Log in

Expression of a rice Zn transporter, OsZIP1, increases Zn concentration in tobacco and finger millet transgenic plants

  • Original Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

Zinc (Zn) deficiency is very widespread both from the plant and human nutrition perspective. One of the approaches to improve Zn in crop plants is by over-expression of Zn transporters such that plants can uptake and accumulate additional Zn added to soil. The ZIP family transporters generally contribute to Zn homeostasis in plants by regulating Zn transport into the cell. We over-expressed OsZIP1 in finger millet and model plant tobacco under the control of constitutive (35S) and endosperm-specific (Bx17) promoters to study the improvement in Zn accumulation. The transcript analysis revealed the induction of ZIP1 in leaf and root tissue under Zn deprivation in finger millet cultivars. Ectopic expression of OsZIP1 in tobacco under CaMV35S (n35S) and Bx17 (nBx17) improved seed Zn concentration compared to untransformed wild-type plants. In addition, we successfully developed finger millet transgenic plants, f35S and fBx17, expressing the OsZIP1 under 35S (f35S) and Bx17 (fBx17) promoter, respectively. The transgenic plants accumulated significantly higher Zn in seeds compared to untransformed wild-type finger millet plants. Plants expressing the gene under Bx17 promoter accumulated more Zn in seed than 35S plants. Apart from Zn, finger millet transgenic plants also showed increased Mn content in seeds. Our results show the involvement of OsZIP1 in improving Zn concentration in tobacco and finger millet. Using endosperm-specific promoter, it is possible to improve the seed Zn concentration in the edible part of cereals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bashir K, Ishimaru Y, Nishizawa NK (2012) Molecular mechanisms of zinc uptake and translocation in rice. Plant Soil. doi:10.1007/s11104-012-1240-5

    Google Scholar 

  • Bennetzen JL, Dida MM, Manyera NWM, Devos KM (2003) Characterization of genetic diversity in finger millet (Eleusine coracana). http://www.cerealsgenomics.org/documents/BennetzenProp.doc

  • Birch RG, Bower R (1994) Principles of gene transfer using particle bombardment. In: Yang, Christou (eds) Particle bombardment technology for gene transfer. Oxford University Press, New York, pp 3–37

  • Bughio N, Yamaguchi H, Nishizawa NK, Nakanishi H, Mori S (2002) Cloning an iron-regulated metal transporter from rice. J Exp Bot 53:1677–1682

    Article  PubMed  CAS  Google Scholar 

  • Butow BJ, Ma W, Gale KR, Cornish GB, Rampling L, Larroque O, Morell MK, Bekes F (2003) Molecular discrimination of Bx7 alleles demonstrates that a highly expressed high-molecular weight glutenin allele has a major impact on wheat flour dough strength. Theor Appl Genet 107:1524–1532

    Article  PubMed  CAS  Google Scholar 

  • Butow BJ, Gale KR, Ikea J, Juhász A, Bedo Z, Tamas L, Gianibelli MC (2004) Dissemination of the highly expressed Bx7 glutenin subunit (Glu-B1al allele) in wheat as revealed by novel PCR markers and RP-HPLC. Theor Appl Genet 109:1525–1535

    Article  PubMed  CAS  Google Scholar 

  • Cakmak I (2008) Enrichment of cereal grains with zinc: agronomic or genetic biofortification? Plant Soil 302:1–17

    Article  CAS  Google Scholar 

  • Ceasar SA, Ignacimuthu S (2011) Agrobacterium-mediated transformation of finger millet (Eleusine coracana (L.) Gaertn.) using shoot apex explants. Plant Cell Rep 30:1759–1770

    Article  PubMed  Google Scholar 

  • Cellier M, Prive G, Belouchi A, Kwan T, Rodrigues V, Chia W, Gros P (1995) Nramp defines a family of membrane proteins. Proc Natl Acad Sci USA 92:10089–10093

    Article  PubMed  CAS  Google Scholar 

  • Colangelo EP, Guerinot ML (2006) Put the metal to the petal: metal uptake and transport throughout plants. Curr Opin Plant Biol 9:322–330

    Article  PubMed  CAS  Google Scholar 

  • Connolly EL, Fett JP, Guerinot ML (2002) Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell 14:1347–1357

    Article  PubMed  CAS  Google Scholar 

  • Datta K, Schmidt A, Marcus A (1989) Characterization of two soybean repetitive proline-rich proteins and a cognate cDNA from germinated axes. Plant Cell 1:945–952

    PubMed  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Eckhardt U, Mas Marques A, Buckhout TJ (2001) Two iron-regulated cation transporters from tomato complement metal uptake-deficient yeast mutants. Plant Mol Biol 45:437–448

    Article  PubMed  CAS  Google Scholar 

  • Eide D, Broderius M, Fett J, Guerinot ML (1996) A novel iron regulated metal transporter from plants identified by functional expression in yeast. Proc Natl Acad Sci USA 93:5624–5628

    Article  PubMed  CAS  Google Scholar 

  • Eng BH, Guerinot ML, Eide D, Saier MH Jr (1998) Sequence analyses and phylogenetic characterization of the ZIP family of metal ion transport proteins. J Membr Biol 166:1–7

    Article  PubMed  CAS  Google Scholar 

  • Gibson RS (2006) Zinc: the missing link in combating micronutrient malnutrition in develo** countries. Proc Nutr Soc 65:51–60

    Article  PubMed  CAS  Google Scholar 

  • Grotz N, Fox T, Connolly E, Park W, Guerinot ML, Eide D (1998) Identification of a family of zinc transporter genes from Arabidopsis that respond to zinc deficiency. Proc Natl Acad Sci USA 95:7220–7224

    Article  PubMed  CAS  Google Scholar 

  • Guerinot ML (2000) The ZIP family of metal transporters. Biochim Biophys Acta 1465:190–198

    Article  PubMed  CAS  Google Scholar 

  • Gupta P, Raghuvanshi S, Tyagi AK (2001) Assessment of the efficiency of various gene promoters via biolistics in leaf and regenerating seed callus of millets, Eleusine coracana and Echinochloa crusgalli. Plant Biotechnol 18:275–282

    Article  CAS  Google Scholar 

  • Hall JL, Williams LE (2003) Transition metal transporters in plants. J Exp Bot 54(393):2601–2613

    Article  PubMed  CAS  Google Scholar 

  • Hambidge M (2000) Human zinc deficiency. J Nutr 130:1344S–1349S

    PubMed  CAS  Google Scholar 

  • Haney CJ, Grass G, Franke S, Rensing C (2005) New developments in the understanding of the cation diffusion facilitator family. J Ind Microbiol Biotechnol 32:215–226

    Article  PubMed  CAS  Google Scholar 

  • Hellens RP, Edwards EA, Leyland NR, Bean S, Mullineaux PM (2000) pGreen: a versatile and flexible binary Ti vector for Agrobacterium-mediated plant transformation. Plant Mol Biol 42:819–832

    Article  PubMed  CAS  Google Scholar 

  • Hoagland DR (1948) Lectures on the inorganic nutrition of plants, 2nd edn. Chronica Botanica Company, Waltham, MA, USA

  • Holt J (2000) Investigation into the biology, epidemiology and management of finger millet blast in low-input farming systems in E. Africa. http://www.wisard.org/wisard/shared/asp/projectsummary.asp?Kennummer=2737

  • Horsch RB, Fraley RT, Rogers SG, Sanders PR, Lloyd A (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  • Hotz C, Brown KH (2004) Assessment of the risk of zinc deficiency in populations and options for its control. Food Nutr Bull 25:94–204

    Google Scholar 

  • Hussain D, Haydon MJ, Wang Y, Wong E, Sherson SM, Young J, Camakaris J, Harper JF, Cobbett CS (2004) P-type ATPase heavy metal transporters with roles in essential zinc homeostasis in Arabidopsis. Plant Cell 16:1327–1339

    Article  PubMed  CAS  Google Scholar 

  • Ignacimuthu S, Ceasar SA (2012) Development of transgenic finger millet (Eleusine coracana (L.) Gaertn.) resistant to leaf blast disease. J Biosci 37(1):135–147

    Article  PubMed  CAS  Google Scholar 

  • Ishimaru Y, Suzuki M, Kobayashi T, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2005) OsZIP4, a novel zinc-regulated zinc transporter in rice. J Exp Bot 56:3207–3214

    Article  PubMed  CAS  Google Scholar 

  • Ishimaru Y, Suzuki M, Tsukamoto T, Suzuki K, Nakazono M, Kobayashi T, Wada Y, Watanabe T, Matsuhashi S, Takahashi M, Nakanishi M, Mori S, Nishizawa NK (2006) Rice plants take up iron as an Fe3+ phytosiderophore and as Fe2+. Plant J 45:335–346

    Article  PubMed  CAS  Google Scholar 

  • Ishimaru Y, Masuda H, Suzuki M, Bashir K, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2007) Overexpression of the OsZIP4 zinc transporter confers disarrangement of zinc distribution in rice plants. J Exp Bot 58:2909–2915

    Article  PubMed  CAS  Google Scholar 

  • Ishimaru Y, Masuda H, Bashir K, Inoue H, Tsukamoto T, Takahashi M, Nakanishi H, Aoki N, Hirose T, Ohsugi R, Nishizawa NK (2010) Rice metal-nicotianamine transporter, OsYSL2, is required for the long-distance transport of iron and manganese. Plant J 62:379–390

    Article  PubMed  CAS  Google Scholar 

  • Korshunova YO, Eide D, Clark WG, Guerinot ML, Pakrasi HB (1999) The IRT1 protein from Arabidopsis thaliana is a metal transporter with a broad substrate range. Plant Mol Biol 40:37–44

    Article  PubMed  CAS  Google Scholar 

  • Lamacchia C, Shewry PR, Fonzo ND (2001) Endosperm-specific activity of a storage protein gene promoter in transgenic wheat seed. J Exp Bot 52:243–250

    Article  PubMed  CAS  Google Scholar 

  • Latha MA, Rao KV, Dashavantha-Reddy V (2005) Production of transgenic plants resistant to leaf blast disease in finger millet (Eleusine coracana (L.) Gaertn.). Plant Sci 169:657–667

    Article  CAS  Google Scholar 

  • Lee S, An G (2009) Over-expression of OsIRT1 leads to increased iron and zinc accumulation in rice. Plant Cell Environ 32:408–416

    Article  PubMed  CAS  Google Scholar 

  • Lee S, Jeong HJ, Kim SA, Lee J, Guerinot M, An G (2010) OsZIP5 is a plasma membrane zinc transporter in rice. Plant Mol Biol 73:507–517

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Millan AF, Ellis DR, Grusak MA (2004) Identification and characterization of several new members of the ZIP family of metal ion transporters in Medicago truncatula. Plant Mol Biol 54:583–596

    Article  PubMed  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, London

    Google Scholar 

  • Maser P, Thomine S, Schroeder JI (2001) Phylogenetic relationships within cation transporter families of Arabidopsis. Plant Physiol 126:1646–1667

    Article  PubMed  CAS  Google Scholar 

  • Mizuno T, Usui K, Horie K, Nosaka S, Mizuno N, Obata H (2005) Cloning of three ZIP/Nramp transporter genes from a Ni hyperaccumulator plant Thlaspi japonicum and their Ni2+-transport abilities. Plant Physiol Biochem 43:793–801

    Article  PubMed  CAS  Google Scholar 

  • Moreau S, Thomson RM, Kaiser BN, Trevaskis B, Guerinot ML, Udvardi MK, Puppo A, Day DA (2002) GmZIP1 encodes a symbiosis-specific zinc transporter in soybean. J Biol Chem 15:4738–4746

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:173–497

    Article  Google Scholar 

  • Oszvald M, Tomoskozi S, Jenes B, Bekes F, Tamas L (2007) Expression of the Dx5 high molecular weight glutenin subunit protein in transgenic rice. Cereal Res Commun 35:1543–1549

    Article  CAS  Google Scholar 

  • Oszvald M, Gardonyi M, Tamas C, Takacs I, Jenes B, Tamas L (2008) Development and characterization of a chimaeric tissue-specific promoter in wheat and rice endosperm. In Vitro Cell Dev Biol Plant 44(1):1–7

    Article  CAS  Google Scholar 

  • Payne PI, Holt LM, Jackson EA, Law CN (1984) Wheat storage proteins: their genetics and their potential for manipulation by plant breeding. Philos Trans R Soc Lond B 304:359–371

    Article  CAS  Google Scholar 

  • Pedas P, Ytting CK, Fuglsang AT, Jahn TP, Schjoerring JK, Husted S (2008) Manganese efficiency in barley: identification and characterization of the metal ion transporter HvIRT1. Plant Physiol 148:455–466

    Article  PubMed  CAS  Google Scholar 

  • Plaza S, Tearall KL, Zhao FJ, Buchner P, McGrath SP, Hawkesford MJ (2007) Expression and functional analysis of metal transporter genes in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens. J Exp Bot 58(7):1717–1728

    Article  PubMed  CAS  Google Scholar 

  • Prasad AS (2007) Zinc: mechanisms of host defense. J Nutr 137(5):1345–1349

    PubMed  CAS  Google Scholar 

  • Ramesh SA, Shin R, Eide DJ, Schachtman DP (2003) Deferential metal selectivity and gene expression of two zinc transporters from rice. Plant Physiol 133:126–134

    Article  PubMed  CAS  Google Scholar 

  • Ramesh SA, Choimes S, Schachtman DP (2004) Over-expression of an Arabidopsis zinc transporter in Hordeum vulgare increases short-term zinc uptake after zinc deprivation and seed zinc content. Plant Mol Biol 54:373–385

    Article  PubMed  CAS  Google Scholar 

  • Robert LS, Thompson RD, Flavell RB (1989) Tissue-specific expression of a wheat high molecular weight glutenin gene in transgenic tobacco. Plant Cell 1(6):569–578

    PubMed  CAS  Google Scholar 

  • Shewry PR, Tatham AS, Halford NG (1999) The prolamins of the Triticeae. In: Casey R, Shewry PR (eds) Seed proteins. Kluwer, Doldrecht, pp 35–78

    Chapter  Google Scholar 

  • Suzuki M, Bashir K, Inoue H, Takahashi M, Nakanishi H, Nishizawa NK (2012) Accumulation of starch in Zn-deficient rice. Rice 5:9

    Article  Google Scholar 

  • van Wordragen MF, Dons HJM (1992) Agrobacterium tumefaciens mediated transformation of recalcitrant crops. Plant Mol Biol Rep 10:12–35

    Article  Google Scholar 

  • Vert G, Briat JF, Curie C (2001) Arabidopsis IRT2 gene encodes a root periphery iron transporter. Plant J 26:181–189

    Article  PubMed  CAS  Google Scholar 

  • Vert G, Grotz N, Dedaldechamp F, Gaymard F, Guerinot ML, Briat JF, Curie C (2002) IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell 14:1223–1233

    Article  PubMed  CAS  Google Scholar 

  • Williams LE, Mills RF (2005) P1B-ATPases—an ancient family of transition metal pumps with diverse functions in plants. Trends Plant Sci 10:491–502

    Article  PubMed  CAS  Google Scholar 

  • Wintz H, Fox T, Wu YY, Feng V, Chen W, Chang HS, Zhu T, Vulpe C (2003) Expression profiles of Arabidopsis thaliana in mineral deficiencies reveal novel transporters involved in metal homeostasis. J Biol Chem 28:47644–47653

    Article  Google Scholar 

  • Yamunarani BR (2009) Molecular characterization of Eleusine coracana (L.) Gaertn. genotypes for variability in zinc content and development of transgenics with high grain zinc. Thesis, University of Agricultural Sciences, Bangalore, India

  • Yang X, Huang J, Jiang Y, Zhang HS (2009) Cloning and functional identification of two members of the ZIP (Zrt, Irt-like protein) gene family in rice (Oryza sativa L.). Mol Biol Rep 36(2):281–287

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

A.G.S. is supported by projects from Department of Science and Technology (DST) and Department of Biotechnology (DBT), New Delhi Govt. of India. The authors are grateful to Dr. Sadiq Rahman, CSIRO, Australia for providing Bx17 promoter used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shankar Ambarahalli Guligowda.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 11 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramegowda, Y., Venkategowda, R., Jagadish, P. et al. Expression of a rice Zn transporter, OsZIP1, increases Zn concentration in tobacco and finger millet transgenic plants. Plant Biotechnol Rep 7, 309–319 (2013). https://doi.org/10.1007/s11816-012-0264-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-012-0264-x

Keywords

Navigation