Application of GETFLOWS and HEC-RAS in Assessing Sediment Balance Within River Estuary

  • Conference paper
  • First Online:
Proceedings of AWAM International Conference on Civil Engineering 2022 - Volume 3 (AICCE 2022)

Abstract

River plays an important role in the human need as it provides water for human usage, irrigation, agriculture and industry as well as a range of other ecosystem services other than intrinsic and biodiversity values. Managing the river can lead to many benefits and convenience. However, due to lack of proper management, rivers can be easily polluted due to human activities. Sediment is one of the components that can damage the ecosystem and diversity of the river especially in local spots which involves soil erosion. Heavy rainstorms can cause an excessive erosion event, however, most soil erosion happens gradually over time and is very hard to notice without constant monitoring. Furthermore, the sediment will be mobilized and transported along the river and eventually stored in the bottom of the river, but usually it will deposit near the estuary. A sediment modeling is needed to carter this problem as to predict the behavior of the sediment based on the hydrological components. The comparison between the 1D (HEC-RAS) and 3D (GETFLOWS) will be discussed in this paper to check the suitability and the validity of the model in sediment studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ding, L., Chen, K.L., Cheng, S.G., Wang, X.: Water ecological carrying capacity of urban lakes in the context of rapid urbanization: a case study of East Lake in Wuhan. Physics and Chemistry of the Earth, Parts A/B/C 89–90, 104–113 (2015)

    Article  Google Scholar 

  2. Reitsma, K.D., Dunn, B.H., Mishra, U., Clay, S.A., DeSuttere, T., Clay, D.E.: Land-use change impact on soil sustainability in a climate and vegetation transition zone. Agronomy Journal. 10(6) (2015). https://doi.org/10.2134/agronj15.0152

  3. Yusof, M.F., Jamil, N.R., Leaw, C.N.I., Aini, N., Manaf, A.L.: Land use change and soil loss risk assessment by using geographical information system (GIS): a case study of lower part of Perak River. IOP Conf. Ser.: Earth Environ. Sci. 37, 012065 (2016). https://doi.org/10.1088/1755-1315/37/1/012065

  4. Bagarello, V., Di Stefano, C., Ferro, V., Pampalone, V.: Predicting maximum annual values of event soil loss by USLE-type models. CATENA 155, 10–19 (2017)

    Article  Google Scholar 

  5. Ouyang, W., Wu, Y., Hao, Z., Zhang, Q., Bu, Q., Gao, X.: Combined impacts of land use and soil property changes on soil erosion in a mollisol area under long-term agricultural development. Sci. Total Environ. 613–614, 798–809 (2018)

    Article  Google Scholar 

  6. Kitamura, A., Kurikami, H., Sakuma, K., Malins, A., Okumura, M., Machida, M., Mori, K., Tada, K., Tawara, Y., Kobayashi, T., Yoshida, T., Tosaka, H.: Redistribution and export of contaminated sediment within eastern Fukushima Prefecture due to typhoon flooding. In: Earth Surface Processes and Landforms. Wiley Online Library (2016)

    Google Scholar 

  7. Brunner, G.W., Gibson, S.: Sediment transport modelling in HEC RAS. Impacts of Global Climate Change (2005)

    Google Scholar 

  8. Joshi, N., Lamichhane, G.J., Rahaman, M.M., Kalra, A., Ahmad, S.: Application of HEC-RAS to study the sediment transport characteristics of Maumee River in Ohio. World Environmental and Water Resources Congress (2019). https://doi.org/10.1061/978084482353.024

    Article  Google Scholar 

  9. Osuagwu, J.C., Nwachukwu, A.N., Nwoke, H.U., Agbo, K.C.: Effect of soil erosion and sediment deposition on surface water quality: case study of Otamiri River. Asian Journal Engineering and Technology (2014)

    Google Scholar 

  10. Li, H., Lin, L., Ye, S., Li, H., Fan, J.: Assessment of nutrient and heavy metal contamination in the sea water and sediment of Yalujiang Estuary. Mar. Pollut. Bull. (2017). https://doi.org/10.1016/j.marpolbul.2017.01.069

    Article  Google Scholar 

  11. Liu, J.Q., Yin, P., Chen, B., Gao, F., Song, H.Y., Li, M.N.: Distribution and contamination assessment of heavy metals in surface sediments of the Luanhe River Estuary, northwest of the Bohai Sea. Mar. Pollut. Bull. 109, 633–639 (2016)

    Article  Google Scholar 

  12. Lotze, H.K., Lenihan, H.S., Bourque, B.J., Bradbury, R.H., Cooke, R.G., Kay, M.C., et al.: Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312, 1806–1809 (2006)

    Article  Google Scholar 

  13. Liu, R.M., Men, C., Liu, Y.Y., Yu, W.W., Xu, F., Shen, Z.Y.: Spatial distribution and pollution evaluation of heavy metals in Yangtze estuary sediment. Mar. Pollut. Bull. 110, 564–571 (2016)

    Article  Google Scholar 

  14. Hume, A.D., Herdendorf, C.E.: A geomorphic classification of estuaries and its application to coastal resource management. Journal of Ocean and Shoreline Management. 11, 249–274 (1988)

    Article  Google Scholar 

  15. Townend, I., Zhou, Z., Guo, L., Coco, G.: A morphological investigation of marine transgression in Estuaries. Earth. Surf. Processes. Land. 46(5) (2020)

    Article  Google Scholar 

  16. Dalrymple, R.W.: Incised valleys in time and space: an introduction to the volume and an examination of the controls on valley formation. Society for Sedimentary Geology 5–14 (2006)

    Google Scholar 

  17. Rees, J.G., Ridgway, J., Ellis, S., Knox, R.W.O., Newsham, R., Parkes, A.: Holocene sediment storage in the Humber Estuary. Geological Society, London, Special Publications 166, 119–143 (2000)

    Article  Google Scholar 

  18. Church, M.: Channel morphology and typology. In: The River Handbook, pp. 126–143. Blackwell Scientific Publishers, Oxford (1992)

    Google Scholar 

  19. Gilbert, J.T., Wilcox, A.C.: Sediment routing and floodplain exchange (SeRFE): A spatially explicit model of sediment balance and connectivity through river networks. Journal of Advance in Modelling Earth Systems (2020). https://doi.org/10.1029/2020MS002048

    Article  Google Scholar 

  20. Wohl, E., Bledsoe, B.P., Jacobson, R.B., Poff, N.L., Rathburn, S.L., Walters, D.M., Wilcox, A.C.: The natural sediment regime in rivers: broadening the foundation for ecosystem management. Bioscience 65(4) (2015). https://doi.org/10.1093/biosci/biv002

  21. Frings, R.M., Doring, R., Beckhausen, C., Schuutrumpf, H., Vollmer, S.: Fluvial sediment budget of a modern, restrained river: the lower reach of the Rhine in Germany (2014)

    Google Scholar 

  22. Maldegem, D.C., Mulder, H.P.J., Langerak, A.: A cohesive sediment balance for the Scheldt estuary. Netherlands Journal of Aquatic Ecology 27(2–4), 247–256 (1993)

    Google Scholar 

  23. Hazart, A.,Mori, K., Tada, K.,Tosaka, H.: Using surrogate modelling for fast estimation of water budget component in a regional watershed. In: International Congress on Environmental Modelling and Software. 7th International Congress on Environmental Modelling and Software, San Diego, USA (2014)

    Google Scholar 

  24. Hosono T., Yamada C., Shibata T.: Coseismic groundwater drawdown along crustal ruptures during the 2016 Mw 7.0 Kumamoto Earthquake. Lawrence Berkeley National Laboratory (2019)

    Google Scholar 

  25. Mori, K., Tada, K., Tawara, Y., Ohno, K., Asami, M., Kosaka, K., Tosaka, H.: Integrated watershed modelling for simulation of spatiotemporal redistribution of post-fallout radionuclides: application in radiocesium fate and transport processes derived from the Fukushima accidents. Environ. Model. Softw. 72, 126–146 (2015)

    Article  Google Scholar 

  26. Rahman, S.A.T.M., Hosono, T., Tawara, Y., Fukuoka, Y., Hazart, A., Shimada, J.: Multiple-tracers-aided surface-subsurface hydrological modeling for detailed characterization of regional catchment water dynamics in Kumamoto area, southern Japan. Hydrogeol. J. 29, 1885–1904 (2021)

    Article  Google Scholar 

  27. Sakuma K., Malins A., Funaki H., Kurikami H., Niizato T., Nakanishi T., Mori K., Tada K., Kobayashi T., Kitamura A., Hosomi M.: Evaluation of Sediment and 137Cs Redistribution in the Oginosawa River Catchment near the Fukushima Dai-ichi Nuclear Power Plant Using Integrated Watershed Modelling (2018)

    Google Scholar 

  28. Sakuma K., Kitamura A., Malins A., Kurikami H., Machida M., Mori K., Tada K., Kobayashi T., Tawara Y., Tosaka H.: Characteristics of radio-cesium transport and discharge between different basins near to the Fukushima Dai-ichi Nuclear Power Plant after heavy rainfall events (2017)

    Google Scholar 

  29. Amir, H.H., Ehsan, Z.: Evaluation of HEC-RAS ability in erosion and sediment transport forecasting. World Appl. Sci. J. 17(11), 1490–1497 (2012)

    Google Scholar 

  30. Hasani, H.: Determination of flood plain zoning in Zarigol river using the hydraulic model of HEC-RAS. International Research Journal of Applied and Basic Sciences (2013)

    Google Scholar 

  31. Thakur, B., Parajuli, R., Kalra, A., Ahmad, S., Gupta, R.: Coupling HEC-RAS and HECHMS in precipitation runoff modelling and evaluating flood plain inundation map. World Environmental and Water Resources Congress 2017, 240–251 (2017)

    Google Scholar 

  32. Foti, G., Barbaro, G., Manti, A., Foti, P., Torre, A.L., Geria, P.F., Puntorieri, P., Tramontana, N.: A methodology to evaluate the effects of river sediment withdrawal: the case study of the Amendolea River in southern Italy. Aquat. Ecosyst. Health Manage. 23(4), 465–473 (2020). https://doi.org/10.1080/14634988.2020.1807248

    Article  Google Scholar 

  33. Horritt, M., Bates, P.: Evaluation of 1D and 2D numerical models for predicting river flood inundation. J. Hydrol. 268(1–4), 87–99 (2002)

    Article  Google Scholar 

  34. Panin, N., Jipa, D.: Danube River sediment input and its interaction with the northwestern Black Sea. Estuar. Coast. Shelf Sci. 54(3), 551–562 (2019)

    Article  Google Scholar 

  35. Werner, M.: Impact of grid size in GIS based flood extent map** using a 1D flow model. Phys. Chem. Earth Part B 26(7–8), 517–522 (2001)

    Article  Google Scholar 

  36. Kitamura, A., Kurikami, H., Sakuma, K., Malins, A., Okumura, M., Machida, M., Mori, K., Tada, K., Tawara, Y., Kobayashi, T., Yoshida, T., Tosaka, H.: Redistribution and export of contaminated sediment within eastern Fukushima prefecture due to typhoon flooding. Earth Surf. Proc. Land. (2016). https://doi.org/10.1002/esp.3944

    Article  Google Scholar 

  37. Mori, K., Tawara, Y., Hazart, A., Tada, K., Tosaka, H.: Simulating Nitrogen Long-term fate and transport processes at a regional scale with a surface and subsurface fully-coupled watershed model. In: 21st International Congress on Modelling and Simulation, Gold Coast, Australia (2015)

    Google Scholar 

  38. Jacks, G.V., Whyte, R.O.: The rape of the earth: a world survey of soil erosion. Rape. Earth. World. Survey. Soil. Erosion. (1939)

    Google Scholar 

  39. Hassan, M.A., Roberge, L., Church, M., More, M., Donner, S.D., Leach, J., Ali, K.F.: What are the contemporary sources of sediment in the Mississippi River? Geophys. Res. Lett. 44, 8919–8924 (2017)

    Google Scholar 

  40. Borelli, P., Robinson, D.A., Panagos, P., Lugato, E., Yang, J.E., Alewell, C., Wuepper, D., Montanarella, L., Ballabio, C.: Land use and climate change impacts on global soil erosion by water (2015–2070). Proc. Nat. Acad. Sci. 117(34), 1–8 (2020)

    Google Scholar 

  41. Ouillon, S.: Why and how do we study sediment transport? Focus on coastal zones and ongoing methods. Water 10(4), 390 (2018)

    Google Scholar 

  42. Yamamoto, S., Kumagai, M., Koga, K., Sato, S.: Mechanical stability of engineered barriers in a subsurface disposal facility during gas migration based on coupled hydromechanical modelling. Geol. Soc. Lon. Spec. Publ. 415(1) (2015)

    Google Scholar 

  43. Robert, W.C.J., Karen, F., William, J.: Auto-integrating multiple HEC-RAS flood-line models into catchment-wide SWMM flood forecasting models. AWRA Hydrol. Watershed. Manage. Tech. Committee 10(1), 1–15 (2012)

    Google Scholar 

  44. Traore, V.B., Bop, M., Faye, M., Giovani, M.: Using of HEC-RAS model for hydraulic analysis of a river with agriculture vocation: a case study of the Kayanga River Basin, Senegal. Am. J. Water. Res. 3(5), 147–154 (2015)

    Google Scholar 

Download references

Acknowledgements

This study is in collaboration and financially supported by National Water Research Institute of Malaysia (NAHRIM) (Grant no. 304.PAWAM.6050432.l136).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatehah Mohd Omar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abu Bakar, S.N. et al. (2024). Application of GETFLOWS and HEC-RAS in Assessing Sediment Balance Within River Estuary. In: Sabtu, N. (eds) Proceedings of AWAM International Conference on Civil Engineering 2022 - Volume 3. AICCE 2022. Lecture Notes in Civil Engineering, vol 386. Springer, Singapore. https://doi.org/10.1007/978-981-99-6026-2_46

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6026-2_46

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6025-5

  • Online ISBN: 978-981-99-6026-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation