Transcranial Electrical Stimulation

  • Chapter
  • First Online:
Therapeutics of Neural Stimulation for Neurological Disorders
  • 371 Accesses

Abstract

Transcranial electrical current stimulation includes various types such as transcranial direct current stimulation (tDCS), transcranial alternating current stimulation (tACS), oscillatory transcranial direct current stimulation (otDCS) and transcranial random noise stimulation (tRNS). In this chapter, we introduce the pricinple neural mechanism of each stimulation type respectively and discuss the factors that related to the effect size of each sitmulation. Except the single channel transcranial electrial current stimulation, we also introduce the state-of-the-art multichannel stimulation method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 139.09
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 181.89
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Al QW, Abubaker M, Kvasnak E (2022) Working memory and transcranial-alternating current stimulation-state of the art: findings, missing, and challenges. Front Psychol 13:822545

    Article  Google Scholar 

  • Alagapan S, Schmidt SL, Lefebvre J et al (2016) Modulation of cortical oscillations by low-frequency direct cortical stimulation is state-dependent. PLoS Biol 14(3):e1002424

    Article  PubMed  PubMed Central  Google Scholar 

  • Ambrus GG, Zimmer M, Kincses ZT et al (2011) The enhancement of cortical excitability over the DLPFC before and during training impairs categorization in the prototype distortion task. Neuropsychologia 49(7):1974–1980

    Article  PubMed  Google Scholar 

  • Anastassiou CA, Perin R, Markram H (2011) Ephaptic coupling of cortical neurons. Nat Neurosci 14(2):217–223

    Article  CAS  PubMed  Google Scholar 

  • Antal A, Herrmann CS (2016) Transcranial alternating current and random noise stimulation: possible mechanisms. Neural Plast 2016:3616807

    Article  PubMed  PubMed Central  Google Scholar 

  • Asamoah B, Khatoun A, Mc Laughlin M et al (2019) tACS motor system effects can be caused by transcutaneous stimulation of peripheral nerves. Nat Commun 10(1):266

    Article  PubMed  PubMed Central  Google Scholar 

  • Batsikadze G, Moliadze V, Paulus W et al (2013) Partially non-linear stimulation intensity-dependent effects of direct current stimulation on motor cortex excitability in humans. J Physiol 591(7):1987–2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bikson M, Inoue M, Akiyama H et al (2004) Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro. J Physiol 557(Pt 1):175–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bikson M, Datta A, Rahman A et al (2010) Electrode montages for tDCS and weak transcranial electrical stimulation: role of “return” electrode’s position and size. Clin Neurophysiol 121(12):1976–1978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bikson M, Truong DQ, Mourdoukoutas AP et al (2015) Modeling sequence and quasi-uniform assumption in computational neurostimulation. Prog Brain Res 222:1–23

    Article  PubMed  Google Scholar 

  • Binder S, Berg K, Gasca F et al (2014) Transcranial slow oscillation stimulation during sleep enhances memory consolidation in rats. Brain Stimul 7(4):508–515

    Article  PubMed  Google Scholar 

  • Bindman LJ, Lippold OC, Redfearn JW (1964) The action of brief polarizing currents on the cerebral cortex of the rat (1) during current flow and (2) in the production of long-lasting after-effects. J Physiol 172:369–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boggio PS, Ferrucci R, Rigonatti SP (2006) Effects of transcranial direct current stimulation on working memory in patients with Parkinson’s disease. J Neurol Sci 249(1):31–38

    Article  PubMed  Google Scholar 

  • Brittain JS, Cagnan H, Mehta AR et al (2015) Distinguishing the central drive to tremor in Parkinson’s disease and essential tremor. J Neurosci 35(2):795–806

    Article  PubMed  PubMed Central  Google Scholar 

  • Brunoni AR, Moffa AH, Fregni F et al (2016) Transcranial direct current stimulation for acute major depressive episodes: meta-analysis of individual patient data. Br J Psychiatry 208(6):522–531

    Article  PubMed  PubMed Central  Google Scholar 

  • Bueno-Lopez A, Eggert T, Dorn H et al (2013) No effects of slow oscillatory transcranial direct current stimulation (tDCS) on sleep-dependent memory consolidation in healthy elderly subjects. Brain Stimul 6(6):938–945

    Article  Google Scholar 

  • Cappon D, Jahanshahi M, Bisiacchi P (2016) Value and efficacy of transcranial direct current stimulation in the cognitive rehabilitation: a critical review since 2000. Front Neurosci 10:157

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaieb L, Antal A, Paulus W (2015) Transcranial random noise stimulation-induced plasticity is NMDA-receptor independent but sodium-channel blocker and benzodiazepines sensitive. Front Neurosci 9:125

    Article  PubMed  PubMed Central  Google Scholar 

  • Chan CY, Nicholson C (1986) Modulation by applied electric fields of Purkinje and stellate cell activity in the isolated turtle cerebellum. J Physiol 371:89–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan CY, Hounsgaard J, Nicholson C (1988) Effects of electric fields on transmembrane potential and excitability of turtle cerebellar Purkinje cells in vitro. J Physiol 402:751–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chhatbar PY, Kautz SA, Takacs I et al (2018) Evidence of transcranial direct current stimulation-generated electric fields at subthalamic level in human brain in vivo. Brain Stimul 11(4):727–733

    Article  PubMed  PubMed Central  Google Scholar 

  • Csercsa R, Dombovári B, Fabó D et al (2010) Laminar analysis of slow wave activity in humans. Brain 133(9):2814–2829

    Article  PubMed  PubMed Central  Google Scholar 

  • Datta A, Zhou X, Su Y et al (2013) Validation of finite element model of transcranial electrical stimulation using scalp potentials: implications for clinical dose. J Neural Eng 10(3):036018

    Article  PubMed  Google Scholar 

  • David B, MacDonald MD (2006) Intraoperative motor evoked potential monitoring: overview and update. J Clin Monit Comput 20(5):347–377

    Article  Google Scholar 

  • Deans JK, Powell AD, Jefferys JG (2007) Sensitivity of coherent oscillations in rat hippocampus to AC electric fields. J Physiol 583(Pt 2):555–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deletis V (2005) What does intraoperative monitoring of motor evoked potentials bring to the neurosurgeon? Acta Neurochir 147(10):1015–1017

    Article  CAS  PubMed  Google Scholar 

  • Dmochowski JP, Datta A, Bikson M et al (2011) Optimized multi-electrode stimulation increases focality and intensity at target. J Neural Eng 8(4):046011

    Article  PubMed  Google Scholar 

  • Faria P, Hallett M, Miranda PC (2011) A finite element analysis of the effect of electrode area and inter-electrode distance on the spatial distribution of the current density in tDCS. J Neural Eng 8(6):066017

    Article  PubMed  PubMed Central  Google Scholar 

  • Fehlings MG, Tator CH (1992) The effect of direct current field polarity on recovery after acute experimental spinal cord injury. Brain Res 579(1):32–42

    Article  CAS  PubMed  Google Scholar 

  • Fertonani A, Pirulli C, Miniussi C (2011) Random noise stimulation improves neuroplasticity in perceptual learning. J Neurosci 31(43):15416–15423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fregni F, Gimenes R, Valle AC et al (2006) A randomized, sham-controlled, proof of principle study of transcranial direct current stimulation for the treatment of pain in fibromyalgia. Arthritis Rheum 54(12):3988–3998

    Article  PubMed  Google Scholar 

  • Fritsch B, Reis J, Martinowich K et al (2010) Direct current stimulation promotes BDNF-dependent synaptic plasticity: potential implications for motor learning. Neuron 66(2):198–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gluckman BJ, Neel EJ, Netoff TI et al (1996) Electric field suppression of epileptiform activity in hippocampal slices. J Neurophysiol 76(6):4202–4205

    Article  CAS  PubMed  Google Scholar 

  • Goats GC (1990) Interferential current therapy. Br J Sports Med 24(2):87–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grossman N, Bono D, Dedic N et al (2017) Noninvasive deep brain stimulation via temporally interfering electric fields. Cell 169(6):1029–1041.e16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hampstead BM, Sathian K, Bikson M et al (2017) Combined mnemonic strategy training and high-definition transcranial direct current stimulation for memory deficits in mild cognitive impairment. Alzheimers Dement (N Y) 3(3):459–470

    Article  PubMed  Google Scholar 

  • Helfrich RF, Schneider TR, Rach S et al (2014a) Entrainment of brain oscillations by transcranial alternating current stimulation. Curr Biol 24(3):333–339

    Article  CAS  PubMed  Google Scholar 

  • Helfrich RF, Knepper H, Nolte G et al (2014b) Selective modulation of interhemispheric functional connectivity by HD-tACS shapes perception. PLoS Biol 12(12):e1002031

    Article  PubMed  PubMed Central  Google Scholar 

  • Helfrich RF, Herrmann CS, Engel AK et al (2016) Different coupling modes mediate cortical cross-frequency interactions. NeuroImage 140:76–82

    Article  PubMed  Google Scholar 

  • Herrmann B, Henry MJ, Haegens S et al (2016) Temporal expectations and neural amplitude fluctuations in auditory cortex interactively influence perception. NeuroImage 124(Pt A):487–497

    Article  PubMed  Google Scholar 

  • Ho KA, Taylor JL, Chew T et al (2016) The effect of transcranial direct current stimulation (tDCS) electrode size and current intensity on motor cortical excitability: evidence from single and repeated sessions. Brain Stimul 9(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Horvath JC, Forte JD, Carter O (2015) Evidence that transcranial direct current stimulation (tDCS) generates little-to-no reliable neurophysiologic effect beyond MEP amplitude modulation in healthy human subjects: a systematic review. Neuropsychologia 66:213–236

    Article  PubMed  Google Scholar 

  • Hoy KE, Emonson MR, Arnold SL et al (2013) Testing the limits: investigating the effect of tDCS dose on working memory enhancement in healthy controls. Neuropsychologia 51(9):1777–1784

    Article  PubMed  Google Scholar 

  • Huang Y, Parra LC (2019) Can transcranial electric stimulation with multiple electrodes reach deep targets? Brain Stimul 12(1):30–40

    Article  PubMed  Google Scholar 

  • Huang Y, Liu AA, Lafon B et al (2017) Measurements and models of electric fields in the in vivo human brain during transcranial electric stimulation. elife 6:e18834

    Article  PubMed  PubMed Central  Google Scholar 

  • Jamil A, Batsikadze G, Kuo HI et al (2017) Systematic evaluation of the impact of stimulation intensity on neuroplastic after-effects induced by transcranial direct current stimulation. J Physiol 595(4):1273–1288

    Article  CAS  PubMed  Google Scholar 

  • Kabakov AY, Muller PA, Pascual-Leone A et al (2012) Contribution of axonal orientation to pathway-dependent modulation of excitatory transmission by direct current stimulation in isolated rat hippocampus. J Neurophysiol 107(7):1881–1889

    Article  PubMed  PubMed Central  Google Scholar 

  • Kanai R, Chaieb L, Antal A et al (2008) Frequency-dependent electrical stimulation of the visual cortex. Curr Biol 18(23):1839–1843

    Article  CAS  PubMed  Google Scholar 

  • Kar K, Krekelberg B (2012) Transcranial electrical stimulation over visual cortex evokes phosphenes with a retinal origin. J Neurophysiol 108(8):2173–2178

    Article  PubMed  PubMed Central  Google Scholar 

  • Kar K, Krekelberg B (2014) Transcranial alternating current stimulation attenuates visual motion adaptation. J Neurosci 34(21):7334–7340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kar K, Duijnhouwer J, Krekelberg B (2017) Transcranial alternating current stimulation attenuates neuronal adaptation. J Neurosci 37(9):2325–2335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keeser D, Meindl T, Bor J et al (2011) Prefrontal transcranial direct current stimulation changes connectivity of resting-state networks during fMRI. J Neurosci 31(43):15284–15293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kellner CH, Obbels J, Sienaert P (2020) When to consider electroconvulsive therapy. Acta Psychiatr Scand 141:304–315

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Kim DW, Chang WH et al (2014) Inconsistent outcomes of transcranial direct current stimulation may originate from anatomical differences among individuals: electric field simulation using individual MRI data. Neurosci Lett 564:6–10

    Article  CAS  PubMed  Google Scholar 

  • Koo PC, Mölle M, Marshall L (2018) Efficacy of slow oscillatory-transcranial direct current stimulation on EEG and memory—contribution of an inter-individual factor. Eur J Neurosci 47(7):812–823

    Article  PubMed  Google Scholar 

  • Koo-Poeggel P, Böttger V, Marshall L (2019) Distinct montages of slow oscillatory transcranial direct current stimulation (so-tDCS) constitute different mechanisms during quiet wakefulness. Brain Sci 9(11):324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laakso I, Hirata A (2013) Computational analysis shows why transcranial alternating current stimulation induces retinal phosphenes. J Neural Eng 10(4):046009

    Article  PubMed  Google Scholar 

  • Ladenbauer J, Külzow N, Passmann S et al (2016) Brain stimulation during an afternoon nap boosts slow oscillatory activity and memory consolidation in older adults. NeuroImage 142:311–323

    Article  PubMed  Google Scholar 

  • Legatt AD, Emerson RG, Epstein CM et al (2016) ACNS guideline: transcranial electrical stimulation motor evoked potential monitoring. J Clin Neurophysiol 33(1):42–50

    Article  PubMed  Google Scholar 

  • Li H, Lei X, Yan T et al (2015) The temporary and accumulated effects of transcranial direct current stimulation for the treatment of advanced Parkinson’s disease monkeys. Sci Rep 5:12178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loo CK, Alonzo A, Martin D et al (2012) Transcranial direct current stimulation for depression: 3-week, randomised, sham-controlled trial. Br J Psychiatry 200(1):52–59

    Article  PubMed  Google Scholar 

  • MacDonald MD (2002) Safety of intraoperative transcranial electrical stimulation motor evoked potential monitoring. J Clin Neurophysiol 19(5):416–429

    Article  PubMed  Google Scholar 

  • MacDonald MD, Skinner S, Shils J et al (2013) Intraoperative motor evoked potential monitoring—a position statement by the American Society of Neurophysiological Monitoring. Clin Neurophysiol 124:2291–2316

    Article  CAS  PubMed  Google Scholar 

  • Manola L, Holsheimer J (2007) Motor cortex stimulation: role of computer modeling. Acta Neurochir Suppl 97(Pt 2):497–503

    Article  CAS  PubMed  Google Scholar 

  • Manola L, Roelofsen BH, Holsheimer J et al (2005) Modelling motor cortex stimulation for chronic pain control: electrical potential field, activating functions and responses of simple nerve fibre models. Med Biol Eng Comput 43(3):335–343

    Article  CAS  PubMed  Google Scholar 

  • Manola L, Holsheimer J, Veltink P (2007) Anodal vs cathodal stimulation of motor cortex: a modeling study. Clin Neurophysiol 118(2):464–474

    Article  PubMed  Google Scholar 

  • Marshall L, Mölle M, Hallschmid M et al (2004) Transcranial direct current stimulation during sleep improves declarative memory. J Neurosci 24(44):9985–9992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marshall L, Helgadóttir H, Mölle M et al (2006) Boosting slow oscillations during sleep potentiates memory. Nature 444(7119):610–613

    Article  CAS  PubMed  Google Scholar 

  • Maruta Y, Fujii M, Imoto H et al (2012) Intra-operative monitoring of lower extremity motor-evoked potentials by direct cortical stimulation. Clin Neurophysiol 123(6):1248–1254

    Article  PubMed  Google Scholar 

  • Mehta AR, Pogosyan A, Brown P et al (2015) Montage matters: the influence of transcranial alternating current stimulation on human physiological tremor. Brain Stimul 8(2):260–268

    Article  PubMed  PubMed Central  Google Scholar 

  • Mendonca ME, Santana MB, Baptista AF et al (2011) Transcranial DC stimulation in fibromyalgia: optimized cortical target supported by high-resolution computational models. J Pain 12(5):610–617

    Article  PubMed  Google Scholar 

  • Miranda PC, Lomarev M, Hallett M. (2006). Modeling the current distribution during transcranial direct current stimulation. Clin Neurophysiol. 117(7):1623–1629. https://doi.org/10.1016/j.clinph.2006.04.009

  • Moiyadi A, Velayutham P, Shetty P et al (2018) Combined motor evoked potential monitoring and subcortical dynamic map** in motor eloquent tumors allows safer and extended resections. World Neurosurg 120:e259–e268

    Article  PubMed  Google Scholar 

  • Moliadze V, Atalay D, Antal A et al (2012) Close to threshold transcranial electrical stimulation preferentially activates inhibitory networks before switching to excitation with higher intensities. Brain Stimul 5(4):505–511

    Article  PubMed  Google Scholar 

  • Moliadze V, Schmanke T, Andreas S et al (2015) Stimulation intensities of transcranial direct current stimulation have to be adjusted in children and adolescents. Clin Neurophysiol 126(7):1392–1399

    Article  PubMed  Google Scholar 

  • Murray LM, Edwards DJ, Ruffini G et al (2015) Intensity dependent effects of transcranial direct current stimulation on corticospinal excitability in chronic spinal cord injury. Arch Phys Med Rehabil 96(4 Suppl):S114–S121

    Article  PubMed  Google Scholar 

  • Neuling T, Wagner S, Wolters CH et al (2012a) Finite-element model predicts current density distribution for clinical applications of tDCS and tACS. Front Psych 3:83

    Google Scholar 

  • Neuling T, Rach S, Wagner S et al (2012b) Good vibrations: oscillatory phase shapes perception. NeuroImage 63(2):771–778

    Article  CAS  PubMed  Google Scholar 

  • Neuling T, Rach S, Herrmann CS (2013) Orchestrating neuronal networks: sustained after-effects of transcranial alternating current stimulation depend upon brain states. Front Hum Neurosci 7:161

    Article  PubMed  PubMed Central  Google Scholar 

  • Nitsche MA, Polania R, Kuo MF (2015) Transcranial direct current stimulation: modulation of brain pathways and potential clinical applications, Wiley: Hoboken. 233–254

    Google Scholar 

  • Notbohm A, Kurths J, Herrmann CS (2016) Modification of brain oscillations via rhythmic light stimulation provides evidence for entrainment but not for superposition of event-related responses. Front Hum Neurosci 10:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Noury N, Hipp JF, Siegel M (2016) Physiological processes non-linearly affect electrophysiological recordings during transcranial electric stimulation. NeuroImage 140:99–109

    Article  PubMed  Google Scholar 

  • Opitz A, Paulus W, Will S et al (2015) Determinants of the electric field during transcranial direct current stimulation. NeuroImage 109:140–150

    Article  PubMed  Google Scholar 

  • Opitz A, Falchier A, Yan CG et al (2016) Spatiotemporal structure of intracranial electric fields induced by transcranial electric stimulation in humans and nonhuman primates. Sci Rep 6:31236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozen S, Sirota A, Belluscio MA et al (2010) Transcranial electric stimulation entrains cortical neuronal populations in rats. J Neurosci 30(34):11476–11485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pagnin D, de Queiroz V, Pini S, Cassano GB (2004) Efficacy of ECT in depression: a meta-analytic review. J ECT 20:13–20

    Article  PubMed  Google Scholar 

  • Paneri B, Adair D, Thomas C et al (2016) Tolerability of repeated application of transcranial electrical stimulation with limited outputs to healthy subjects. Brain Stimul 9(5):740–754

    Article  PubMed  PubMed Central  Google Scholar 

  • Paßmann S, Külzow N, Ladenbauer J et al (2016) Boosting slow oscillatory activity using tDCS during early nocturnal slow wave sleep does not improve memory consolidation in healthy older adults. Brain Stimul 9(5):730–739

    Article  PubMed  Google Scholar 

  • Pavan A, Ghin F, Contillo A et al (2019) Modulatory mechanisms underlying high-frequency transcranial random noise stimulation (hf-tRNS): a combined stochastic resonance and equivalent noise approach. Brain Stimul 12(4):967–977

    Article  PubMed  Google Scholar 

  • Pelletier SJ, Cicchetti F (2014) Cellular and molecular mechanisms of action of transcranial direct current stimulation: evidence from in vitro and in vivo models. Int J Neuropsychopharmacol 18(2):pyu047

    Article  PubMed  Google Scholar 

  • Pikovsky A, Maĭstrenko IL (2003) Synchronization: theory and application. NATO science series. Kluwer Academic Publishers, Dordrecht, p 258

    Book  Google Scholar 

  • Pikovsky A, Rosenblum M, Kurths J (2001) Synchronization: a universal concept in nonlinear sciences, vol 12. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Pirulli C, Fertonani A, Miniussi C (2013) The role of timing in the induction of neuromodulation in perceptual learning by transcranial electric stimulation. Brain Stimul 6(4):683–689

    Article  PubMed  Google Scholar 

  • Polanía R, Paulus W, Antal A et al (2011a) Introducing graph theory to track for neuroplastic alterations in the resting human brain: a transcranial direct current stimulation study. NeuroImage 54(3):2287–2296

    Article  PubMed  Google Scholar 

  • Polanía R, Nitsche MA, Paulus W (2011b) Modulating functional connectivity patterns and topological functional organization of the human brain with transcranial direct current stimulation. Hum Brain Mapp 32(8):1236–1249

    Article  PubMed  Google Scholar 

  • Polanía R, Paulus W, Nitsche MA (2012) Modulating cortico-striatal and thalamo-cortical functional connectivity with transcranial direct current stimulation. Hum Brain Mapp 33(10):2499–2508

    Article  PubMed  Google Scholar 

  • Prichard G, Weiller C, Fritsch B et al (2014) Effects of different electrical brain stimulation protocols on subcomponents of motor skill learning. Brain Stimul 7(4):532–540

    Article  PubMed  Google Scholar 

  • Purpura DP, Mcmurtry JG (1965) Intracellular activities and evoked potential changes during polarization of motor cortex. J Neurophysiol 28:166–185

    Article  CAS  PubMed  Google Scholar 

  • Radman T, Ramos RL, Brumberg JC et al (2009) Role of cortical cell type and morphology in subthreshold and suprathreshold uniform electric field stimulation in vitro. Brain Stimul 2(4):215–228

    Article  PubMed  PubMed Central  Google Scholar 

  • Rahman A, Reato D, Arlotti M et al (2013) Cellular effects of acute direct current stimulation: somatic and synaptic terminal effects. J Physiol 591(10):2563–2578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rampersad SM, Janssen AM, Lucka F et al (2014) Simulating transcranial direct current stimulation with a detailed anisotropic human head model. IEEE Trans Neural Syst Rehabil Eng 22(3):441–452

    Article  PubMed  Google Scholar 

  • Rappelsberger P, Pockberger H, Petsche H (1982) The contribution of the cortical layers to the generation of the EEG: field potential and current source density analyses in the rabbit’s visual cortex. Electroencephalogr Clin Neurophysiol 53(3):254–269

    Article  CAS  PubMed  Google Scholar 

  • Reato D, Rahman A, Bikson M et al (2010) Low-intensity electrical stimulation affects network dynamics by modulating population rate and spike timing. J Neurosci 30(45):15067–15079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reis J, Schambra HM, Cohen LG et al (2009) Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proc Natl Acad Sci PNAS 106(5):1590–1595

    Article  CAS  PubMed  Google Scholar 

  • Ruhnau P, Neuling T, Fuscá M et al (2016) Eyes wide shut: transcranial alternating current stimulation drives alpha rhythm in a state dependent manner. Sci Rep 6:27138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruohonen J, Karhu J (2012) tDCS possibly stimulates glial cells. Clin Neurophysiol 123(10):2006–2009

    Article  PubMed  Google Scholar 

  • Saiote C, Polanía R, Rosenberger K et al (2013) High-frequency TRNS reduces BOLD activity during visuomotor learning. PLoS One 8(3):e59669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schutter DJ (2016) Cutaneous retinal activation and neural entrainment in transcranial alternating current stimulation: a systematic review. NeuroImage 140:83–88

    Article  PubMed  Google Scholar 

  • Schutter DJ, Hortensius R (2010) Retinal origin of phosphenes to transcranial alternating current stimulation. Clin Neurophysiol 121(7):1080–1084

    Article  PubMed  Google Scholar 

  • Schwiedrzik CM (2009) Retina or visual cortex? The site of phosphene induction by transcranial alternating current stimulation. Front Integr Neurosci 3:6

    Article  PubMed  PubMed Central  Google Scholar 

  • Spaak E, de Lange FP, Jensen O (2014) Local entrainment of alpha oscillations by visual stimuli causes cyclic modulation of perception. J Neurosci 34(10):3536–3544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stagg CJ, Nitsche MA (2011) Physiological basis of transcranial direct current stimulation. Neuroscientist 17(1):37–53

    Article  PubMed  Google Scholar 

  • Stecher HI, Pollok TM, Strüber D et al (2017) Ten minutes of alpha-tACS and ambient illumination independently modulate EEG alpha-power. Front Hum Neurosci 11:257

    Article  PubMed  PubMed Central  Google Scholar 

  • Strube W, Bunse T, Nitsche MA et al (2016) Bidirectional variability in motor cortex excitability modulation following 1 mA transcranial direct current stimulation in healthy participants. Physiol Rep 4(15):e12884

    Article  PubMed  PubMed Central  Google Scholar 

  • Strüber D, Rach S, Trautmann-Lengsfeld SA et al (2014) Antiphasic 40 Hz oscillatory current stimulation affects bistable motion perception. Brain Topogr 27(1):158–171

    Article  PubMed  Google Scholar 

  • Struber D, Rach S, Neuling T et al (2015) On the possible role of stimulation duration for after-effects of transcranial alternating current stimulation. Front Cell Neurosci 9:311

    Article  PubMed  PubMed Central  Google Scholar 

  • Szelenyi A, Senft C, Jardan M et al (2011) Intra-operative subcortical electrical stimulation: a comparison of two methods. Clin Neurophysiol 122(7):1470–1475

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi M, Cedzich C, Schramm J (1993) Modification of cortical stimulation for motor evoked potentials under general anesthesia: technical description. Neurosurgery 32(2):219–226

    Article  CAS  PubMed  Google Scholar 

  • Tate MC, Guo L, McEvoy J, Chang EF (2013) Safety and efficacy of motor map** utilizing short pulse train direct cortical stimulation. Stereotact Funct Neurosurg 91(6):379–385

    Article  PubMed  Google Scholar 

  • Teo F, Hoy KE, Daskalakis ZJ et al (2011) Investigating the role of current strength in tDCS modulation of working memory performance in healthy controls. Front Psych 2:45

    Google Scholar 

  • Terney D, Chaieb L, Moliadze V, et al. (2008). Increasing human brain excitability by transcranial high-frequency random noise stimulation. J Neurosci; 28(52):14147–14155. https://doi.org/10.1523/JNEUROSCI.4248-08.2008

  • Thut G, Schyns PG, Gross J (2011) Entrainment of perceptually relevant brain oscillations by non-invasive rhythmic stimulation of the human brain. Front Psychol 2:170

    Article  PubMed  PubMed Central  Google Scholar 

  • Thut G, Bergmann TO, Fröhlich F et al (2017) Guiding transcranial brain stimulation by EEG/MEG to interact with ongoing brain activity and associated functions: a position paper. Clin Neurophysiol 128(5):843–857

    Article  PubMed  PubMed Central  Google Scholar 

  • Toschi F, Lugli F, Biscarini F et al (2009) Effects of electric field stress on a beta-amyloid peptide. J Phys Chem B 113(1):369–376

    Article  CAS  PubMed  Google Scholar 

  • van der Groen O, Wenderoth N (2016) Transcranial random noise stimulation of visual cortex: stochastic resonance enhances central mechanisms of perception. J Neurosci 36(19):5289–5298

    Article  PubMed  PubMed Central  Google Scholar 

  • van der Groen O, Tang MF, Wenderoth N et al (2018) Stochastic resonance enhances the rate of evidence accumulation during combined brain stimulation and perceptual decision-making. PLoS Comput Biol 14(7):e1006301

    Article  PubMed  PubMed Central  Google Scholar 

  • Veniero D, Vossen A, Gross J et al (2015) Lasting EEG/MEG aftereffects of rhythmic transcranial brain stimulation: level of control over oscillatory network activity. Front Cell Neurosci 9:477

    Article  PubMed  PubMed Central  Google Scholar 

  • Vöröslakos M, Takeuchi Y, Brinyiczki K et al (2018) Direct effects of transcranial electric stimulation on brain circuits in rats and humans. Nat Commun 9(1):483

    Article  PubMed  PubMed Central  Google Scholar 

  • Vossen A, Gross J, Thut G (2015) Alpha power increase after transcranial alternating current stimulation at alpha frequency (alpha-tACS) reflects plastic changes rather than entrainment. Brain Stimul 8(3):499–508

    Article  PubMed  PubMed Central  Google Scholar 

  • Wen L, Hui Q, Shuling L et al (2006) Protective effect of motor evoked potential on motor pathway by stimulating the motor cortex during resection of glioma located in the motor cortex area. Chin J Minim Invasive Neurosurg 11(11):481–483

    Google Scholar 

  • Westerberg CE, Florczak SM, Weintraub S et al (2018) Non-invasive brain stimulation: a paradigm shift in understanding brain oscillations. Front Hum Neurosci 12:211

    Article  Google Scholar 

  • Wischnewski M, Schutter D (2017) After-effects of transcranial alternating current stimulation on evoked delta and theta power. Clin Neurophysiol 128(11):2227–2232

    Article  PubMed  Google Scholar 

  • Wood M, Willits RK (2006) Short-duration, DC electrical stimulation increases chick embryo DRG neurite outgrowth. Bioelectromagnetics 27(4):328–331

    Article  PubMed  Google Scholar 

  • Wu L, Cao T, Li S et al (2022) Long-term gamma transcranial alternating current stimulation improves the memory function of mice with Alzheimer’s disease. Front Aging Neurosci 14:980636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamamoto T, Katayama Y, Nagaoka T et al (2004) Intraoperative monitoring of the corticospinal motor evoked potential (D-wave): clinical index for postoperative motor function and functional recovery. Neurol Med Chir 44(4):170–182

    Article  Google Scholar 

  • Zaehle T, Rach S, Herrmann CS (2010) Transcranial alternating current stimulation enhances individual alpha activity in human EEG. PLoS One 5(11):e13766

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **g Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, J., Liu, S., Zhou, Q., Dai, X., Du, J. (2023). Transcranial Electrical Stimulation. In: Wang, Y. (eds) Therapeutics of Neural Stimulation for Neurological Disorders. Springer, Singapore. https://doi.org/10.1007/978-981-99-4538-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-4538-2_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-4537-5

  • Online ISBN: 978-981-99-4538-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation