhou, Q., S.W. Rouhana, J.W. Melvin, Age effects on thoracic injury tolerance. SAE transactions, 1996: p. 1819–1830.

    Google Scholar 

  93. Burstein, A.H., D.T. Reilly, M. Martens, Aging of bone tissue: mechanical properties. The Journal of bone and joint surgery. American volume, 1976. 58(1): p. 82–86.

    Google Scholar 

  94. Kent, R., S.-H. Lee, K. Darvish, S. Wang, C.S. Poster, A.W. Lange, C. Brede, D. Lange, F. Matsuoka, Structural and material changes in the aging thorax and their role in crash protection for older occupants. 2005, SAE Technical Paper.

    Google Scholar 

  95. Reed, M.P., S.M. Ebert-Hamilton, J.D. Rupp, Effects of obesity on seatbelt fit. Traffic injury prevention, 2012. 13(4): p. 364–372.

    Article  Google Scholar 

  96. Kent, R.W., J.L. Forman, O. Bostrom, Is there really a “cushion effect”?: a biomechanical investigation of crash injury mechanisms in the obese. Obesity, 2010. 18(4): p. 749–753.

    Article  Google Scholar 

  97. Cormier, J.M., The influence of body mass index on thoracic injuries in frontal impacts. Accident Analysis & Prevention, 2008. 40(2): p. 610–615.

    Article  Google Scholar 

  98. Bose, D., S. Segui-Gomez, Maria, J.R. Crandall, Vulnerability of female drivers involved in motor vehicle crashes: an analysis of US population at risk. American journal of public health, 2011. 101(12): p. 2368–2373.

    Google Scholar 

  99. Huang Yi, Study on the influence parameters of restraint system considering the difference of occupant figure and collision strength. 2014, Tsinghua University: Bei**g [in Chinese].

    Google Scholar 

  100. Wang Cong, Research on configuration design of occupant restraint system under various collision conditions. 2010, Tsinghua University: Bei**g [in Chinese].

    Google Scholar 

  101. Melvin, J.W., Injury assessment reference values for the CRABI 6-month infant dummy in a rear-facing infant restraint with airbag deployment. SAE transactions, 1995: p. 1553–1564.

    Google Scholar 

  102. Lucas, S.R., C.R. Bass, J.R. Crandall, R.W. Kent, F.H. Shen, R.S. Salzar, Viscoelastic and failure properties of spine ligament collagen fascicles. Biomechanics and modeling in mechanobiology, 2009. 8(6): p. 487–498.

    Article  Google Scholar 

  103. Liao, H., S.M. Belkoff, A failure model for ligaments. Journal of biomechanics, 1999. 32(2): p. 183–188.

    Article  Google Scholar 

  104. Shi, X., L. Cao, M.P. Reed, J.D. Rupp, C.N. Hoff, J. Hu, A statistical human rib cage geometry model accounting for variations by age, sex, stature and body mass index. Journal of Biomechanics, 2014. 47(10): p. 2277–2285.

    Article  Google Scholar 

  105. Yates, K.M., Y.-C. Lu, C.D. Untaroiu, Statistical shape analysis of the human spleen geometry for probabilistic occupant models. Journal of biomechanics, 2016. 49(9): p. 1540–1546.

    Article  Google Scholar 

  106. Bose, D., J.R. Crandall, C.D. Untaroiu, E. Maslen, Influence of pre-collision occupant parameters on injury outcome in a frontal collision. Accident Analysis & Prevention, 2010. 42(4): p. 1398–1407.

    Article  Google Scholar 

  107. Nie, B., J.L. Forman, H. Joodaki, T. Wu, R.W. Kent, Scaling approach in predicting the seatbelt loading and kinematics of vulnerable occupants: How far can we go? Traffic injury prevention, 2016. 17(sup1): p. 93–100.

    Article  Google Scholar 

  108. Nicolella, D.P., B.H. Thacker, H. Katoozian, D.T. Davy, The effect of three-dimensional shape optimization on the probabilistic response of a cemented femoral hip prosthesis. Journal of Biomechanics, 2006. 39(7): p. 1265–1278.

    Article  Google Scholar 

  109. Faraway, J., M.P. Reed, Statistics for digital human motion modeling in ergonomics. Technometrics, 2007. 49(3): p. 277–290.

    Article  MathSciNet  Google Scholar 

  110. Liu, Y., Q. Zhou, S. Gan, B. Nie, Influence of population variability in ligament material properties on the mechanical behavior of ankle: a computational investigation. Computer methods in biomechanics and biomedical engineering, 2020. 23(2): p. 43–53.

    Article  Google Scholar 

  111. Nie, B., Y. **a, Q. Zhou, J. Huang, B. Deng, M. Neal, A response–surface–based tool for vehicle front–end design for pedestrian impact protection using human body model. International Journal of Vehicle Design, 2014. 66(4): p. 347–362.

    Article  Google Scholar 

  112. Nie, B., J.L. Forman, M.B. Panzer, A.R. Mait, J.-P. Donlon, R.W. Kent, Fiber-based modeling of in situ ankle ligaments with consideration of progressive failure. Journal of biomechanics, 2017. 61: p. 102–110.

    Article  Google Scholar 

  113. Nie, B., M.B. Panzer, A. Mane, A.R. Mait, J.-P. Donlon, J.L. Forman, R.W. Kent, A framework for parametric modeling of ankle ligaments to determine the in situ response under gross foot motion. Computer methods in biomechanics and biomedical engineering, 2016. 19(12): p. 1254–1265.

    Article  Google Scholar 

  114. Dokko, Y., O. Ito, K. Ohashi, Development of human lower limb and pelvis fe models for adult and the elderly. SAE Technical Paper, 2009.

    Google Scholar 

  115. Klein, K.F., J. Hu, M.P. Reed, L.W. Schneider, J.D. Rupp, Validation of a parametric finite element human femur model. Traffic Injury Prevention, 2017. 18(4): p. 420–426.

    Article  Google Scholar 

  116. Dokko, Y., O. Ito, K. Ohashi, Development of human lower limb and pelvis fe models for adult and the elderly. 2009, SAE Technical Paper.

    Google Scholar 

  117. Burstein, A.H., D.T. Reilly, M.J.T.J.o.b. Martens, Aging of bone tissue: mechanical properties. The Journal of Bone Joint Surgery. American Volume, 1976. 58(1): p. 82–86.

    Google Scholar 

  118. Olafsdottir, J.M., K. Brolin, J.S. Blouin, G.P. Siegmund, Dynamic Spatial Tuning of Cervical Muscle Reflexes to Multidirectional Seated Perturbations. Spine, 2015. 40(4): p. E211–E219.

    Article  Google Scholar 

  119. Haug, E., H.-Y. Choi, S. Robin, M. Beaugonin, Human Models for Crash and Impact Simulation, in Handbook of Numerical Analysis. 2004, Elsevier. p. 231–452.

    Google Scholar 

  120. Chang, C.-Y., J.D. Rupp, N. Kikuchi, L.W. Schneider. Development of a finite element model to study the effects of muscle forces on knee-thigh-hip injuries in frontal crashes. in Stapp Car Crash Conference. 2008.

    Google Scholar 

  121. Bloecher, H.L., J. Dickmann, M. Andres. Automotive active safety & comfort functions using radar. in 2009 IEEE International Conference on Ultra-Wideband. 2009.

    Google Scholar 

  122. Mansouri, M., J.A. Reinbolt, A platform for dynamic simulation and control of movement based on OpenSim and MATLAB. Journal of Biomechanics, 2012. 45(8): p. 1517–1521.

    Article  Google Scholar 

  123. Iwamoto, M., Y. Nakahira, H. Kimpara, T. Sugiyama, K. Min. Development of a Human Body Finite Element Model with Multiple Muscles and their Controller for Estimating Occupant Motions and Impact Responses in Frontal Crash Situations. in Stapp Car Crash Conference. 2012.

    Google Scholar 

  124. Iwamoto, M., Modeling Passive and Active Muscles, in Basic Finite Element Method as Applied to Injury Biomechanics. 2018, Elsevier: Amsterdam. p. 447–468.

    Chapter  Google Scholar 

  125. Chang, C.Y., Prediction of the Effects of Lower-extremity Muscle Forces on Knee, Thigh, and Hip Injuries in Frontal Motor Vehicle Crashes. 2009, University of Michigan: Michigan.

    Google Scholar 

  126. Nie, B., D. Sathyanarayan, X. Ye, J.R. Crandall, M.B. Panzer, Active muscle response contributes to increased injury risk of lower extremity in occupant-knee airbag interaction. Traffic Injury Prevention, 2018. 19: p. S76–S82.

    Article  Google Scholar 

  127. Happee, R., E. de Bruijn, P.A. Forbes, F.C.T. van der Helm, Dynamic head-neck stabilization and modulation with perturbation bandwidth investigated using a multisegment neuromuscular model. Journal of Biomechanics, 2017. 58: p. 203–211.

    Article  Google Scholar 

  128. Östh, J., E. Eliasson, R. Happee, K. Brolin, A method to model anticipatory postural control in driver braking events. Gait and Posture, 2014. 40(4): p. 664–669.

    Article  Google Scholar 

  129. Choi, H.Y., S.J. Sah, B. Lee. Experimental and numerical studies of muscular activations of bracing occupant. in 19th ESV. 2005.

    Google Scholar 

  130. Rooij, L.V., Effect of Various Pre-Crash Braking Strategies on Simulated Human Kinematic Response With Varying Levels of Driver Attention. The 22nd International Technical Conference on the Enhanced Safety of Vehicles (ESV), 2011: p. 1–9.

    Google Scholar 

  131. Iwamoto, M., Y. Nakahira, H. Kimpara, Development and Validation of the Total HUman Model for Safety (THUMS) Toward Further Understanding of Occupant Injury Mechanisms in Precrash and During Crash. Traffic Injury Prevention, 2015. 16: p. 36–48.

    Article  Google Scholar 

  132. Behr, M., Tonic Finite Element Model of the Lower Limb. Journal of Biomechanical Engineering, 2005. 128(2): p. 223–227.

    Article  Google Scholar 

  133. Mo, F., F. Li, M. Behr, Z. **ao, G. Zhang, X. Du, A Lower Limb-Pelvis Finite Element Model with 3D Active Muscles. Annals of Biomedical Engineering, 2018. 46(1): p. 86–96.

    Article  Google Scholar 

  134. Sugiyama, T., H. Kimpara, M. Iwamoto. Effects of muscle tense on impact responses of lower extremity. in IRCOBI Conference. 2007.

    Google Scholar 

  135. Li, F., R. Lu, W. Hu, H. Li, S. Hu, J. Hu, H. Wang, H. **e, The Influence of Neck Muscle Activation on Head and Neck Injuries of Occupants in Frontal Impacts. Applied Bionics & Biomechanics, 2018. 2018(4): p. 1–14.

    Google Scholar 

  136. Gennarelli, T.A., E. Wodzin, AIS 2005: a contemporary injury scale. Injury, 2006. 37(12): p. 1083–1091.

    Article  Google Scholar 

  137. Hollowell, W.T., H.C. Gabler, S.L. Stucki, S. Summers, J.R. Hackney, Updated review of potential test procedures for FMVSS No. 208. NHTSA Docket, 1999: p. 6407–6.

    Google Scholar 

  138. Kuppa, S., Injury criteria for side impact dummies. Washington, DC: National Transportation Biomechanics Research Center, National Highway Saftey Administration, US DOT, 2004. 67.

    Google Scholar 

  139. Takhounts, E.G., M.J. Craig, K. Moorhouse, J. McFadden, V. Hasija, Development of brain injury criteria (BrIC). 2013, SAE Technical Paper.

    Google Scholar 

  140. National Standard of the People’s Republic of China. Occupant protection in vehicle frontal collision [in Chinese].

    Google Scholar 

  141. Gabler, L.F., J.R. Crandall, M.B. Panzer, Development of a Metric for Predicting Brain Strain Responses Using Head Kinematics. Annals of Biomedical Engineering, 2018. 46(7): p. 972–985.

    Article  Google Scholar 

  142. Tannous, R., R. Ep**er, E. Sun, F. Bandak, R. Saul, Development of Improved Injury Criteria for the Assessment of Advanced Automotive Restraint Systems - II. nhtsa, 1999.

    Google Scholar 

  143. Eichberger, A., H. Steffan, B. Geigl, M. Svensson, O. Boström, P.E. Leinzinger, M. Darok. Evaluation of the applicability of the neck injury criterion (NIC) in rear end impacts on the basis of human subject tests. in Proceedings of the International Research Council on the Biomechanics of Injury conference. 1998. International Research Council on Biomechanics of Injury.

    Google Scholar 

  144. Cavanaugh, J.M., Y. Zhu, Y. Huang, A. King, Injury and response of the thorax in side impact cadaveric tests. 1993, SAE Technical Paper.

    Google Scholar 

  145. Yang, J., Review of injury biomechanics in car-pedestrian collisions. International journal of vehicle safety, 2005. 1(1–3): p. 100–117.

    Article  Google Scholar 

  146. Kuppa, S., J. Wang, M. Haffner, R. Ep**er, Lower extremity injuries and associated injury criteria. 2001, SAE Technical Paper.

    Google Scholar 

  147. Ivarsson, J., D. Lesley, J. Kerrigan, K.S. Bhalla, D. Bose, J.R. Crandall, R.W. Kent, Dynamic Response Corridors and Injury Thresholds of the Pedestrian Lower Extremities. Proceedings of the International Research Council on the Biomechanics of Injury conference, 2004. 32.

    Google Scholar 

  148. Quapp, K.M., J.A. Weiss, Material characterization of human medial collateral ligament. Journal of Biomechanical Engineering, 1998. 120(6): p. 757.

    Article  Google Scholar 

  149. Race, A., A.A. Amis, The mechanical properties of the two bundles of the human posterior cruciate ligament. Journal of Biomechanics, 1994. 27(1): p. 13–24.

    Article  Google Scholar 

  150. Butler, D.L., M.D. Kay, D.C. Stouffer, Comparison of material properties in fascicle-bone units from human patellar tendon and knee ligaments. Journal of biomechanics, 1986. 19(6): p. 425–432.

    Article  Google Scholar 

  151. Baker, S.P., B. o’Neill, W. Haddon Jr, W.B. Long, The injury severity score: a method for describing patients with multiple injuries and evaluating emergency care. Journal of Trauma and Acute Care Surgery, 1974. 14(3): p. 187–196.

    Google Scholar 

  152. Osler, T., S.P. Baker, W. Long, A modification of the injury severity score that both improves accuracy and simplifies scoring. Journal of Trauma and Acute Care Surgery, 1997. 43(6): p. 922–926.

    Article  Google Scholar 

  153. Stevenson, M., M. Segui-Gomez, I. Lescohier, C. Di Scala, G. McDonald-Smith, An overview of the injury severity score and the new injury severity score. Injury Prevention, 2001. 7(1): p. 10–13.

    Article  Google Scholar 

  154. Tay, S.-Y., E.P. Sloan, L. Zun, P. Zaret, Comparison of the new injury severity score and the injury severity score. Journal of Trauma and Acute Care Surgery, 2004. 56(1): p. 162–164.

    Article  Google Scholar 

  155. Balogh, Z., P.J. Offner, E.E. Moore, W.L. Biffl, NISS predicts postinjury multiple organ failure better than the ISS. Journal of Trauma and Acute Care Surgery, 2000. 48(4): p. 624–628.

    Article  Google Scholar 

  156. Balogh, Z.J., E. Varga, J. Tomka, G. Süveges, L. Tóth, J.A. Simonka, The new injury severity score is a better predictor of extended hospitalization and intensive care unit admission than the injury severity score in patients with multiple orthopaedic injuries. Journal of orthopaedic trauma, 2003. 17(7): p. 508–512.

    Article  Google Scholar 

  157. Munhoz, D., J.A.R. Gregolin, L.I.L. de Faria, T.F. de Andrade, Automotive Materials: current status, technology trends and challenges. 2007, SAE International.

    Google Scholar 

  158. Bai, Y., T. Wierzbicki, Application of extended Mohr-Coulomb criterion to ductile fracture. International Journal of Fracture, 2010. 161: p. 1–20.

    Article  MATH  Google Scholar 

  159. Beese, A., M. Luo, Y. Li, Y. Bai, T. Wierzbicki, Partially coupled anisotropic fracture model for aluminum sheets. Engineering Fracture Mechanics - ENG FRACTURE MECH, 2010. 77: p. 1128–1152.

    Article  Google Scholar 

  160. Luo, M., T. Wierzbicki, Numerical failure analysis of a stretch-bending test on dual-phase steel sheets using a phenomenological fracture model. International Journal of Solids and Structures, 2010. 47: p. 3084–3102.

    Article  MATH  Google Scholar 

  161. Dørum, C., O. Hopperstad, O.-G. Lademo, M. Langseth, Numerical Modeling of the Structural Behavior of Thin-Walled Cast Magnesium Components Using a Through-Process Approach. Materials & Design - MATER DESIGN, 2007. 28: p. 2619–2631.

    Article  Google Scholar 

  162. Dørum, C., O. Hopperstad, T. Berstad, D. Dispinar, Numerical modelling of magnesium die-castings using stochastic fracture parameters. Engineering Fracture Mechanics - ENG FRACTURE MECH, 2009. 76: p. 2232–2248.

    Article  Google Scholar 

  163. Farrokh, B., A.S. Khan, A strain rate dependent yield criterion for isotropic polymers: Low to high rates of loading. European Journal of Mechanics - A/Solids, 2010. 29(2): p. 274–282.

    Article  Google Scholar 

  164. Holliday, L., J. Mann, G.A. Pogany, H.L.D. Pugh, D.A. Gunn, Ductility of Polystyrene. Nature, 1964. 202(4930): p. 381–382.

    Article  Google Scholar 

  165. Bowden, P.B., J.A. Jukes, The plastic flow of isotropic polymers. Journal of Materials Science, 1972. 7(1): p. 52–63.

    Article  Google Scholar 

  166. Lubineau, G., P. Ladevèze, Construction of a micromechanics-based intralaminar mesomodel, and illustrations in ABAQUS/Standard. Computational Materials Science, 2008. 43(1): p. 137–145.

    Article  Google Scholar 

  167. Chen Guanhua, Collision response research and structure optimization of lithium-ion battery module. 2018, Tsinghua University: Bei**g [in Chinese].

    Google Scholar 

  168. Li Wei, Research on deformation failure of lithium-ion battery based on fine model. 2019, Tsinghua University: Bei**g [in Chinese].

    Google Scholar 

  169. Luo Hailing, Research on structural failure mechanism and modeling of flexible lithium-ion battery under mechanical abuse. 2018, Tsinghua University: Bei**g [in Chinese].

    Google Scholar 

  170. Soni, A., T. Robert, P. Beillas. Effects of pedestrian pre-crash reactions on crash outcomes during multi-body simulations. in 2013 IRCOBI Conference Proceedings - International Research Council on the Biomechanics of Injury. 2013.

    Google Scholar 

  171. Ding, L., M. Glazer, M. Wang, B. Mehler, B. Reimer, L. Fridman. MIT-AVT Clustered Driving Scene Dataset: Evaluating Perception Systems in Real-World Naturalistic Driving Scenarios. in 2020 IEEE Intelligent Vehicles Symposium (IV). IEEE.

    Google Scholar 

  172. Zhou, H., Z. Zhong, M. Hu, J. Huang, Determining the steering direction in critical situations: A decision tree–based method. Traffic injury prevention, 2020. 21(6): p. 395–400.

    Article  Google Scholar 

  173. Hu, M., Y. Li. Drivers’ avoidance patterns in near-collision intersection conflicts. in 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC). 2017. IEEE.

    Google Scholar 

  174. Gan, S., Q. Li, Q. Wang, T. Cui, B. Nie. Capturing Driver Evasive Manoeuvres In Pre-crash Phases From Large-scale Real-world Critical Scene Videos. in IRCOBI Asia conference. 2021. Bei**g, China.

    Google Scholar 

  175. Han, Y., Q. Li, F. Wang, B. Wang, K. Mizuno, Q. Zhou, Analysis of pedestrian kinematics and ground impact in traffic accidents using video records. International Journal of Crashworthiness, 2019. 24(2): p. 211–220.

    Article  Google Scholar 

  176. Li, Q., Y. Han, K. Mizuno, Ground Landing Mechanisms in Vehicle-To-Pedestrian Impacts Based on Accident Video Records. SAE Technical Paper, 2018.

    Google Scholar 

  177. Sportillo, D., A. Paljic, L. Ojeda, Get ready for automated driving using Virtual Reality. Accident Analysis and Prevention, 2018. 118: p. 102–113.

    Article  Google Scholar 

  178. Nie, B., Q. Li, S. Gan, B. **ng, Y. Huang, S.E. Li, Safety envelope of pedestrians upon motor vehicle conflicts identified via active avoidance behaviour. Scientific Reports, 2021. 11(1): p. 3996.

    Article  Google Scholar 

  179. Li, Q., S. Shang, X. Pei, Q. Wang, Q. Zhou, B. Nie, Kinetic and kinematic features of pedestrian avoidance behavior in motor vehicle conflicts. Frontiers in bioengineering and biotechnology, 2021. 9.

    Google Scholar 

  180. Chen Long, Effectiveness evaluation of intelligent vehicle driving system based on multi-source data mining. 2017, Tsinghua University: Bei**g [in Chinese].

    Google Scholar 

  181. Malliaris, A.C., K.H. Digges, J.H. Deblois. Relationships between crash casualties and crash attributes. in SAE International Congress and Exposition. 1997.

    Google Scholar 

  182. Bahouth, G., K. Digges, C. Schulman, Influence of Injury Risk Thresholds on the Performance of an Algorithm to Predict Crashes with Serious Injuries. Annals of Advances in Automotive Medicine, 2012. 56: p. 223–230.

    Google Scholar 

  183. Stitzel, J.D., A.A. Weaver, J.W. Talton, R.T. Barnard, S.L. Schoell, A.N. Doud, R.S. Martin, J.W. Meredith, An Injury Severity-, Time Sensitivity-, and Predictability-Based Advanced Automatic Crash Notification Algorithm Improves Motor Vehicle Crash Occupant Triage. Journal of the American College of Surgeons, 2016. 222(6): p. 1211–1219.e6.

    Article  Google Scholar 

  184. Wang, Q., S. Gan, W. Chen, Q. Li, B. Nie, A data-driven, kinematic feature-based, near real-time algorithm for injury severity prediction of vehicle occupants. Accident Analysis & Prevention, 2021. 156: p. 106149.

    Article  Google Scholar 

  185. Bance, I., B. Nie. A Framework for Near Real-Time Occupant Injury Risk Prediction using a Sequence-to-Sequence Deep Learning Approach. in International Research Council on Biomechanics of Injury (IRCOBI). 2019.

    Google Scholar 

  186. Gabler, H.C., A.A. Weaver, J.D. Stitzel, Automotive Field Data in Injury Biomechanics. 2015: Springer New York.

    Book  Google Scholar 

  187. Lord, D., F. Mannering, The Statistical Analysis of Crash-Frequency Data: A Review and Assessment of Methodological Alternatives. Transportation Research Part A, 2010. 44(5): p. 291–305.

    Google Scholar 

  188. Savolainen, P.T., F.L. Mannering, D. Lord, M.A. Quddus, The Statistical Analysis of Highway Crash-Injury Severities: A Review and Assessment of Methodological Alternatives. Accident Analysis & Prevention, 2011. 43(5): p. 1666–1676.

    Article  Google Scholar 

  189. Jeong, H., Y. Jang, P.J. Bowman, N. Masoud, Classification of motor vehicle crash injury severity: A hybrid approach for imbalanced data. Accident Analysis & Prevention, 2018. 120: p. 250–261.

    Article  Google Scholar 

  190. Al-Moqri, T., X. Haijun, J.P. Namahoro, E.N. Alfalahi, I. Alwesabi, Exploiting Machine Learning Algorithms for Predicting Crash Injury Severity in Yemen: Hospital Case Study. Applied and Computational Mathematics, 2020. 9(5): p. 155–164.

    Article  Google Scholar 

  191. Fiorentini, N., M. Losa, Handling imbalanced data in road crash severity prediction by machine learning algorithms. Infrastructures, 2020. 5(7): p. 61.

    Article  Google Scholar 

  192. Delen, D., L. Tomak, K. Topuz, E. Eryarsoy, Investigating Injury Severity Risk Factors in Automobile Crashes with Predictive Analytics and Sensitivity Analysis Methods. Journal of Transport & Health, 2017. 4: p. 118–131.

    Article  Google Scholar 

  193. Zheng, M., T. Li, R. Zhu, J. Chen, Z. Wang, Traffic Accident’s Severity Prediction: A Deep-Learning Approach-Based CNN Network. IEEE Access, 2019. PP(99): p. 1–1.

    Google Scholar 

  194. Geyik, B., M. Kara. Severity Prediction with Machine Learning Methods. in 2020 International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA). 2020.

    Google Scholar 

  195. Yosinski, J., J. Clune, Y. Bengio, H. Lipson. How Transferable are Features in Deep Neural Networks? in International Conference on Neural Information Processing Systems. 2014.

    Google Scholar 

  196. Song, H.S., Y. Lee, S. Park, H. Kim, S.W. Kim. A Study on Classification of Traffic Accident Injury Grade Using CNN and NASS-CDS Data. in the 2018 VII International Conference. 2018.

    Google Scholar 

  197. Kim, T., G. Poplin, V. Bollapragada, T. Daniel, J. Crandall, Monte Carlo method for estimating whole-body injury metrics from pedestrian impact simulation results. Accident Analysis & Prevention, 2020. 147: p. 105761.

    Article  Google Scholar 

  198. MacKenzie, E.J., A. Damiano, T. Miller, S. Luchter, The development of the Functional Capacity Index. J Trauma, 1996. 41(5): p. 799–807.

    Article  Google Scholar 

  199. Liu Yanjie, Research on the crashworthiness of energy-absorbing components in low-speed vehicle collision. 2012, Harbin Engineering University [in Chinese].

    Google Scholar 

  200. Duan Libin, Research on lightweight and crashworthiness design of front longitudinal beams of vehicles with variable thickness. 2017, Hunan University: Changsha [in Chinese].

    Google Scholar 

  201. Nie Bingbing, Impact of vehicle front-end structure and modeling design on pedestrian collision protection. 2013 [in Chinese].

    Google Scholar 

  202. **a, Y., T. Wierzbicki, E. Sahraei, X. Zhang, Damage of cells and battery packs due to ground impact. Journal of Power Sources, 2014. 267: p. 78–97.

    Article  Google Scholar 

  203. Zhu, J., X. Zhang, T. Wierzbicki, Y. **a, G. Chen, Structural Designs for Electric Vehicle Battery Pack against Ground Impact. 2018, SAE Technical Paper.

    Google Scholar 

  204. Zhou Qing, **a Yong, Nie Bingbing, Huang Yi, Lai **nghua, Several challenging topics in the research and development of vehicle collision safety and lightweight. China Journal of Highway and Transport, 2019. 32 (7): p. 1–14 [in Chinese].

    Google Scholar 

  205. Zhang, S., Q. Zhou, Y. **a, Influence of mass distribution of battery and occupant on crash response of small lightweight electric vehicle. 2015, SAE Technical Paper.

    Google Scholar 

  206. Li, B., M.H. Parekh, R.A. Adams, T.E. Adams, C.T. Love, V.G. Pol, V. Tomar, Lithium-ion Battery thermal Safety by early internal Detection, prediction and prevention. Scientific reports, 2019. 9(1): p. 1–11.

    Google Scholar 

  207. Wang Chunli, Gong Limiao, Kang **, Tan Yechao, Li Mingming, Research on early warning system of lithium-ion battery storage power station. Collection, June 2018 [in Chinese].

    Google Scholar 

  208. Fernandes, Y., A. Bry, S. De Persis, Identification and quantification of gases emitted during abuse tests by overcharge of a commercial Li-ion battery. Journal of Power Sources, 2018. 389: p. 106–119.

    Article  Google Scholar 

  209. Wang Shuyang, Research on gas generation of lithium-ion battery. 2012 [in Chinese].

    Google Scholar 

  210. Deng Yuanbing, Experimental and simulation research on thermal runaway and its early warning mechanism of lithium-ion power battery. 2017 [in Chinese].

    Google Scholar 

  211. Cummings, S.L., N. Swartz. Off-gas monitoring for lithium ion battery health and safety [R].

    Google Scholar 

  212. Cuerden, R., J. Hill, A. Kirk, M. Mackay, The potential effectiveness of adaptive restraints, in International Research Council on the Biomechanics of Impact. 2001.

    Google Scholar 

  213. IOSB, F. Available from: https://www.iosb.fraunhofer.de/en/press/press-releases/2021/activity-detection-inside-the-vehicle.html.

  214. Richert, J., D. Coutellier, C. Götz, W. Eberle, Advanced smart airbags: The solution for real-life safety? International journal of crashworthiness, 2007. 12(2): p. 159–171.

    Article  Google Scholar 

  215. Wang, C., Q. Zhou. Concept study of adaptive seatbelt load limiter using magnetorheological fluid. in The 21 st International Technical Conference on the Enhanced Safety of Vehicles Conference (ESV), Stuttgart, Germany. 2009. Citeseer.

    Google Scholar 

  216. Bennett, J., G. Park, Automotive occupant dynamics optimization. Shock and Vibration, 1995. 2(6): p. 471–479.

    Article  Google Scholar 

  217. Tang, L., M. Luo, Q. Zhou. Optimization of a child restraint system by using a particle swarm algorithm. in International Conference on Intelligent Computing. 2006. Springer.

    Google Scholar 

  218. Yeh, I., Y. Fu, B. Kachnowski, T. Subbian, Optimization of a vehicle restraint system using a genetic algorithm. SAE transactions, 2005: p. 1504–1511.

    Google Scholar 

  219. Melvin, J.W., K.J. Baron, W.C. Little, T.W. Gideon, J. Pierce, Biomechanical analysis of Indy race car crashes. SAE transactions, 1998: p. 2872–2891.

    Google Scholar 

  220. Hubbard, R.P., P.C. Begeman, Biomechanical performance of a new head and neck support. 1990, SAE Technical Paper.

    Google Scholar 

  221. Melvin, J.W., T. Gideon, Biomechanical principles of racecar seat design for side impact protection. 2004, SAE Technical Paper.

    Google Scholar 

  222. Gideon, T., J. Melvin, P. Begeman, Race car nets for the control of neck forces in side impacts. 2004, SAE Technical Paper.

    Google Scholar 

  223. Forman, J., S. Stacey, J. Evans, R. Kent, Posterior acceleration as a mechanism of blunt traumatic injury of the aorta. Journal of biomechanics, 2008. 41(6): p. 1359–1364.

    Article  Google Scholar 

  224. Mohan, A., C. Papageorgiou, T. Poggio, Example-based object detection in images by components. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001. 23(4): p. 349–361.

    Article  Google Scholar 

  225. Felzenszwalb, P.F., R.B. Girshick, D. McAllester, D. Ramanan, Object detection with discriminatively trained part-based models. IEEE Trans Pattern Anal Mach Intell, 2010. 32(9): p. 1627–45.

    Article  Google Scholar 

  226. Felzenszwalb, P., R. Girshick, D. McAllester, D. Ramanan, Visual object detection with deformable part models. Commun. ACM, 2013. 56(9): p. 97–105.

    Article  Google Scholar 

  227. Redmon, J., S. Divvala, R. Girshick, A. Farhadi, You Only Look Once: Unified, Real-Time Object Detection. 2016. 779–788.

    Google Scholar 

  228. Helbing, D., P. Molnar, Social Force Model for Pedestrian Dynamics. Physical Review E, 1998. 51.

    Google Scholar 

  229. Wakim, C., J. Oksman, A Markovian model of pedestrian behavior. 2004. 4028–4033.

    Google Scholar 

  230. Kooij, J., N. Schneider, F. Flohr, D. Gavrila, Context-Based Pedestrian Path Prediction. 2014.

    Google Scholar 

  231. Bonnin, S., T. Weisswange, F. Kummert, J. Schmuedderich, General Behavior Prediction by a Combination of Scenario-Specific Models. Intelligent Transportation Systems, IEEE Transactions on, 2014. 15: p. 1478–1488.

    Article  Google Scholar 

  232. Berger, R., H. Robotics, White paper on the development trend of intelligent cabin. 2019 [in Chinese].

    Google Scholar 

  233. Nie, B., S. Gan, W. Chen, Q. Zhou, Seating preferences in highly automated vehicles and occupant safety awareness: A national survey of Chinese perceptions. Traffic injury prevention, 2020. 21(4): p. 247–253.

    Article  Google Scholar 

  234. Yao Guangpeng, Analysis on safety and efficiency of pedestrian-vehicle interaction at signalized intersections in urban areas. 2016 [in Chinese].

    Google Scholar 

  235. Wang Lin, Li Zhao, Zhan Pengyu, Design of vehicle-road cooperation system based on IEEE802. 11p. Industrial Control Computer, 2017 (August 2017): p. 1–2 [in Chinese].

    Google Scholar 

  236. Cai Zhili, Sun Fengrui, Wei Lingxiang, Wang Nan. Design of vehicle-road coooperation system based on Internet of vehicles technology. 2011 [in Chinese].

    Google Scholar 

  237. **ong Feng, Research on multi-objective cooperative optimization design for lightweight and crashworthiness of vehicle body structure. 2018, Jilin University: Changchun [in Chinese].

    Google Scholar 

  238. EXTRICATION, B. Available from: http://www.boronextrication.com/2014/07/12/2015-volkswagen-passat-body-structure-extrication/.

  239. State Administration for Market Regulation. Safety requirements for traction batteries of electric vehicles. 2020, Domestic-National Standards-State Administration for Market Regulation CN-GB [in Chinese].

    Google Scholar 

  240. Lu, L., X. Han, J. Li, J. Hua, M. Ouyang, A review on the key issues for lithium-ion battery management in electric vehicles. Journal of power sources, 2013. 226: p. 272–288.

    Article  Google Scholar 

  241. Pan, H., W. Sun, X. **g, H. Gao, J. Yao, Adaptive tracking control for active suspension systems with non-ideal actuators. Journal of Sound and Vibration, 2017. 399: p. 2–20.

    Article  Google Scholar 

  242. International, S., Audi details new A8 active suspension. 2017.

    Google Scholar 

  243. Magar, S.G. Adaptive Front Light Systems of Vehicle for Road Safety. 2015. IEEE.

    Google Scholar 

  244. MAZDA. Available from: https://www.mazda.com/en/innovation/technology/safety/active_safety/afs/.

  245. Mages, M., M. Seyffert, U. Class. Analysis of the pre-crash benefit of reversible belt pre-pretensioning in different accident scenarios. in Proceedings of the 22nd ESV Conference. 2011.

    Google Scholar 

  246. Schoeneburg, R., K.-H. Baumann, M. Fehring, D. Ag, M. Cars. The efficiency of PRE-SAFE systems in pre-braked frontal collision situations. in Proceedings of the 22nd ESV Conference. 2011.

    Google Scholar 

  247. Toyota. Available from: https://www.youtube.com/watch?v=0jqOOFs9-7o.

  248. Wu Hequan, Zhang Jiafei, Hu Lin, Effect of seat rotation speed on passengers in automated driving. Automotive Engineering, 2021. 43 (2): p. 226–231 [in Chinese].

    Google Scholar 

  249. Mercedes-Benz. Available from: https://www.mercedes-benz.com/en/innovation/autonomous/research-vehicle-f-015-luxury-in-motion/.

  250. TOYOTA-BOSHOKU. Available from: https://www.toyota-boshoku.com/global/special/ces2020/mx191.html.

  251. Wu Hequan, Hou Haibin, Hu Lin, Huang **g, Injury risk and avoidance strategy of occupants in automated driving vehicle under different seat orientations. China Journal of Highway and Transport, 2019. 32 (6): p. 206–215225 [in Chinese].

    Google Scholar 

  252. Roth, M., F. Flohr, D.M. Gavrila, Ieee, Driver and Pedestrian Awareness-based Collision Risk Analysis, in 2016 Ieee Intelligent Vehicles Symposium. 2016. p. 454–459.

    Google Scholar 

  253. Kuo, Y.-C., C.-M. Fu, C.-T. Tsai, C.-C. Lin, G.-H. Chang, Pedestrian Collision Warning of Advanced Driver Assistance Systems. 2016. 740–743.

    Google Scholar 

  254. Hariyono, J., A. Shahbaz, L. Kurnianggoro, K.-H. Jo, Estimation of collision risk for improving driver’s safety. 2016. 901–906.

    Google Scholar 

  255. Takahashi, H., H. Miyazaki, S. Narita, T. Shamoto, Y. Mase, Development of Pop-Up Hood System for Pedestrian Protection, in 23rd International Technical Conference on the Enhanced Safety of Vehicles (ESV). 2013: Seoul , South Korea.

    Google Scholar 

  256. Jakobsson, L., T. Broberg, H. Karlsson, A. Fredriksson, N. Gråberg, C. Gullander, M. Lindman. Pedestrian Airbag Technology@ A Production System. 2013.

    Google Scholar 

  257. Nie Bingbing, Zhou Qing, **a Yong, Multi-wave characteristics and structural design of pedestrian head impact on vehicle engine hood. Journal of Automotive Safety and Energy, January 2017 (v.8): p. 69–75 [in Chinese].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianqiang Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 China Communications Press Co., Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, J., Nie, B., Wang, H. (2024). Intelligent Protection. In: The Intelligent Safety of Automobile. Key Technologies on New Energy Vehicles. Springer, Singapore. https://doi.org/10.1007/978-981-99-6399-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6399-7_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6398-0

  • Online ISBN: 978-981-99-6399-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation