A Study of the Fractional Tumour–Immune Unhealthy Diet Model Using the Pseudo-operational Matrix Method

  • Chapter
  • First Online:
Computational Methods for Biological Models

Part of the book series: Studies in Computational Intelligence ((SCI,volume 1109))

  • 71 Accesses

Abstract

One of the main causes of death in the world is cancer. Cancer is a collection of illnesses characterized by the formation of tumours, malignant cells, or cancer cells capable of becoming cancerous. Several studies have been conducted on cancer and related disorders in recent years. In this chapter, we study the fractional tumour-immune unhealthy diet (TIUNHD) model, and to solve it; we use the fractional-order Laguerre operational matrix-based method. The fractional derivative of Caputo is used in this chapter. In this method, first, we constructed the pseudo-operational matrices of fractional, integer order integration and then used these pseudo-operational matrices to approximate the unknown solutions of the given system of non-linear fractional differential equations model. This results in an algebraic system of equations, which can be easily solved by Newton’s iterative method. A numerical experiment demonstrates the proposed algorithm’s applicability to solving the TIUNHD model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. P. Rawla, T. Sunkara, V. Gaduputi, Epidemiology of pancreatic cancer: global trends, etiology and risk factors. World J. Oncol. 10(1), 10 (2019)

    Article  Google Scholar 

  2. P. Anand, A.B. Kunnumakara, C. Sundaram, K.B. Harikumar, S.T. Tharakan, O.S. Lai, B. Sung, B.B. Aggarwal, Cancer is a preventable disease that requires major lifestyle changes. Pharm. Res. 25(9), 2097–2116 (2008)

    Article  Google Scholar 

  3. H. Khan, F. Hussain, A. Samad, Cure and prevention of diseases with vitamin c into perspective: an overview. J. Crit. Rev 7(4), 289–293 (2019)

    Google Scholar 

  4. D. Jafari, A. Esmaeilzadeh, M. Mohammadi-Kordkhayli, N. Rezaei, Vitamin c and the immune system, in Nutrition and Immunity (Springer, 2019), pp. 81–102

    Google Scholar 

  5. W.K. Jhang, D.H. Kim, S.J. Park, W. Dong, X. Liu, S. Zhu, D. Lu, K. Cai, R. Cai, Q. Li et al., Development of the anti-cancer food scoring system 2.0: Validation and nutritional analyses of quantitative anti-cancer food scoring model. Nutr. Res. Pract. 14(1), 32–44 (2020)

    Google Scholar 

  6. A.E. Glick, A. Mastroberardino, An optimal control approach for the treatment of solid tumors with angiogenesis inhibitors. Mathematics 5(4), 49 (2017)

    Article  MATH  Google Scholar 

  7. M. Chipo, W. Sorofa, E. Chiyaka, Assessing the effects of estrogen on the dynamics of breast cancer. Comput. Math. Methods Med.

    Google Scholar 

  8. S. Khajanchi, M. Perc, D. Ghosh, The influence of time delay in a chaotic cancer model. Chaos: Interdiscip. J. Nonlinear Sci. 28(10), 103101 (2018)

    Google Scholar 

  9. S. Kumar, S. Das, S.-H. Ong, Analysis of tumor cells in the absence and presence of chemotherapeutic treatment: the case of caputo-fabrizio time fractional derivative. Math. Comput. Simul. 190, 1–14 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  10. M.A. Alqudah, Cancer treatment by stem cells and chemotherapy as a mathematical model with numerical simulations. Alex. Eng. J. 59(4), 1953–1957 (2020)

    Article  Google Scholar 

  11. V.A. Kuznetsov, I.A. Makalkin, M.A. Taylor, A.S. Perelson, Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis. Bull. Math. Biol. 56(2), 295–321 (1994)

    Article  MATH  Google Scholar 

  12. D. Kirschner, J.C. Panetta, Modeling immunotherapy of the tumor-immune interaction. J. Math. Biol. 37(3), 235–252 (1998)

    Article  MATH  Google Scholar 

  13. S.A. Alharbi, A.S. Rambely, A dynamic simulation of the immune system response to inhibit and eliminate abnormal cells. Symmetry 11(4), 572 (2019)

    Article  MATH  Google Scholar 

  14. R.A. Ku-Carrillo, S.E. Delgadillo, B. Chen-Charpentier, A mathematical model for the effect of obesity on cancer growth and on the immune system response. Appl. Math. Model. 40(7–8), 4908–4920 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  15. S.A. Alharbi et al., The effectiveness of cryotherapy in the management of sports injuries. Saudi J. Sports Med. 20(1), 1 (2020)

    Article  MathSciNet  Google Scholar 

  16. C. Mufudza, W. Sorofa, E.T. Chiyaka, Assessing the effects of estrogen on the dynamics of breast cancer. Comput. Math. Methods Med. (2012)

    Google Scholar 

  17. Y. Louzoun, C. Xue, G.B. Lesinski, A. Friedman, A mathematical model for pancreatic cancer growth and treatments. J. Theor. Biol. 351, 74–82 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. J. Arciero, T. Jackson, D. Kirschner, A mathematical model of tumor-immune evasion and sirna treatment. Discrete & Contin. Dyn. Syst.-B 4(1), 39 (2004)

    MathSciNet  MATH  Google Scholar 

  19. X. Yang, Y. Yang, M.N. Skandari, E. Tohidi, S. Shateyi, A new local non-integer derivative and its application to optimal control problems. AIMS Math. 7(9), 16692–16705 (2022)

    Article  MathSciNet  Google Scholar 

  20. H. Singh, Analysis for fractional dynamics of ebola virus model. Chaos Solitons & Fractals 138, 109992 (2020)

    Article  MathSciNet  Google Scholar 

  21. H. Singh, Analysis of drug treatment of the fractional hiv infection model of cd4+ t-cells. Chaos Solitons & Fractals 146, 110868 (2021)

    Article  MathSciNet  Google Scholar 

  22. H. Singh, D. Baleanu, J. Singh, H. Dutta, Computational study of fractional order smoking model. Chaos Solitons & Fractals 142, 110440 (2021)

    Article  MathSciNet  Google Scholar 

  23. H. Singh, H. Srivastava, D. Baleanu, Methods of Mathematical Modeling: Infectious Disease (Academic, London, 2022)

    Google Scholar 

  24. S. Kumar, V. Gupta, An application of variational iteration method for solving fuzzy time-fractional diffusion equations. Neural Comput. Appl. 33, 17659–17668 (2021)

    Article  Google Scholar 

  25. M.K. Kadalbajoo, V. Gupta, Hybrid finite difference methods for solving modified Burgers and Burgers-Huxley equations. Neural Parallel Sci. Comput. 18(3–4), 409–422 (2010)

    MathSciNet  MATH  Google Scholar 

  26. V. Gupta, M.K. Kadalbajoo, A singular perturbation approach to solve Burgers-Huxley equation via monotone finite difference scheme on layer-adaptive mesh. Commun. Nonlinear Sci. Numer. Simul. 16(4), 1825–1844 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. V. Gupta, M.K. Kadalbajoo, Qualitative analysis and numerical solution of Burgers’ equation via B-spline collocation with implicit Euler method on piecewise uniform mesh. J. Numer. Math. 24(2), 73–94 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Z. Tang, E. Tohidi, F. He, Generalized mapped nodal laguerre spectral collocation method for volterra delay integro-differential equations with noncompact kernels. Comput. Appl. Math. 39(4), 1–22 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  29. P. **aobing, X. Yang, M.H.N. Skandari, E. Tohidi, S. Shateyi, A new high accurate approximate approach to solve optimal control problems of fractional order via efficient basis functions. Alex. Eng. J. 61(8), 5805–5818 (2022)

    Article  Google Scholar 

  30. F.A. Ghassabzadeh, E. Tohidi, H. Singh, S. Shateyi, Rbf collocation approach to calculate numerically the solution of the nonlinear system of qfdes. J. King Saud Univ.-Sci. 33(2), 101288 (2021)

    Article  Google Scholar 

  31. H.M. Srivastava, K.M. Saad, W.M. Hamanah, Certain new models of the multi-space fractal-fractional kuramoto-sivashinsky and korteweg-de vries equations. Mathematics 10(7), 1089 (2022)

    Article  Google Scholar 

  32. S. Sahoo, V. Gupta, Second-order parameter-uniform finite difference scheme for singularly perturbed parabolic problem with a boundary turning point. J. Differ. Equ. Appl. 27(2), 223–240 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  33. M. Kadalbajoo, V. Gupta, A parameter uniform b-spline collocation method for solving singularly perturbed turning point problem having twin boundary layers. Int. J. Comput. Math. 87(14), 3218–3235 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. R. Dubey, V. Gupta, A mesh refinement algorithm for singularly perturbed boundary and interior layer problems. Int. J. Comput. Methods 17(7), 1950024 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  35. S. Sahoo, V. Gupta, Higher order robust numerical computation for singularly perturbed problem involving discontinuous convective and source term. Math. Meth. Appl. Sci. 45(8), 4876–4898 (2022)

    Article  MathSciNet  Google Scholar 

  36. J. Munkhammar, Riemann-Liouville Fractional Derivatives and the Taylor-riemann Series (2004)

    Google Scholar 

  37. S. Kumar, V. Gupta, An approach based on fractional-order lagrange polynomials for the numerical approximation of fractional order non-linear volterra-fredholm integro-differential equations. J. Appl. Math. Comput. 1–22 (2022)

    Google Scholar 

  38. S. Kumar, V. Gupta, J. Gómez-Aguilar, An efficient operational matrix technique to solve the fractional order non-local boundary value problems. J. Math. Chem. 1–17 (2022)

    Google Scholar 

  39. J. He, P. Shang, Multidimensional scaling analysis of financial stocks based on kronecker-delta dissimilarity. Commun. Nonlinear Sci. Numer. Simul. 63, 186–201 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  40. H. Dehestani, Y. Ordokhani, M. Razzaghi, Fractional-order legendre-laguerre functions and their applications in fractional partial differential equations. Appl. Math. Comput. 336, 433–453 (2018)

    MathSciNet  MATH  Google Scholar 

  41. K. Abernathy, Z. Abernathy, A. Baxter, M. Stevens, Global dynamics of a breast cancer competition model. Diff. Equ. Dyn. Syst. 28(4), 791–805 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  42. V.S. Krishnasamy, S. Mashayekhi, M. Razzaghi, Numerical solutions of fractional differential equations by using fractional taylor basis. IEEE/CAA J. Autom. Sinica 4(1), 98–106 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, S., Gupta, V. (2023). A Study of the Fractional Tumour–Immune Unhealthy Diet Model Using the Pseudo-operational Matrix Method. In: Singh, H., Dutta, H. (eds) Computational Methods for Biological Models. Studies in Computational Intelligence, vol 1109. Springer, Singapore. https://doi.org/10.1007/978-981-99-5001-0_6

Download citation

Publish with us

Policies and ethics

Navigation