Design and Experimental Evaluation of Convective Heat Transfer Coefficient Test System in Nanofluids Spray Cooling

  • Chapter
  • First Online:
Thermodynamic Mechanism of MQL Grinding with Nano Bio-lubricant
  • 65 Accesses

Abstract

Currently, researchers usually measure convective heat transfer coefficient (h) of nanofluids through the in-pipe transient measurement method. The principle is introduced as follows. A hot water source is applied to form periodic changes of temperature of the testing fluid and make the testing fluid flow through the testing cooper pipe at a low speed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang, Y., Li, C., Zhang, Y., Yang, M., Li, B., Dong, L., & Wang, J. (2018). Processing characteristics of vegetable oil-based nanofluid MQL for grinding different workpiece materials. International Journal of Precision Engineering and Manufacturing-Green Technology, 5(2), 327-339.

    Article  CAS  Google Scholar 

  2. Yang W C, Zhou Y, Zhang J, Liu H, et al. Role of radiative and convective heat transfer during heating of an ingot product in a tubular furnace: experiment and simulation. Journal of Iron and Steel Research International, 2022, 29:(12):1978–1985.

    Google Scholar 

  3. Wang L, Liu Q S. Transient Heat Transfer Characteristics of Twisted Structure Heated by Exponential Heat Flux (vol 9, 771900, 2021). Frontiers in Energy Research, 2022, 10:2.

    CAS  Google Scholar 

  4. Wan Z P, Hu X S, Wang X W, et al. Experimental study on the boiling/condensation heat transfer performance of a finned tube with a hydrophilic/hydrophobic surface. Applied Thermal Engineering, 2023, 229:12.

    Article  Google Scholar 

  5. Uddin M, Gurgenci H, Klimenko A, et al. Heat transfer analysis of supercritical CO2 in a High-Speed turbine rotor shaft cooling passage. Thermal Science and Engineering Progress, 2022, 39:10.

    Google Scholar 

  6. Shen Z J, Min J C. Non-equilibrium thermodynamic analysis of coupled heat and moisture transfer across a membrane. Chinese Journal of Chemical Engineering, 2022, 44:497-506.

    Article  CAS  Google Scholar 

  7. X. Cui, C.H. Li, W.F. Ding, Y. Chen, C. Mao, X.F. Xu, B. Liu, D.Z. Wang, H.N. Li, Y.B. Zhang, Z. Said, S. Debnath, M. Jamil, H. Muhammad Ali, S. Sharma, Minimum quantity lubrication machining of aeronautical materials using carbon group nanolubricant: from mechanisms to application, Chinese Journal of Aeronautics, 2022, 35(11):85.112.

    Google Scholar 

  8. Lushchik V G, Makarova M S, Reshmin A I. Double-Pipe Heat Exchanger with Diffuser Channels. High Temperature, 2022, 60(SUPPL 2):S215.S222.

    Google Scholar 

  9. Kiseev V M, Sazhin O V. Heat Transfer Enhancement in Two-Phase Systems with Capillary Pumps. Technical Physics, 2022, 67(2):136-145.

    Article  CAS  Google Scholar 

  10. Solnechnyi E M, Cheremushkina L A. Dynamic Properties of a One-Dimensional Heat Transfer System with a Moving Heat Source. Autom Remote Control, 2022, 83(8):1172-1179.

    Article  Google Scholar 

  11. Wang L, Cheng Q L, Sun W, et al. Study on the Exergy Transfer Characteristics of the Heat Transfer Process of the Tube Heating Furnace. Journal of Thermal Science and Engineering Applications ,2023, 15(4):13.

    Article  Google Scholar 

  12. Xu B W, Lia J W, Lu N X, et al. Experimental study on heat transfer characteristics of high-temperature heat pipe. Thermal Science 26(6):5227–5237.

    Google Scholar 

  13. Zhang M, Sun B. Improved Heat-Transfer Correlation for Transcritical Methane Based on a Velocity Profile Correction Term. Journal of Thermal Science and Engineering Applications, 2023, 14(4):9.

    Google Scholar 

  14. Ali M R, Al-Khaled K, Hussain M, et al. Effect of design parameters on passive control of heat transfer enhancement phenomenon in heat exchangers-A brief review. Case Studies in Thermal Engineering, 2023, 43:19.

    Article  Google Scholar 

  15. Mingzheng Liu, Changhe Li, Yanbin Zhang, Min Yang, Teng Gao, **n Cui, **aoming Wang, Haonan Li, Zafar Said, Runze Li and Shubham Sharma, Analysis of grain tribology and improved grinding temperature model based on discrete heat source, Tribology International, (2022). https://doi.org/10.1016/j.triboint.2022.108196.

    Article  Google Scholar 

  16. Min Yang, Changhe Li, Yanbin Zhang, Yaogang Wang, Benkai Li, Dongzhou Jia, Yali Hou, Runze Li. Research on microscale skull grinding temperature field under different cooling conditions. Applied Thermal Engineering, 2017, 126: 525.537.

    Google Scholar 

  17. Li L, Zhang Y, Ma H, et al. An investigation of molecular layering at the liquid-solid interface in nanofluids by molecular dynamics simulation[J]. Physics Letters A, 2008, 372 (25): 4541-4544.

    Article  CAS  Google Scholar 

  18. Yang, M., Li, C., Zhang, Y., Jia, D., Li, R., Hou, Y., & Cao, H. (2019). Effect of friction coefficient on chip thickness models in ductile-regime grinding of zirconia ceramics. The International Journal of Advanced Manufacturing Technology, 102(5), 2617-2632.

    Article  Google Scholar 

  19. Du X C, Li W T, Zhang X R, et al. Experimental Research on the Flow and Heat Transfer Characteristics of Subcritical and Supercritical Water in the Vertical Upward Smooth and Rifled Tubes. Energies, 2023, 15(21):22.

    Google Scholar 

  20. He R D, Wang Z M, Dong F. Influence of heat-transfer surface morphology on boiling-heat-transfer performance. Heat and Mass Transfer, 2022, 58(8):1303-1318.

    Article  CAS  Google Scholar 

  21. Min Yang, Changhe Li, Zafar Said, Yanbin Zhang, Runze Li, Sujan Debnath, Hafiz Muhammad Ali, Teng Gao, Yunze Long. Semiempirical heat flux model of hard-brittle bone material in ductile microgrinding, Journal of Manufacturing Processes, 2021, 71: 501-514.

    Google Scholar 

  22. Yang, M., Li, C., Luo, L., Li, R., & Long, Y. (2021). Predictive model of convective heat transfer coefficient in bone micro-grinding using nanofluid aerosol cooling. International Communications in Heat and Mass Transfer, 125, 105317.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changhe Li .

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, C. (2024). Design and Experimental Evaluation of Convective Heat Transfer Coefficient Test System in Nanofluids Spray Cooling. In: Thermodynamic Mechanism of MQL Grinding with Nano Bio-lubricant. Springer, Singapore. https://doi.org/10.1007/978-981-99-6265-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6265-5_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6264-8

  • Online ISBN: 978-981-99-6265-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation