Zinc Biofortification: Role of ZIP Family Transporters in the Uptake of Zinc from the Soil up to the Grains

  • Chapter
  • First Online:
Mineral Biofortification in Crop Plants for Ensuring Food Security

Abstract

It is a known fact that plants and animals need micronutrients like zinc (Zn) for their proper growth and development. Zinc plays a significant role as activator of many enzymes, in biosynthetic pathway of several biomolecules and regulative and protective functions in plants. Its poor availability in soils causes low crop yield and low Zn content in food grains which often promotes adverse effects on human health. Therefore, this overview describes the role of transporters in the plant physiological processes that maintain the Zn homeostasis. It includes absorption of Zn from the soil via roots, control of Zn transport from roots to aerial plant parts. Soil condition play significant role in availability of Zn to the plant roots for absorption, thereafter transporters facilitate their translocation up to the grains. Zinc homeostasis is highly regulated in a complex process. The families of Zn-regulated transporter (ZIP)-like proteins are involved in the cellular uptake of Zn, as well as its intracellular trafficking and detoxification in plants. Very little information is available on the structural features and Zn transport mechanisms of plant ZIP family transporters (ZRT-IRT-like proteins). In this overview, we elucidate a comprehensive structure, functions, and regulations of ZIP carriers. We also described the structure of plant ZIPs through homology modeling and multiple sequence alignment with Bordetella bronchiseptica ZIP (BbZIP) protein whose crystal structure has been solved recently. The details on ZIP transporter genes identified and characterized in some plants till date may play crucial role in biofortification of Zn in food grains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 213.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 267.49
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

Download references

Acknowledgements

We are highly grateful to Prof. Y.K. Sharma, Ex-Head, Department of Botany, University of Lucknow, for his precious recommendations and effective conversations in gaining knowledge on various aspects of plant nutritional dynamics.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pandey, S.N., Abid, M. (2023). Zinc Biofortification: Role of ZIP Family Transporters in the Uptake of Zinc from the Soil up to the Grains. In: Hasanuzzaman, M., Tahir, M.S., Tanveer, M., Shah, A.N. (eds) Mineral Biofortification in Crop Plants for Ensuring Food Security. Springer, Singapore. https://doi.org/10.1007/978-981-99-4090-5_4

Download citation

Publish with us

Policies and ethics

Navigation