Log in

Global Dynamics of a Breast Cancer Competition Model

  • Original Research
  • Published:
Differential Equations and Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper, we present a system of five ordinary differential equations which consider population dynamics among cancer stem cells, tumor cells, and healthy cells. Additionally, we consider the effects of excess estrogen and the body’s natural immune response on the aforementioned cell populations. Employing a variety of analytical methods, we study the global dynamics of the full system, along with various submodels. We find sufficient conditions on parameter values to ensure cancer persistence in the absence of immune cells, and cancer eradication when an immune response is included. We conclude with a discussion on the biological implications of the resulting global dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Abernathy, K., Burke, J.: Modeling the treatment of glioblastoma multiforme and cancer stem cells with ordinary differential equations. Comput. Math. Methods Med. (2016). doi:10.1155/2016/1239861

  2. Al-Hajj, M., Wicha, M.S., Benito-Hernandez, A., Morrison, S.J., Clarke, M.F.: Prospective identification of tumorigenic breast cancer cells. Proc. Natl. Acad. Sci. USA 100(7), 3983–3988 (2003)

    Article  Google Scholar 

  3. De Pillis, L.G., Radunskaya, A.: A mathematical tumor model with immune resistance and drug therapy: an optimal control approach. J. Theor. Med. 3(2), 79–100 (2001)

    Article  Google Scholar 

  4. De Pillis, L.G., Gu, W., Fister, K., Head, T., Maples, K., Murugan, A., Neal, T., Yoshida, K.: Chemotherapy for tumors: an analysis of the dynamics and a study of quadratic and linear optimal controls. Math. Biosci. 209(1), 292–315 (2006)

    Article  MathSciNet  Google Scholar 

  5. De Pillis, L.G., Gu, W., Radunskaya, A.E.: Mixed immunotherapy and chemotherapy of tumors: modeling, applications and biological implications. J. Theor. Biol. 238(4), 841–862 (2006)

    Article  Google Scholar 

  6. De Lisette, P., Radunskaya, A., Wiseman, C.: A validated mathematical model of cell-mediated immune response to tumor growth. Cancer Res. 65(17), 7950–7958 (2005)

    Article  Google Scholar 

  7. Enderling, H., Chaplain, M.A.J., Anderson, A.R.A., Vaidya, J.S.: A mathematical model of breast cancer development, local treatment and recurrence. J. Theor. Biol. 246(2), 245–259 (2007)

    Article  MathSciNet  Google Scholar 

  8. Kang, K.-S., Morita, I., Angela, C., Jeon, Y.J., Trosko, J.E., Chang, C.-C.: Expression of estrogen receptors in a normal human breast epithelial cell type with luminal and stem cell characteristics and its neoplastically transformed cell lines. Carcinogenisis 18(2), 251–257 (1997)

    Article  Google Scholar 

  9. Kareva, I., Berezovskaya, F.: Cancer immunoediting: a process driven by metabolic competition as a predator–prey–shared resource type model. J. Theor. Biol. 380, 463–472 (2015)

    Article  Google Scholar 

  10. Krishchenko, A.P.: Localization of invariant compact sets of dynamical systems. Differ. Equ. 41, 1669–1676 (2005)

    Article  MathSciNet  Google Scholar 

  11. Krishchenko, A.P., Starkov, K.E.: Localization of compact invariant sets of the Lorenz system. Phys. Lett. A 353, 383–388 (2006)

    Article  MathSciNet  Google Scholar 

  12. Krishchenko, A.P., Starkov, K.E.: On the global dynamics of a chronic myelogenous leukemia model. Commun. Nonlinear Sci. Numer. Simul. 33, 174–183 (2016)

    Article  MathSciNet  Google Scholar 

  13. McDuffie, M.: A hormone therapy model for breast cancer using linear cancer networks. Rose-Hulman Undergrad. Math. J. 15(1), 142–156 (2014)

    MathSciNet  MATH  Google Scholar 

  14. Mufudza, C., Sorofa, W., Chiyaka, E.: Assessing the effects of estrogen on the dynamics of breast cancer. Comput. Math. Methods Med. (2012). doi:10.1155/2012/473572

  15. Nordqvist, C.: Breast Cancer: Causes, Symptoms and Treatments. Medical News Today. MediLexicon, Intl., 5 May. 2016, Web. 18 Jan. 2017

  16. Pinho, S.T.R., Freedman, H.I., Nani, F.: A chemotherapy model for the treatment of cancer with metastasis. Math. Comput. Model. 36, 773–803 (2002)

    Article  MathSciNet  Google Scholar 

  17. Robertson-Tessi, M., El-Kareh, A., Gorielly, A.: A mathematical model of tumorimmune interactions. J. Theor. Biol. 294, 56–73 (2012)

    Article  Google Scholar 

  18. Starkov, K.E., Bunimovich-Mendrazitsky, S.: Dynamical properties and tumor clearance conditions for a nine-dimensional model of bladder cancer immunotherapy. Math. Biosci. Eng. 13, 1059–1075 (2016)

    Article  MathSciNet  Google Scholar 

  19. Starkov, K.E., Coria, L.N.: Global dynamics of the Kirschner–Panetta model for the tumor immunotherapy. J. Nonlinear Anal. Ser. B Real World Appl. 14, 1425–1433 (2013)

    Article  MathSciNet  Google Scholar 

  20. Starkov, K.E., Krishchenko, A.P.: On the global dynamics of one cancer tumour growth model. Commun. Nonlinear Sci. Numer. Simul. 19, 1486–1495 (2014)

    Article  MathSciNet  Google Scholar 

  21. Starkov, K.E., Plata-Ante, C.: On the global dynamics of the cancer AIDS-related mathematical model. Kybernetika 50, 563–579 (2014)

    MathSciNet  MATH  Google Scholar 

  22. Starkov, K.E., Pogromsky, A.Y.: On the global dynamics of the Owen–Sherratt model describing the tumor–macrophage interactions. Int. J. Bifurc. Chaos 23, 1350020 (2013)

    Article  MathSciNet  Google Scholar 

  23. Starkov, K.E., Villegas, A.: On some dynamical properties of a seven-dimensional cancer model with immunotherapy. Int. J. Bifurc. Chaos Appl. Sci. Eng. (2014). doi:10.1142/S0218127414500205

  24. Starkov, K.E., Gomboa, D.: Localization of compact invariant sets and global stability in analysis of one tumor growth model. Math. Methods Appl. Sci. 37, 2854–2863 (2014)

    Article  MathSciNet  Google Scholar 

  25. Valentine, B., Wischhusen, J.: Cancer stem cell immunology: key to understanding tumorigenesis and tumor immune escape? Front. Immunol. 5, 1–13 (2014)

    Google Scholar 

  26. Valle, P.A., Starkov, K.E., Coria, L.N.: Global stability and tumor clearance conditions for a cancer chemotherapy system. Commun. Nonlinear Sci. Numer. Simul. 40, 206–215 (2016)

    Article  MathSciNet  Google Scholar 

  27. Villasana, M., Radunskaya, A.: A delay differential equation model for tumor growth. J. Math. Biol. 47(3), 270–294 (2003)

    Article  MathSciNet  Google Scholar 

  28. Wu, C.-H., Motohashi, T., Abdel-Rahman, H., Flickinger, G., Mikhail, G.: Free and protein-bound plasma estradiol-17 \(\upbeta \) during the menstrual cycle. J. Clin. Endocrinol. 43(2), 436–445 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zachary Abernathy.

Additional information

This material is based upon work supported by the National Science Foundation under Grant No. DMS-1358534. Additionally, this project is supported by an Institutional Development Award (IDeA) from the National Institute of General Medical Sciences (2 P20 GM103499 15) from the National Institutes of Health. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation or the National Institutes of Health.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abernathy, K., Abernathy, Z., Baxter, A. et al. Global Dynamics of a Breast Cancer Competition Model. Differ Equ Dyn Syst 28, 791–805 (2020). https://doi.org/10.1007/s12591-017-0346-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12591-017-0346-x

Keywords

Navigation