Log in

Antiphasic 40 Hz Oscillatory Current Stimulation Affects Bistable Motion Perception

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

When viewing ambiguous stimuli, conscious perception alternates spontaneously between competing interpretations of physically unchanged stimulus information. As one possible neural mechanism underlying the perceptual switches, it has been suggested that neurons dynamically change their pattern of synchronized oscillatory activity in the gamma band (30–80 Hz). In support of this hypothesis, there is correlative evidence from human electroencephalographic (EEG) studies for gamma band modulations during ambiguous perception. To establish a causal role of gamma band oscillations in the current study, we applied transcranial alternating current stimulation (tACS) at 40 Hz over occipital–parietal areas of both hemispheres during the presentation of bistable apparent motion stimuli that can be perceived as moving either horizontally or vertically. In this paradigm, the switch between horizontal and vertical apparent motion is likely to involve a change in interhemispheric functional coupling. We examined gamma tACS effects on the durations of perceived horizontal and vertical motion as well as on interhemispheric EEG coherence and found a decreased proportion of perceived horizontal motion together with an increase of interhemispheric gamma band coherence. In a control experiment using 6 Hz tACS, we did not observe any stimulation effects on behavior or coherence. Furthermore, external stimulation at 40 Hz was only effective when applied with 180° phase difference between hemispheres (anti-phase), as compared to in-phase stimulation with 0° phase difference. These findings suggest that externally desynchronizing gamma oscillations between hemispheres impairs interhemispheric motion integration and in turn biases conscious experience of bistable apparent motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Başar-Eroglu C, Strüber D, Kruse P, Başar E, Stadler M (1996) Frontal gamma-band enhancement during multistable visual perception. Int J Psychophysiol 24:113–125

    Article  PubMed  Google Scholar 

  • Carmel D, Walsh V, Lavie N, Rees G (2010) Right parietal TMS shortens dominance durations in binocular rivalry. Curr Biol 20:R799–R800

    Article  CAS  PubMed  Google Scholar 

  • Castelo-Branco M, Formisano E, Backes W, Zanella FE, Neuenschwander S, Singer W, Goebel R (2002) Activity patterns in human motion-sensitive areas depend on the interpretation of global motion. Proc Natl Acad Sci USA 99:13914–13919

    Article  CAS  PubMed  Google Scholar 

  • Chaudhuri A, Glaser DA (1991) Metastable motion anisotropy. Vis Neurosci 7:397–407

    Article  CAS  PubMed  Google Scholar 

  • Demiralp T, Herrmann CS, Erdal ME, Ergenoglu T, Keskin YH, Ergen M, Beydagi H (2007) DRD4 and DAT1 polymorphisms modulate human gamma band responses. Cereb Cortex 17:1007–1019

    Article  PubMed  Google Scholar 

  • Doesburg SM, Kitajo K, Ward LM (2005) Increased gamma-band synchrony precedes switching of conscious perceptual objects in binocular rivalry. Neuroreport 16:1139–1142

    Article  PubMed  Google Scholar 

  • Eagleman DM (2001) Visual illusions and neurobiology. Nat Rev Neurosci 2:920–926

    Article  CAS  PubMed  Google Scholar 

  • Ehm W, Bach M, Kornmeier J (2011) Ambiguous figures and binding: EEG frequency modulations during multistable perception. Psychophysiology 48:547–558

    Article  PubMed  Google Scholar 

  • Engel AK, König P, Kreiter AK, Singer W (1991) Interhemispheric synchronization of oscillatory neuronal responses in cat visual cortex. Science 252:1177–1179

    Article  CAS  PubMed  Google Scholar 

  • Engel AK, Fries P, Singer W (2001) Dynamic predictions: oscillations and synchrony in top-down processing. Nat Rev Neurosci 2:704–716

    Article  CAS  PubMed  Google Scholar 

  • Fell J, Axmacher N (2011) The role of phase synchronization in memory processes. Nat Rev Neurosci 12:105–118

    Article  CAS  PubMed  Google Scholar 

  • Feurra M, Paulus W, Walsh V, Kanai R (2011) Frequency specific modulation of human somatosensory cortex. Front Psychol 2:13

    Article  PubMed Central  PubMed  Google Scholar 

  • Fries P, Roelfsema PR, Engel AK, König P, Singer W (1997) Synchronization of oscillatory responses in visual cortex correlates with perception in interocular rivalry. Proc Natl Acad Sci USA 94:12699–12704

    Article  CAS  PubMed  Google Scholar 

  • Fries P, Schröder J-H, Roelfsema PR, Singer W, Engel AK (2002) Oscillatory neuronal synchronization in primary visual cortex as a correlate of stimulus selection. J Neurosci 22:3739–3754

    CAS  PubMed  Google Scholar 

  • Genç E, Bergmann J, Singer W, Kohler A (2011) Interhemispheric connections shape subjective experience of bistable motion. Curr Biol 21:1494–1499

    Article  PubMed  Google Scholar 

  • Gengerelli JA (1948) Apparent movement in relation to homonymous and heteronymous stimulation of the cerebral hemispheres. J Exp Psychol 38:592–599

    Article  CAS  PubMed  Google Scholar 

  • Goebel R, Khorram-Sefat D, Muckli L, Hacker H, Singer W (1998) The constructive nature of vision: direct evidence from functional magnetic resonance imaging studies of apparent motion and motion imagery. Eur J Neurosci 10:1563–1573

    Article  CAS  PubMed  Google Scholar 

  • Herrmann CS, Demiralp T (2005) Human EEG gamma oscillations in neuropsychiatric disorders. Clin Neurophysiol 116:2719–2733

    Article  CAS  PubMed  Google Scholar 

  • Hipp JF, Engel AK, Siegel M (2011) Oscillatory synchronization in large-scale cortical networks predicts perception. Neuron 69:387–396

    Article  CAS  PubMed  Google Scholar 

  • Işoğlu-Alkaç U, Strüber D (2006) Necker cube reversals during long-term EEG recordings: sub-bands of alpha activity. Int J Psychophysiol 59:179–189

    Article  PubMed  Google Scholar 

  • Kanai R, Chaieb L, Antal A, Walsh V, Paulus W (2008) Frequency-dependent electrical stimulation of the visual cortex. Curr Biol 18:1839–1843

    Article  CAS  PubMed  Google Scholar 

  • Kanai R, Bahrami B, Rees G (2010) Human parietal cortex structure predicts individual differences in perceptual rivalry. Curr Biol 20:1626–1630

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kanai R, Carmel D, Bahrami B, Rees G (2011) Structural and functional fractionation of right superior parietal cortex in bistable perception. Curr Biol 21:R106–R107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Keil A, Müller MM, Ray WJ, Gruber T, Elbert T (1999) Human gamma band activity and perception of a gestalt. J Neurosci 19:7152–7161

    CAS  PubMed  Google Scholar 

  • Kiper DC, Knyazeva MG, Tettoni L, Innocenti GM (1999) Visual stimulus-dependent changes in interhemispheric EEG coherence in ferrets. J Neurophysiol 82:3082–3094

    CAS  PubMed  Google Scholar 

  • Knyazeva MG, Kiper DC, Vildavski VY, Despland PA, Maeder-Ingvar M, Innocenti GM (1999) Visual stimulus-dependent changes in interhemispheric EEG coherence in humans. J Neurophysiol 82:3095–3107

    CAS  PubMed  Google Scholar 

  • Kohler A, Haddad L, Singer W, Muckli L (2008) Deciding what to see: the role of intention and attention in the perception of apparent motion. Vision Res 48:1096–1106

    Article  PubMed  Google Scholar 

  • Kühn AA, Fogelson N, Limousin PD, Hariz MI, Kupsch A, Brown P (2009) Frequency-specific effects of stimulation of the subthalamic area in treated Parkinson’s disease patients. Neuroreport 20:975–978

    Article  PubMed  Google Scholar 

  • Laczó B, Antal A, Niebergall R, Treue S, Paulus W (2012) Transcranial alternating stimulation in a high gamma frequency range applied over V1 improves contrast perception but does not modulate spatial attention. Brain Stimul 5:484–491

    Article  PubMed  Google Scholar 

  • Lamsa KP, Kullmann DM, Woodin MA (2010) Spike-timing dependent plasticity in inhibitory circuits. Front Synaptic Neurosci 2:8

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marshall L, Helgadóttir H, Mölle M, Born J (2006) Boosting slow oscillations during sleep potentiates memory. Nature 444:610–613

    Article  CAS  PubMed  Google Scholar 

  • Mathes B, Strüber D, Stadler M, Başar-Eroglu C (2006) Voluntary control of Necker cube reversals modulates the EEG delta- and gamma-band response. Neurosci Lett 402:145–149

    Article  CAS  PubMed  Google Scholar 

  • Mathes B, Pomper U, Walla P, Basar-Eroglu C (2010) Dissociation of reversal- and motor-related delta- and alpha-band responses during visual multistable perception. Neurosci Lett 478:14–18

    Article  CAS  PubMed  Google Scholar 

  • Miranda PC, Lomarev M, Hallett M (2006) Modeling the current distribution during transcranial direct current stimulation. Clin Neurophysiol 117:1623–1629

    Article  PubMed  Google Scholar 

  • Mitchell DJ, McNaughton N, Flanagan D, Kirk IJ (2008) Frontal-midline theta from the perspective of hippocampal “theta”. Prog Neurobiol 86:156–185

    Article  PubMed  Google Scholar 

  • Muckli L, Kriegeskorte N, Lanfermann H, Zanella FE, Singer W, Goebel R (2002) Apparent motion: event-related functional magnetic resonance imaging of perceptual switches and states. J Neurosci 22:RC219

    PubMed  Google Scholar 

  • Müller TJ, Federspiel A, Fallgatter AJ, Strik WK (1999) EEG signs of vigilance fluctuations preceding perceptual flips in multistable illusionary motion. Neuroreport 10:3423–3427

    Article  PubMed  Google Scholar 

  • Nakatani H, van Leeuwen C (2005) Individual differences in perceptual switching rates; the role of occipital alpha and frontal theta band activity. Biol Cybern 93:343–354

    Article  PubMed  Google Scholar 

  • Neuling T, Rach S, Wagner S, Wolters CH, Herrmann CS (2012a) Good vibrations: oscillatory phase shapes perception. Neuroimage 63:771–778

    Article  CAS  PubMed  Google Scholar 

  • Neuling T, Wagner S, Wolters CH, Zaehle T, Herrmann CS (2012b) Finite-element model predicts current density distribution for clinical applications of tDCS and tACS. Front Psychiatry 3:83

    Article  PubMed Central  PubMed  Google Scholar 

  • Nieuwenhuis S, Forstmann BU, Wagenmakers E-J (2011) Erroneous analyses of interactions in neuroscience: a problem of significance. Nat Neurosci 14:1105–1107

    Article  CAS  PubMed  Google Scholar 

  • Nolte G, Bai O, Wheaton L, Mari Z, Vorbach S, Hallett M (2004) Identifying true brain interaction from EEG data using the imaginary part of coherency. Clin Neurophysiol 115:2292–2307

    Article  PubMed  Google Scholar 

  • Paulus W (2011) Transcranial electrical stimulation (tES-tDCS; tRNS, tACS) methods. Neuropsychol Rehabil 21(5):602–617

    Article  PubMed  Google Scholar 

  • Pogosyan A, Gaynor LD, Eusebio A, Brown P (2009) Boosting cortical activity at Beta-band frequencies slows movement in humans. Curr Biol 19:1637–1641

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Polanía R, Nitsche MA, Korman C, Batsikadze G, Paulus W (2012) The importance of timing in segregated theta phase-coupling for cognitive performance. Curr Biol 22(14):1314–1318

    Article  PubMed  Google Scholar 

  • Pressnitzer D, Hupé J-M (2006) Temporal dynamics of auditory and visual bistability reveal common principles of perceptual organization. Curr Biol 16:1351–1357

    Article  CAS  PubMed  Google Scholar 

  • Rees G, Kreiman G, Koch C (2002) Neural correlates of consciousness in humans. Nat Rev Neurosci 3:261–270

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez E, George N, Lachaux JP, Martinerie J, Renault B, Varela FJ (1999) Perception’s shadow: long-distance synchronization of human brain activity. Nature 397:430–433

    Article  CAS  PubMed  Google Scholar 

  • Rose M, Büchel C (2005) Neural coupling binds visual tokens to moving stimuli. J Neurosci 25:10101–10104

    Article  CAS  PubMed  Google Scholar 

  • Sejnowski TJ, Paulsen O (2006) Network oscillations: emerging computational principles. J Neurosci 26:1673–1676

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sterzer P, Kleinschmidt A (2007) A neural basis for inference in perceptual ambiguity. Proc Natl Acad Sci USA 104:323–328

    Article  CAS  PubMed  Google Scholar 

  • Sterzer P, Russ MO, Preibisch C, Kleinschmidt A (2002) Neural correlates of spontaneous direction reversals in ambiguous apparent visual motion. Neuroimage 15:908–916

    Article  PubMed  Google Scholar 

  • Sterzer P, Eger E, Kleinschmidt A (2003) Responses of extrastriate cortex to switching perception of ambiguous visual motion stimuli. Neuroreport 14:2337–2341

    Article  PubMed  Google Scholar 

  • Sterzer P, Kleinschmidt A, Rees G (2009) The neural bases of multistable perception. Trends Cogn Sci 13:310–318

    Article  PubMed  Google Scholar 

  • Strüber D, Herrmann CS (2002) MEG alpha activity decrease reflects destabilization of multistable percepts. Brain Res Cogn Brain Res 14:370–382

    Article  PubMed  Google Scholar 

  • Strüber D, Başar-Eroglu C, Hoff E, Stadler M (2000) Reversal-rate dependent differences in the EEG gamma-band during multistable visual perception. Int J Psychophysiol 38:243–252

    Article  PubMed  Google Scholar 

  • Strüber D, Başar-Eroglu C, Miener M, Stadler M (2001) EEG gamma-band response during the perception of Necker cube reversals. Visual Cognition 8:609–621

    Article  Google Scholar 

  • Thut G, Schyns PG, Gross J (2011a) Entrainment of perceptually relevant brain oscillations by non-invasive rhythmic stimulation of the human brain. Front Psychol 2:1–10

    Article  Google Scholar 

  • Thut G, Veniero D, Romei V, Miniussi C, Schyns PG, Gross J (2011b) Rhythmic TMS causes local entrainment of natural oscillatory signatures. Curr Biol 21:1176–1185

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Uhlhaas PJ, Singer W (2010) Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci 11:100–113

    Article  CAS  PubMed  Google Scholar 

  • von Schiller P (1933) Stroboskopische Alternativversuche. Psychol Forsch 17:179–214

    Article  Google Scholar 

  • Whittington MA, Traub RD, Kopell N, Ermentrout B, Buhl EH (2000) Inhibition-based rhythms: experimental and mathematical observations on network dynamics. Int J Psychophysiol 38:315–336

    Article  CAS  PubMed  Google Scholar 

  • Zaehle T, Herrmann CS (2011) Neural synchrony and white matter variations in the human brain—relation between evoked γ frequency and corpus callosum morphology. Int J Psychophysiol 79:49–54

    Article  PubMed  Google Scholar 

  • Zaehle T, Rach S, Herrmann CS (2010) Transcranial alternating current stimulation enhances individual alpha activity in human EEG. PLoS One 5:e13766

    Article  PubMed Central  PubMed  Google Scholar 

  • Zaretskaya N, Thielscher A, Logothetis NK, Bartels A (2010) Disrupting parietal function prolongs dominance durations in binocular rivalry. Curr Biol 20:2106–2111

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by the Deutsche Forschungsgemeinschaft (DFG), Grants RA 2357/1-1 (S.R., D.S.), HE 3353/6 (C.S.H.), SFB/TRR 31 (C.S.H.), SFB 936 (A.K.E.) and the EU, Grants FP7-ICT-270212 (A.K.E.), ERC-2010-AdG-269716 (A.K.E.), and by an interim grant from the Presidential Chair’s program budget of Oldenburg University (S.R.). We thank Ksenia Khalaidovski for conducting a pilot experiment for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph S. Herrmann.

Additional information

D. Strüber and S. Rach contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strüber, D., Rach, S., Trautmann-Lengsfeld, S.A. et al. Antiphasic 40 Hz Oscillatory Current Stimulation Affects Bistable Motion Perception. Brain Topogr 27, 158–171 (2014). https://doi.org/10.1007/s10548-013-0294-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-013-0294-x

Keywords

Navigation