Slew-Driven Layer Assignment for Advanced Non-default-rule Wires

  • Conference paper
  • First Online:
Web Information Systems and Applications (WISA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14094))

Included in the following conference series:

  • 708 Accesses

Abstract

With the rapid increase in circuit density in Very Large Scale Integration, the proportion of interconnect delay in circuit timing is also increasing. This makes the importance of layer assignment algorithms increasingly prominent in circuit design. However, most previous layer assignment algorithms prioritize optimizing timing exclusively from the perspective of interconnect delay, thereby disregarding the impact of slew violations on circuits. Therefore, this paper proposes a slew-driven layer assignment algorithm, which considers the timing of different routing layers and introduces non-default-rule wires to design a layer assignment algorithm that can significantly optimize delay, congestion, and slew violations. This algorithm mainly includes three key technologies: 1) Introducing non-default-rule wires technology to optimize timing and adopting a negotiation based approach to ensure that the final routing scheme does not have overflow; 2) Proposing a slew prioritization strategy that comprehensively considers slew and interconnect delay during the routing process; 3) Proposing a timing critical awareness strategy to further optimize the slew and interconnect delay without worsening the overflow. The experimental results show that the proposed algorithm has significant effects on optimizing delay and reducing slew violations.

This work was supported in part by the Fujian Natural Science Funds under Grant 2023J06017.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Saxena, P., Menezes, N., Cocchini, P., Kirkpatrick, D.A.: Repeater scaling and its impact on CAD. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst. 23(4), 451–463 (2004)

    Google Scholar 

  2. Kim, Q.M., Ahn, B., Kim, J., Lee, B., Chong, J.: Thermal aware timing budget for buffer insertion in early stage of physical design. In: 2012 IEEE International Symposium on Circuits and Systems, Seoul, Korea, pp. 357–360 (2012)

    Google Scholar 

  3. Liu, G., et al.: Timing-aware layer assignment for advanced process technologies considering via pillars. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst. 41(6), 1957–1970 (2022)

    Google Scholar 

  4. Jiang, L., et al.: LA-SVR: a high-performance layer assignment algorithm with slew violations reduction. In: 30th International Conference on Very Large Scale Integration, Patras, Greece, pp. 1–6 (2022)

    Google Scholar 

  5. Zhou, R., Liu, G., Guo, W., Wang, X.: An X-architecture SMT algorithm based on competitive swarm optimizer. In: **ng, C., Fu, X., Zhang, Y., Zhang, G., Borjigin, C. (eds.) WISA 2021. LNCS, vol. 12999, pp. 39–404. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87571-8_34

  6. Chen, X., Zhou, R., Liu, G., Wang, X.: SLPSO-based X-architecture steiner minimum tree construction. In: Wang, G., Lin, X., Hendler, J., Song, W., Xu, Z., Liu, G. (eds.) WISA 2020. LNCS, vol. 12432, pp. 131–142. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60029-7_12

  7. Zhang, X., et al.: MiniDelay: multi-strategy timing-aware layer assignment for advanced technology nodes. In: 2020 Design, Automation & Test in Europe Conference & Exhibition, Grenoble, France, pp. 586–591 (2020)

    Google Scholar 

  8. Naclerio, N.J., Masude, S., Nakajima, K.: The via minimization problem is NP-complete. IEEE Trans. Comput. 38(11), 1604–1608 (1989)

    Article  Google Scholar 

  9. Cho, M., Pan, D.Z.: BoxRouter: a new global router based on box expansion and progressive ILP. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst. 26(12), 2130–2143 (2007)

    Google Scholar 

  10. Lee, T.H., Wang, T.C.: Congestion-constrained layer assignment for via minimization in global routing. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst. 27(9), 1643–1656 (2008)

    Google Scholar 

  11. Liu, W.H., Li, Y.L.: Negotiation-based layer assignment for via count and via overflow minimization. In: 16th Proceedings of Asia and South Pacific Design Automation Conference, Yokohama, Japan, pp. 539–544 (2011)

    Google Scholar 

  12. Li, Z., Alpert, C.J., Hu, S., Muhmud, T., Quay, S.T., Villarrubia, P.G.: Fast interconnect synthesis with layer assignment. In: Proceedings of the 2009 International Symposium on Physical Design, New York, NY, USA, pp. 71–77. Association for Computing Machinery (2008)

    Google Scholar 

  13. Hu, S., Li, Z., Alpert, C.J.: A faster approximation scheme for timing driven minimum cost layer assignment. In: Proceedings of International Symposium on Physical Design, San Diego, California, USA, pp. 167–174 (2009)

    Google Scholar 

  14. Ao, J., Dong, S., Chen, S., Goto, S.: Delay-driven layer assignment in global routing under multi-tier interconnect structure. In: Proceedings of International Symposium on Physical Design, Stateline Nevada, USA, pp. 101–107 (2013)

    Google Scholar 

  15. Han, S.Y., Liu, W.H., Ewetz, R., Koh, C.K., Chao, K.Y., Wang, T.C.: Delay-driven layer assignment for advanced technology nodes. In: Proceedings of the 2017 Asia and South Pacific Design Automation Conference, Chiba, Japan, pp. 456–462. IEEE Computer Society Press, Los Alamitos (2017)

    Google Scholar 

  16. Ewetz, R., Liu, W.H., Chao, K.Y., Wang, T.C., Koh, C.K.: A study on the use of parallel wiring techniques for sub-20 nm designs. In: Proceedings of the 24th Edition of the Great Lakes Symposium on VLSI, New York, NY, USA, pp. 129–134 (2014)

    Google Scholar 

  17. Huang, T., Young, E.F.Y.: Construction of rectilinear Steiner minimum trees with slew constraints over obstacles. In: Proceedings ACM International Conference on Computer-Aided Design, New York, NY, USA, pp. 144–151 (2012)

    Google Scholar 

  18. Hu, S., Li, Z., Alpert, C.J.: A fully polynomial time approximation scheme for timing driven minimum cost buffer insertion. In: Proceedings of Design Automation Conference, San Francisco, CA, USA, pp. 424–429 (2009)

    Google Scholar 

  19. Hu, S., et al.: Fast algorithms for slew-constrained minimum cost buffering. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst. 26(11), 2009–2022 (2007)

    Google Scholar 

  20. Liu, D., Yu, B., Chowdhury, S., Pan, D.Z.: TILA-S: timing-driven incremental layer assignment avoiding slew violations. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst. 37(1), 231–244 (2017)

    Google Scholar 

  21. Elmore, W.C.: The transient response of damped linear networks with particular regard to wideband amplifier. J. Appl. Phys. 19(1), 55–63 (1948)

    Article  Google Scholar 

  22. Kashyap, C., Alpert, C., Liu, F., Devgan, A.: Closed-form expressions for extending step delay and slew metrics to ramp inputs for RC trees. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst. 23(4), 509–516 (2004)

    Google Scholar 

  23. McMurchie, L., Ebeling, C.: PathFinder: a negotiation-based performance-driven router for FPGAs. In: Reconfigurable Computing, Napa Valley, CA, USA, pp. 365–381 (2008)

    Google Scholar 

  24. Viswanathan, N., Alpert, C., Sze, C., Li, Z., Wei, Y.: The DAC 2012 routability-driven placement contest and benchmark suite. In: Design Automation Conference 2012, San Francisco, CA, USA, pp. 774–782. IEEE (2012)

    Google Scholar 

  25. Hsu, M.K., et al.: NTUplace4h: a novel routability-driven placement algorithm for hierarchical mixed-size circuit designs. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst. 33(12), 1914–1927 (2014)

    Google Scholar 

  26. Liu, W.H., Kao, W.C., Li, Y.L., Chao, K.Y.: NCTU-GR 2.0: multithreaded collision-aware global routing with bounded-length maze routing. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst. 32(5), 709–722 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Genggeng Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lu, R., Zhang, W., Jiang, L., Liu, G. (2023). Slew-Driven Layer Assignment for Advanced Non-default-rule Wires. In: Yuan, L., Yang, S., Li, R., Kanoulas, E., Zhao, X. (eds) Web Information Systems and Applications. WISA 2023. Lecture Notes in Computer Science, vol 14094. Springer, Singapore. https://doi.org/10.1007/978-981-99-6222-8_45

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6222-8_45

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6221-1

  • Online ISBN: 978-981-99-6222-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation