An Overview of Major Bean Diseases and Current Scenario of Common Bean Resistance

  • Chapter
  • First Online:
Diseases in Legume Crops

Abstract

Common bean is the most extensively grown legume crop worldwide due to its nutrient composition and inexpensiveness. The biotic and abiotic stresses pose serious constraints to its yield. Among the biotic stresses, fungal diseases are the most devastating followed by bacterial and viral diseases. Resistance stands as the most ecofriendly and viable approach to manage various diseases in common bean. The host resistance genes are short-lived in the co-evolutionary arms race between the pathogens and their hosts. The breeders are thus continuously challenged to explore new resistance sources and introgression in the commercial cultivars. In the modern omics era, new breeding techniques are continuously emerging. The most popular method of selecting resistance candidates, nevertheless, is marker-assisted selection. The chapter summarizes the major bean pathogens, their resistance sources, and the markers that can assist in breeding for the resistance against these pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adams MW, Kelly JD, Saettler AW (1988) A gene for resistance to common blight (Xanthomonas campestris pv. Phaseoli). Annu Rep Bean Improv Coop 31:73–74

    Google Scholar 

  • Aggarwal VD, Pastor-Corrales MA, Chirwa RM, Buruchara RA (2004) Andean beans (Phaseolus vulgaris L.) with resistance to the angular leaf spot pathogen (Phaeoisariopsis griseola) in southern and eastern Africa. Euphytica 136:201–210. https://doi.org/10.1023/B:EUPH.0000030678.12073.a9

    Article  Google Scholar 

  • Aggour AR, Coyne DP, Vidaver AK (1989) Comparison of leaf and pod disease reactions of beans (Phaseolus vulgaris L.) inoculated by different methods with strains of Xanthomonas campestris pv. phaseoli (smith) dye. Euphytica 43:143–152

    Article  Google Scholar 

  • Almeida CP, de Carvalho Paulino JF, Bonfante GFJ, Perseguini JMKC, Santos IL, Gonçalves JGR, Patrício FRA, Taniguti CH, Gesteira G, Garcia AAF, Song Q, Carbonell SAM, Chiorato AF, Benchimol-Reis LL (2021) Angular leaf spot resistance loci associated with different plant growth stages in common bean. Front Plant Sci 12:647043. https://doi.org/10.3389/fpls.2021.647043

    Article  PubMed  PubMed Central  Google Scholar 

  • Angioi SA, Rau D, Attene G, Nanni L, Bellucci E, Logozzo G, Negri V, Spagnoletti Zeuli PL, Papa R (2010) Beans in Europe: origin and structure of the European landraces of Phaseolus vulgaris L. Theor Appl Genet 121(5):829–843

    Article  CAS  PubMed  Google Scholar 

  • Antonius SH (1982) Identification and inheritance of resistance to bacterial brown spot (Pseudomonas syringae) in Phaseolus vulgaris, Ph.D. dissertation. University of Wisconsin, Madison, WI

    Google Scholar 

  • Arnold DL, Lovell HC, Jackson RW, Mansfield JW (2011) Pseudomonas syringae pv. phaseolicola: from ‘has bean’ to supermodel. Mol Plant Pathol 12:617–627

    Article  PubMed  PubMed Central  Google Scholar 

  • Asensio-S-Manzanera MC, Asensio C, Singh SP (2006) Gamete selection for resistance to common and halo bacterial blights in dry bean intergene pool populations. Crop Sci 46:131–135

    Article  Google Scholar 

  • Bai Y, Michaels TE, Pauls KP (1997) Identification of RAPD markers linked to common bacterial blight resistance genes in Phaseolus vulgaris L. Genome 40:544–551

    Article  CAS  PubMed  Google Scholar 

  • Barrus MF (1911) Variation of cultivars of beans in their susceptibility to anthracnose. Phytopathology 1:190–195

    Google Scholar 

  • Batista RO, Silva LC, Moura LM, Souza MH, Carneiro PCS, de Souza Carneiro JE (2017) Inheritance of resistance to fusarium wilt in common bean. Euphytica 213(7):1–12

    Article  CAS  Google Scholar 

  • Beebe SE, Corrales MP (1991) Breeding for disease resistance. p. 561–617. A. van Schoonhoven and O. Voysest (ed.) common beans: research for crop improvement. CAB international, Wallingford, UK. Breeding for disease resistance. In: van Schoonhoven A, Voysest O (eds) Common beans: research for crop improvement. CAB International, Wallingford, pp 561–617

    Google Scholar 

  • Bendahmane A, Kanyuka K, Baulcombe DC (1999) The Rx gene from potato controls separate virus resistance and cell death responses. Plant Cell 11(5):781–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biswas K, Ghosh P (2016) Recent advancements and biological management of Fusarium udum: a causative agent of pigeonpea wilt. Int J Appl Nat Sci 5(3):57–72

    Google Scholar 

  • Blair MW, Morales FJ (2008) Geminivirus resistance breeding in common bean. CAB Rev Perspect Agric Vet Sci Nutr Nat Resour 3:1–15. https://doi.org/10.1079/pavsnnr20083089

    Article  Google Scholar 

  • Bonfim K, Faria JC, Nogueira EO, Mendes ÉA, Aragão FJ (2007) RNAi-mediated resistance to bean golden mosaic virus in genetically engineered common bean (Phaseolus vulgaris). Mol Plant-Microbe Interact 20(6):717–726

    Article  CAS  PubMed  Google Scholar 

  • Brick MA, Byrne PF, Schwartz HF, Ogg JB, Otto K, Fall AL, Gilbert J (2006) Reaction to three races of Fusarium wilt in the Phaseolus vulgaris core collection. Crop Sci 46(3):1245–1252

    Article  CAS  Google Scholar 

  • Broughton WJ, Hernández G, Blair M, Beebe S, Gepts P, Vanderleyden J (2003) Beans (Phaseolus spp.)–model food legumes. Plant Soil 252:55–128. https://doi.org/10.1023/A:1024146710611

    Article  CAS  Google Scholar 

  • Burkholder WH (1926) A new bacterial disease of the bean. Phytopathology 16:915–928

    Google Scholar 

  • Carvalho JLV, De Oliveira Santos J, Conte C, Pacheco S, Nogueira EOPL, Souza TLPO, Faria JC, Aragão FJL (2015) Comparative analysis of nutritional compositions of transgenic RNAi-mediated virus-resistant bean (event EMBPV051-1) with its non-transgenic counterpart. Transgenic Res 24:813–819. https://doi.org/10.1007/s11248-015-9877-5

    Article  CAS  PubMed  Google Scholar 

  • Chataika BYE, Bokosi JM, Chirwa RM, Kwapata MB (2011) Inheritance of halo blight resistance in common bean. Afr Crop Sci J 19:325–333

    Google Scholar 

  • Chen L, Wu Q, He W, He T, Wu Q, Miao Y (2019) Combined de novo transcriptome and metabolome analysis of common bean response to Fusarium oxysporum f. sp phaseoli infection. Int J Mol Sci 20(24):6278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conway J, Hardwick RC, Innes NL, Taylor JD, Walkey DGA (1982) White-seeded beans (Phaseolus vulgaris) resistant to halo blight (Pseudomonas phaseolicola), to bean common mosaic virus, and to anthracnose (Colletotrichum lindemuthianum). J Agric Sci 99:555–560

    Article  Google Scholar 

  • Cooper DM (2015) Identification and characterization of common bacterial blight resistance genes in the resistant common bean (Phaseolus vulgaris) variety OAC rex. University of Guelph, Guelph, ON. http://hdl.handle.net/10214/8952. Accessed 23 Mar 2021

    Google Scholar 

  • Correa FJ, Saettler AW (1987) Angular leaf spot of red kidney beans in Michigan. Plant Dis 71:915–918. https://doi.org/10.1094/PD-71-0915

    Article  Google Scholar 

  • Cross H (1998) Resistance to Fusarium wilt in races Durango and Mesoamerica of common bean, Doctoral dissertation. Colorado State University

    Google Scholar 

  • Crous PW, Liebenberg MM, Braun U, Groenewald JZ (2006) Reevaluating the taxonomic status of Phaeoisariopsis griseola, the causal agent of angular leaf spot of bean. Stud Mycol 55:163–173. https://doi.org/10.3114/sim.55.1.163

    Article  PubMed  PubMed Central  Google Scholar 

  • Dangl JL, Horvath DM, Staskawicz BJ (2013) Pivoting the plant immune system from dissection to deployment. Science 341(6147):746–751

    Article  CAS  PubMed  Google Scholar 

  • Dizadji A, Shahraeen N (2011) Occurrence, distribution and seasonal changes of viruses infecting common bean in northwestern Iran. Arch Phytopathol Plant Protect 44(17):1647–1654

    Article  CAS  Google Scholar 

  • Drijfhout E, Silbernagel MJ, Burke DW (1978) Differentiation of strains of bean common mosaic virus. Neth J Plant Pathol 84:13–26

    Article  Google Scholar 

  • Duncan RW, Singh SP, Gilbertson RL (2011) Interaction of common bacterial blight bacteria with disease resistance quantitative trait loci in common bean. Phytopathology 101(4):425–435

    Article  PubMed  Google Scholar 

  • Durham KM, **e W, Yu K, Pauls KP, Lee E, Navabi A (2013) Interaction of common bacterial blight quantitative trait loci in a resistant inter-cross population of common bean. Plant Breed 132:658–666. https://doi.org/10.1111/pbr.12103

    Article  CAS  Google Scholar 

  • El-Sawy MA, Mohamed HAE, Elsharkawy MM (2013) Serological and molecular characterisations of the Egyptian isolate of bean common mosaic virus. Arch Phytopathol Plant Protect 47:1–13

    Google Scholar 

  • Fall AL, Byrne PF, Jung G, Coyne DP, Brick MA, Schwartz HF (2001) Detection and map** of a major locus for Fusarium wilt resistance in common bean. Crop Sci 41(5):1494–1498

    Article  Google Scholar 

  • Félix-Gastélum R, Maldonado-Mendoza IE, Navarrete-Maya R, Olivas-Peraza NG, Brito-Vega H, Acosta-Gallegos JA (2016) Identification of Pseudomonas syringae pv. phaseolicola as the causal agent of halo blight in yellow beans in northern Sinaloa, Mexico. Phytoparasitica 44:369–378

    Article  Google Scholar 

  • Foyer CH, Lam HM, Nguyen HT, Siddique KH, Varshney RK, Colmer TD, Cowling W, Bramley H, Mori TA, Hodgson JM, Cooper JW (2016) Neglecting legumes has compromised human health and sustainable food production. Nature plants 2(8):1–10

    Article  Google Scholar 

  • Freyre R, Skroch PW, Geffroy V, Adam-Blondon A-F, Shirmohamadali A, Johnson WC (1998) Towards an integrated linkage map of common bean. Development of a core linkage map and alignment of RFLP maps. Theor Appl Genet 97:847–856

    Article  CAS  Google Scholar 

  • Freytag GF, Bassett MJ, Zapata M (1982) Registration of XR-235-1-1 bean germplasm. Crop Sci 22:1268–1269. https://doi.org/10.2135/cropsci1982.0011183X002200060066x

    Article  Google Scholar 

  • Galvez LC, Banerjee J, Pinar H, Mitra A (2014) Engineered plant virus resistance. Plant Sci 228:11–25

    Article  CAS  PubMed  Google Scholar 

  • Giesler LJ, Ghabrial SA, Hunt TE, Hill JH (2002) Bean pod mottle virus: a threat to US soybean production. Plant Dis 86(12):1280–1289

    Article  PubMed  Google Scholar 

  • Girma F, Fininsa C, Terefe H, Amsalu B (2022) Evaluation of common bean (Phaseolus vulgaris) genotypes for resistance to common bacterial blight and angular leaf spot diseases, and agronomic performances. Heliyon 8:1–16. https://doi.org/10.1016/j.heliyon.2022.e10425

    Article  CAS  Google Scholar 

  • Gonçalves-Vidigal MC, Cruz AS, Garcia A, Kami J, Vidigal Filho PS, Sousa LL, McClean P, Gepts P, Pastor-Corrales MA (2011) Linkage map** of the Phg-1 and Co-14 genes for resistance to angular leaf spot and anthracnose in the common bean cultivar AND 277. Theor Appl Genet 122:893–903

    Article  PubMed  Google Scholar 

  • Gonçalves-Vidigal MC, Cruz AS, Lacanallo GF, Vidigal Filho PS, Sousa LL, Pacheco CMNA et al (2013) Cosegregation analysis and map** of the anthracnose Co-10 and angular leaf spot Phg-ON disease-resistance genes in the common bean cultivar Ouro Negro. Theor Appl Genet 126:2245–2255. https://doi.org/10.1007/s00122-013-2131-8

    Article  CAS  PubMed  Google Scholar 

  • González AM, Yuste-Lisbona FJ, Godoy L, Fernández-Lozano A, Rodiño AP, De Ron AM (2016) Exploring the quantitative resistance to Pseudomonas syringae pv. phaseolicola in common bean (Phaseolus vulgaris L.). Mol Breed 36:166

    Article  Google Scholar 

  • Gouveia BC, Calil IP, Machado JPB, Santos AA, Fontes EP (2017) Immune receptors and co-receptors in antiviral innate immunity in plants. Front Microbiol 7:2139

    Article  PubMed  PubMed Central  Google Scholar 

  • Hagedorn DJ, Walker JC, Rand RE (1974) Wis. HBR 40 and Wis. HBR 72 bean germplasm. Hprt Scoence, pp 402–404

    Google Scholar 

  • Hart JP, Griffiths PD (2013) A series of eIF4E alleles at the bc-3 locus are associated with recessive resistance to clover yellow vein virus in common bean. Theor Appl Genet 126(11):2849–2863

    Article  CAS  PubMed  Google Scholar 

  • Harveson RM, Schwartz HF (2007) Bacterial diseases of dry edible beansin the central high plains. Plant Health Prog 10:1093–1094

    Google Scholar 

  • Harveson RM, Schwartz HF, Urrea CA, Yonts CD (2015) Bacterial wilt of dry-edible beans in the central high plains of the US: past, present, and future. Plant Dis 99:1665–1677

    Article  PubMed  Google Scholar 

  • Heidrich K, Wirthmueller L, Tasset C, Pouzet C, Deslandes L, Parker JE (2011) Arabidopsis EDS1 connects pathogen effector recognition to cell compartment–specific immune responses. Science 334(6061):1401–1404

    Article  CAS  PubMed  Google Scholar 

  • Horn J, Lauster S, Krenz B, Kraus J, Frischmuth T, Jeske H (2011) Ambivalent effects of defective DNA in beet curly top virus-infected transgenic sugarbeet plants. Virus Res 158(1–2):169–178

    Article  CAS  PubMed  Google Scholar 

  • Hurtado-Gonzales OP, Valentini G, Gilio TA, Martins AM, Song Q, Pastor-Corrales MA (2017) Fine map** of Ur-3, a historically important rust resistance locus in common bean. G3 Genes Genom Genet 7(2):557–569

    Article  CAS  Google Scholar 

  • Ivanov KI, Eskelin K, Lohmus A, Makinen K (2014) Molecular and cellular mechanisms underlying potyvirus infection. J Gen Virol 95:1415–1429

    Article  CAS  PubMed  Google Scholar 

  • Jung G, Skroch PW, Coyne DP, Nienhuis J, Arnaud Santana E, Ariyarathne HM, Kaeppler SM, Bassett MJ (1997) Molecular-marker-based genetic analysis of tepary bean-derived common bacterial blight resistance in different developmental stages of common bean. J Am Soc Hortic Sci 122:329–337

    Article  CAS  Google Scholar 

  • Jung G, Ariyarathne HM, Coyne DP, Nienhuis J (2003) Map** QTL for bacterial brown spot resistance under natural infection in field and seedling stem inoculation in growth chamber in common bean. Crop Sci 43:350e357

    Article  Google Scholar 

  • Kelly JD, Bornowski N (2018) Marker-assisted breeding for economic traits in common bean. In: Biotechnologies of crop improvement, vol 3. Springer, Cham, pp 211–238. https://doi.org/10.1007/978-3-319-94746-4_10

  • Kelly JD, Vallejo VA (2004) A comprehensive review of the major genes conditioning resistance to anthracnose in common bean. HortScience 39(6):1196–1207. https://doi.org/10.21273/HORTSCI.39.6.1196

    Article  CAS  Google Scholar 

  • Kimani P, Buruchara R, Ampofo K, Pyndji M, Chirwa R, Kirkby R (2005) Breeding beans for smallholder farmers in eastern, central, and southern Africa: constraints, achievements, and potential, vol 2. PABRA Millennium Workshop, Nairobi, pp 10–11

    Google Scholar 

  • Koinange EMK, Gepts P (1992) Hybrid weakness in wild Phaseolus vulgaris L. J Hered 83(2):135–139

    Article  Google Scholar 

  • Lamppa RS, Gross PL, del Río LE (2002) Identification of races of Pseudomonas syringae pv. phaseolicola present in North Dakota. Phytopathology 92:S139

    Google Scholar 

  • Larsen RC, Miklas PN, Druffel KL, Wyatt SD (2005) NL-3 K strain is a stable and naturally occurring interspecific recombinant derived from bean common mosaic necrosis virus and bean common mosaic virus. Phytopathology 95(9):1037–1042

    Article  CAS  PubMed  Google Scholar 

  • Leitão ST, Malosetti M, Song Q, van Eeuwijk F, Rubiales D, Vaz Patto MC (2020) Natural variation in Portuguese common bean germplasm reveals new sources of resistance against Fusarium oxysporum f. sp. phaseoli and resistance-associated candidate genes. Phytopathology 110(3):633–647

    Article  PubMed  Google Scholar 

  • Li YQ, Liu ZP, Yang YS, Zhao B, Fan ZF, Wan P (2014) First report of bean common mosaic virus infecting Azuki bean (Vigna angularis Ohwi & Ohashi) in China. Plant Dis 98:1017

    Article  CAS  PubMed  Google Scholar 

  • Liebenberg MM, Pretorius ZA (2010) 1 common bean rust: pathology and control. Hortic Rev 37:1

    Google Scholar 

  • Mahiya-Farooq Padder BA, Bhat NN, Shah M, Shikari AB, Awale HE, Kelly JD (2019) Temporal expression of candidate genes at the Co-1 locus and their interaction with other defense related genes in common bean. Physiol Mol Plant Pathol 108:101424. https://doi.org/10.1016/j.pmpp.2019.101424

    Article  CAS  Google Scholar 

  • Mahuku GS, Jara C, Henriquez MA, Castellanos G, Cuasquer J (2006) Genotypic characterization of the common bean bacterial blight pathogens, Xanthomonas axonopodis pv. phaseoli and Xanthomonas axonopodis pv. phaseoli var. fuscans by rep-PCR and PCR-RFLP of the ribosomal genes. J Phytopathol 154:35

    Article  CAS  Google Scholar 

  • Mahuku GS, Iglesias ÁM, Jara C (2009) Genetics of angular leaf spot resistance in the Andean common bean accession G5686 and identification of markers linked to the resistance genes. Euphytica 167:381–396. https://doi.org/10.1007/s10681-009-9897-4

    Article  CAS  Google Scholar 

  • McElroy JB (1985) Breeding for dry beans, P. vulgaris L., for common bacterial blight resistance derived from Phaseolus acutifolius A. gray. Ph. D. Dissertation. Cornell University, Ithaca, NY

    Google Scholar 

  • Melotto M, Kelly JD (1998) SCAR markers linked to major disease resistance genes in common bean. Annu Rep Bean Improv Coop 41:64–65

    Google Scholar 

  • Mendez-Vigo B, Rodriguez-Suarez C, Paneda A, Ferreira JJ, Giraldez R (2005) Molecular markers and allelic relationships of anthracnose resistance gene cluster B4 in common bean. Euphytica 141:237–245

    Article  CAS  Google Scholar 

  • Meziadi C, Richard MM, Derquennes A, Thareau V, Blanchet S, Gratias A, Pflieger S, Geffroy V (2016) Development of molecular markers linked to disease resistance genes in common bean based on whole genome sequence. Plant Sci 242:351–357. https://doi.org/10.1016/j.plantsci.2015.09.006

    Article  CAS  PubMed  Google Scholar 

  • Meziadi C, Blanchet S, Geffroy V, Pflieger S (2017) Genetic resistance against viruses in Phaseolus vulgaris L.: state of the art and future prospects. Plant Sci 265:39–50

    Article  CAS  PubMed  Google Scholar 

  • Mienie CMS, Liebenberg MM, Pretorius ZA, Miklas PN (2005) SCAR markers linked to the common bean rust resistance gene Ur-13. Theor Appl Genet 111(5):972–979

    Article  CAS  PubMed  Google Scholar 

  • Miklas PN, Stavely JR, Kelly JD (1993) Identification and potential use of a molecular marker for rust resistance in common bean. Theor Appl Genet 85(6):745–749

    Article  CAS  PubMed  Google Scholar 

  • Miklas PN, Johnson E, Stone V, Beaver JS, Montoya C, Zapata M (1996) Selective map** of QTL conditioning disease resistance in common bean. Crop Sci 36:1344–1351. https://doi.org/10.2135/cropsci1996.0011183X003600050044x

    Article  CAS  Google Scholar 

  • Miklas PN, Delorme R, Stone V, Daly MJ, Stavely JR, Steadman JR et al (2000a) Bacterial, fungal, and viral disease resistance loci mapped in a recombinant inbred common bean population ('Dorado’/ XAN 176). J Am Soc Hortic Sci 125:476

    Article  CAS  Google Scholar 

  • Miklas PN, Stone V, Daly MJ, Stavely JR, Steadman JR, Bassett MJ, Delorme R, Beaver JS (2000b) Bacterial, fungal, and viral disease resistance loci mapped in a recombinant inbred common bean population ‘dorado’/XAN 176. J Am Soc Hortic Sci 125:476–481

    Article  CAS  Google Scholar 

  • Miklas PN, Coyne DP, Grafton KF, Mutlu N, Reiser J, Lindgren DT et al (2003a) A major QTL for common bacterial blight resistance derives from the common bean great northern landrace cultivarMontana no. 5. Euphytica 131:137–146

    Article  CAS  Google Scholar 

  • Miklas PN, Coyne DP, Grafton KF, Mutlu N, Reiser J, Lindgren DT, Singh SP (2003b) A major QTL for common bacterial light resistance derives from the common bean great northern landrace cultivar Montana no. 5. Euphytica 131:137–146. https://doi.org/10.1023/A:1023064814531

    Article  CAS  Google Scholar 

  • Miklas PN, Kelly JD, Beebe SE, Blair MW (2006) Common bean breeding for resistance against biotic and abiotic stresses: from classical to MAS breeding. Euphytica 147(1):105–131

    Article  CAS  Google Scholar 

  • Miklas PN, Fourie D, Wagner J, Larsen RC, Mienie CMS (2009) Tagging and map** Pse-1 gene for resistance to halo blight in common bean differential cultivar UI-3. Crop Sci 49:41–48

    Article  CAS  Google Scholar 

  • Miklas PN, Fourie D, Trapp J, Davis J, Myers JR (2014) New loci including Pse-6 conferring resistance to halo bacterial blight on chromosome Pv04 in common bean. Crop Sci 54:2099–2108

    Article  Google Scholar 

  • Miller T, Gepts P, Kimmo S, Arunga E, Luseko AC, Susan N-M et al (2018) Alternative markers linked to the Phg-2 angular leaf spot resistance locus in common bean using the Phaseolus genes marker database. Afr J Biotechnol 17:818–828. https://doi.org/10.5897/ajb2018.16493

    Article  CAS  Google Scholar 

  • Morales FJ (2006) Common beans. In: Loebenstein G, Carr JP (eds) Natural resistance mechanisms of plants to viruses. Springer, Amsterdam, pp 367–382

    Chapter  Google Scholar 

  • Muedi HTH, Fourie D, McLaren NW (2015) Reaction of selected common bean germplasm accessions to bacterial brown spot in South Africa. Crop Prot 77:87–93

    Article  Google Scholar 

  • Murillo IÁ, Falconí E, Marzón N, Peralta IE (2006) Resistance sources for rust, angular leaf spot, and common bacterial blight in common bean for Ecuador. Annu Rep Bean Improv Coop 49:229–230

    Google Scholar 

  • Mutlu N, Miklas P, Reiser J, Coyne D (2005) Backcross breeding for improved resistance to common bacterial blight in pinto bean (Phaseolus vulgaris L.). Plant Breed 124:282–287

    Article  Google Scholar 

  • Mutlu N, Vidaver AK, Coyne DP, Steadman JR, Lambrecht PA, Reiser J (2008) Differential pathogenicity of Xanthomonas campestris pv. Phaseoli and X. fuscans subsp. fuscans trains on bean genotypes with common blight resistance. Plant Dis 92:546–554

    Article  CAS  PubMed  Google Scholar 

  • Nabi A, Lateef I, Nisa Q, Banoo A, Rasool RS, Shah MD, Ahmad M, Padder BA (2022) Phaseolus vulgaris-Colletotrichum lindemuthianum pathosystem in the post-genomic era: an update. Curr Microbiol 79(2):1–13

    Article  Google Scholar 

  • Navarro F, Skroch P, Jung G, Nienhuis J (2007) Quantitative trait loci associated with bacterial brown spot in Phaseolus vulgaris L. Crop Sci 47:1344–1353

    Article  CAS  Google Scholar 

  • Nay MM, Souza TLPO, Raatz B, Mukankusi CM, Pastor-Corrales MA, Abreu AFB et al (2019) A review of angular leaf spot resistance in common bean. Crop Sci 59:1376–1391. https://doi.org/10.2135/cropsci2018.09.0596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicaise V (2014) Crop immunity against viruses: outcomes and future challenges. Front Plant Sci 5:660

    Article  PubMed  PubMed Central  Google Scholar 

  • Nunes MPBA, Gonçalves-Vidigal MC, Martins VS, Xavier LF, Valentini G, Vaz Bisneta M, Vidigal Filho PS (2021) Relationship of Colletotrichum lindemuthianum races and resistance loci in the Phaseolus vulgaris L. genome. Crop Sci 61(6):3877–3893

    Article  CAS  Google Scholar 

  • O’Boyle PD, Kelly JD, Kirk WW (2007) Use of marker-assisted selection to breed for resistance to common bacterial blight in common bean. J Am Soc Hortic Sci 132:381–386

    Article  Google Scholar 

  • Oblessuc PR, Baroni RM, Garcia AAF, Chioratto AF, Carbonell SAM, Camargo LEA et al (2012) Map** of angular leaf spot resistance QTL in common bean (Phaseolus vulgaris L.) under different environments. BMC Genet 13:50. https://doi.org/10.1186/1471-2156-13-50

    Article  PubMed  PubMed Central  Google Scholar 

  • Opio AF, Allen DJ, Teri JM (1996) Pathogenic variation in Xanthonomas campestris pv. phaseoli, the causal agent of common bacterial blight in phaseolus beans. Plant Pathol 45:1126–1133

    Article  Google Scholar 

  • Padder BA, Sharma PN, Awale H, Kelly JD (2017) Colletotrichum lindemuthiam the casual agent of bean anthracnose. J Plant Pathol 99(2):317–330. https://doi.org/10.4454/jpp.v99i2.3867

    Article  Google Scholar 

  • Park SO, Coyne DP, Bokosi JM, Steadman JR (1999) Molecular markers linked to genes for specific rust resistance and indeterminate growth habit in common bean. Euphytica 105(2):133–141

    Article  CAS  Google Scholar 

  • Parker JPK (1985) Interspecific transfer of common bacterial blight resistance from Phaseolus acutifolius A. gray to Phaseolus vulgaris L. M.S. thesis. University of Guelph, Guelph, ON

    Google Scholar 

  • Pastor-Corrales MA, Aime MC (2004) Differential cultivars and molecular markers segregate isolates of Uromyces appendiculatus into two distinct groups that correspond to the gene pools of their common bean hosts. Phytopathology 94:82

    Google Scholar 

  • Patel PN, Walker JC (1965) Resistance in Phaseolus to halo blight. Phytopathology 55:889–894

    Google Scholar 

  • Paulino JFDC, Almeida CPD, Bueno CJ, Song Q, Fritsche-Neto R, Carbonell SAM et al (2021) Genome-wide association study reveals genomic regions associated with Fusarium wilt resistance in common bean. Gene 12(5):765

    Article  Google Scholar 

  • Pedraza García F, Gallego GJ, Beebe SE, Tohme MJ (1997) Marcadores SCAR y RAPD para la resitencia a la bacteriosis comun (CBB). In: Singh SP, Voysest O (eds) Taller de mejoramiento de frijol para el Siglo XXI: bases para una estrategia para America Latina

    Google Scholar 

  • Perry G, DiNatale C, **e W, Navabi A, Reinprecht Y, Crosby W et al (2013) A comparison of the molecular organization of genomic regions associated with resistance to common bacterial blight in two Phaseolus vulgaris genotypes. Front Plant Sci 4:318

    Article  PubMed  PubMed Central  Google Scholar 

  • Pessoni LA, Zimmermann MJO, Faria JC (1997) Genetic control of characters associated with bean gold mosaic geminivirus resistance in Phaseolus vulgaris L. Braz J Genet 20:51–58

    Article  Google Scholar 

  • Rava Seijas CA, Sartorato A, Porto de Carvalho JR (1985) Yield losses in dry bean (Phaseolus vulgaris L.) caused by angular leaf spot (Isariopsis griseola Sacc.). Annu Rep Bean Improv Coop 28:5–6

    Google Scholar 

  • Ribeiro RDL, Hagedorn DJ (1979) Screening for resistance to and pathogenic specialization of Fusarium oxysporum f. sp. phaseoli, the causal agent of bean yellows. Phytopathology 69(3):272–276

    Article  Google Scholar 

  • Rico A, López R, Asensio C, Aizpún MT, Asensio-S-Manzanera MC, Murillo J (2003) Nontoxigenic strains of Pseudomonas syringae pv. phaseolicola are a main cause of halo blight of beans in Spain and escape current detection methods. Phytopathology 93:1553–1559

    Article  CAS  PubMed  Google Scholar 

  • Rosen R, Kanakala S, Kliot A, Pakkianathan BC, Farich BA, Santana-Magal N, Elimelech M, Kontsedalov S, Lebedev G, Cilia M, Ghanim M (2015) Persistent, circulative transmission of begomoviruses by whitefly vectors. Curr Opin Virol 15:1–8

    Article  PubMed  Google Scholar 

  • Saettler AW (1989) Common bacterial blight. In: Bean production problems in the tropics, vol 2. CIAT, Cali, pp 261–283

    Google Scholar 

  • Salegua V, Rob M, Deidré F, Julia S, Cousin M (2020) Screening Andean diversity panel dry bean lines for resistance to bacterial Brown spot disease under field conditions in South Africa. Plant Dis 104:2509–2514

    Article  PubMed  Google Scholar 

  • Sartorato A, Nietsche S, Barros EG, Moreira MA (1999) Inheritance of angular leaf spot resistance and RAPD markers linked to disease resistance gene in common beans. Annu Rep Bean Improv Coop 42:21–22

    Google Scholar 

  • Schmutz J, McClean PE, Mamidi S, Wu GA, Cannon SB, Grimwood J, Jenkins J, Shu S, Song Q, Chavarro C, Torres-Torres M (2014) A reference genome for common bean and genome-wide analysis of dual domestications. Nat Genet 46(7):707–713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott ME, Michaels TE (1992) Xanthomonas resistance of Phaseolus interspecific cross selections confirmed by field performance. HortScience 27:348–350

    Article  Google Scholar 

  • Serfontein J (1994) Occurrence of bacterial brown spot of dry beans in the Transvaal province of South Africa. Plant Pathol 43:597–599

    Article  Google Scholar 

  • Sharma M, Pandey GK (2016) Expansion and function of repeat domain proteins during stress and development in plants. Front Plant Sci 6:1218

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma PN, Sharma OP, Padder BA, Kapil R (2008) Yield loss assessment in common bean due to anthracnose (Colletotrichumlindemuthianum) under sub-temperate conditions of north–Western Himalayas. Indian Phytopathol 61(3):323–330

    Google Scholar 

  • Shi C, Chaudhary S, Yu K, Park SJ, Navabi A, McClean PE (2011a) Identification of candidate genes associated with CBB resistance in common bean HR45 (Phaseolus vulgaris L.) using cDNA-AFLP. Mol Biol Rep 38:75–81

    Article  CAS  PubMed  Google Scholar 

  • Shi C, Navabi A, Yu K (2011b) Association map** of common bacterial blight resistance QTL in Ontario bean breeding populations. BMC Plant Biol 11:52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi C, Yu K, **e W, Perry G, Navabi A, Peter Pauls K (2012) Development of candidate gene markers associated to common bacterial blight resistance in common bean. Theor Appl Genet 125:1525–1537

    Article  CAS  PubMed  Google Scholar 

  • Singh SP (1999) Production and utilization. In: Common bean improvement in the twenty-first century. Springer, Dordrecht, pp 1–24

    Chapter  Google Scholar 

  • Singh SP, Miklas PN (2015) Breeding common bean for resistance to common blight: A review. Crop Sci 55(3):971–984

    Article  Google Scholar 

  • Singh SP, Muñoz CG (1999) Resistance to common bacterial blight among Phaseolus species and common bean improvement. Crop Sci 39:80–89

    Article  Google Scholar 

  • Singh SP, Schwartz HF (2010) Breeding common bean for resistance to diseases: a review. Crop Sci 50(6):2199–2223

    Article  Google Scholar 

  • Singh SP, Morales FJ, Miklas PN, Teran H (2000) Selection for bean golden mosaic resistance in intra- and inter-racial bean populations. Crop Sci 40:1565–1572

    Article  Google Scholar 

  • Singh SP, Muñoz CG, Terán H (2001) Registration of common bacterial blight resistant dry bean germplasm VAX 1, VAX 3, and VAX 4. Crop Sci 41:275–276. https://doi.org/10.2135/cropsci2001.411275x

    Article  Google Scholar 

  • Stenger DC, McMahon CL (1997) Genotypic diversity of beet curly top virus populations in the western United States. Phytopathology 87(7):737–744

    Article  CAS  PubMed  Google Scholar 

  • Strausbaugh CA, Myers JR, Forster RL, McClean PE (1999) Bc-1 and bc-u—two loci controlling bean common mosaic virus resistance in common bean are linked. J Am Soc Hortic Sci 124(6):644–648

    Article  Google Scholar 

  • Strausbaugh CA, Miklas PN, Singh SP, Myers JR, Forster RL (2003) Genetic characterization of differential reactions among host group 3 common bean cultivars to NL-3 K strain of bean common mosaic necrosis virus. Phytopathology 93(6):683–690

    Article  CAS  PubMed  Google Scholar 

  • Strausbaugh CA, Wintermantel WM, Gillen AM, Eujayl IA (2008) Curly top survey in the Western United States. Phytopathology 98(11):1212–1217. https://doi.org/10.1094/PHYTO-98-11-1212. PMID 18943410

    Article  CAS  PubMed  Google Scholar 

  • Taylor JD, Innes NL, Dudley CL, Griffiths WA (1978) Sources and inheritance of resistance to halo-blight of Phaseolus beans. Ann Appl Biol 90:101–110

    Article  Google Scholar 

  • Taylor JD, Teverson DM, Allen DJ, Pastor-Corrales MA (1996a) Identification and origin of races of Pseudomonas syringae pv. phaseolicola from Africa and other bean growing areas. Plant Pathol 45:469–478

    Article  Google Scholar 

  • Taylor JD, Teverson DM, Davis JHC (1996b) Sources of resistance to Pseudomonas syringae pv. phaseolicola races in Phaseolus vulgaris. Plant Pathol 45:479–485

    Article  Google Scholar 

  • Tock AJ (2017) Applying next-generation sequencing to enable marker-assisted breeding for adaptive traits in common bean (Phaseolus vulgaris L.). [Ph.D.thesis] Wellesbourne: University of Warwick72 bean germplasm. HortScience 9:402

    Google Scholar 

  • Trabanco N, Asensio-Manzanera MC, Pérez-Vega E, Ibeas A, Campa A, Ferreira JJ (2014) Identification of quantitative trait loci involved in the response of common bean to Pseudomonas syringae pv. phaseolicola. Mol Breed 33:577–588

    Article  CAS  Google Scholar 

  • Tracy SL, Frenkel MJ, Gough KH, Hanna PJ, Shukla DD (1992) Bean yellow mosaic, clover yellow vein, and pea mosaic are distinct potyviruses: evidence from coat protein gene sequences and molecular hybridization involving the 3′ non-coding regions. Arch Virol 122(3–4):249–261. https://doi.org/10.1007/BF01317187

    Article  CAS  PubMed  Google Scholar 

  • Tugume JK, Tusiime G, Sekamate AM, Buruchara R, Mukankusi CM (2019) Diversity and interaction of common bacterial blight disease-causing bacteria (Xanthomonas spp.) with Phaseolus vulgaris L. Crop J 7(1):1–7

    Article  Google Scholar 

  • Tulmann Neto A, Ando A, Costa AS (1977) Attempts to induce mutants resistant or tolerant to golden mosaic virus in dry beans (Phaseolus vulgaris L.). In: induced mutation against plant diseases, IAEA proceedings series. IAEA, New York, pp 281–288

    Google Scholar 

  • Urrea CA, Miklas PN, Beaver JS, Riley RH (1996) A codominant randomly amplified polymorphic DNA (RAPD) marker useful for indirect selection of BGMV resistance in common bean. J Am Soc Hortic Sci 121(6):1035–1039

    Article  CAS  Google Scholar 

  • Vandemark GJ, Miklas PN (2005) Genoty** common bean for the potyvirus resistance alleles I and bc-12 with a multiplex real-time polymerase chain reaction assay. Phytopathology 95:499–505

    Article  CAS  PubMed  Google Scholar 

  • Viteri DM, Singh SP (2014) Response of 21 common beans of diverse origins to two strains of the common bacterial blight pathogen, Xanthomonas campestris pv phaseoli. Euphytica 200:379–388. https://doi.org/10.1007/s10681-014-1161-x

    Article  Google Scholar 

  • Viteri DM, Cregan PB, Trapp J, Miklas PN, Singh SP (2014) A new common bacterial blight resistance QTL in VAX 1 common bean and interaction of the new QTL, SAP6, and SU91 with bacterial strains. Crop Sci 54:1598–1608. https://doi.org/10.2135/cropsci2014.01.0008

    Article  CAS  Google Scholar 

  • Viteri DM, Terán H, Asensio-S-Manzanera MC, Asensio C, Porch TG, Miklas PN, Singh SP (2014b) Progress in breeding Andean common bean for resistance to common bacterial blight. Crop Sci 54(5):2084–2092

    Article  Google Scholar 

  • Viteri DM, Terán H, Asensio-S-Manzanera MC, Asensio C, Porch TG, Miklas PN, Singh SP (2014c) Progress in breeding Andean common bean for resistance to common bacterial blight. Crop Sci 54:2084–2092. https://doi.org/10.2135/cropsci2014.03.0177

    Article  Google Scholar 

  • Vlasova A, Capella-Gutiérrez S, Rendón-Anaya M, Hernández-Oñate M, Minoche AE, Erb I (2016) Genome and transcriptome analysis of the Mesoamerican common bean and the role of gene duplications in establishing tissue and temporal specialization of genes. Genome Biol 17:32

    Article  PubMed  PubMed Central  Google Scholar 

  • Williams AH, Sharma M, Thatcher LF, Azam S, Hane JK, Sperschneider J et al (2016) Comparative genomics and prediction of conditionally dispensable sequences in legume–infecting Fusarium oxysporum formae speciales facilitates identification of candidate effectors. BMC Genomics 17(1):1–24

    Article  Google Scholar 

  • Xue R, Wu J, Zhu Z, Wang L, Wang X, Wang S, Blair MW (2015) Differentially expressed genes in resistant and susceptible common bean (Phaseolus vulgaris L.) genotypes in response to Fusarium oxysporum f. sp. phaseoli. PLoS One 10(6):e0127698

    Article  PubMed  PubMed Central  Google Scholar 

  • Young RA, Kelly JD (1997) RAPD markers linked to three major anthracnose resistance genes in common bean. Crop Sci 37(3):940–946

    Article  CAS  Google Scholar 

  • Young JM, Dye DW, Wilkie JP (1978) Genus VII Pseudomonas migula. In: Young JM, Dye DW, Bradbury JF, Panagopoulos CG, Robbs CF (eds) A proposed nomenclature and classification for plant pathogenic bacteria, New Zeal J Agr Res, vol, vol 21, pp 153–151

    Google Scholar 

  • Yu K, Park SJ, Poysa V, Gepts P (2000) Integration of simple sequence repeat (SSR) markers into a molecular linkage map of common bean (Phaseolus vulgaris L.). J Hered 91:429–434

    Article  CAS  PubMed  Google Scholar 

  • Yu K, Shi C, Zhang B (2012) Development and application of molecular markers to breed common bean (Phaseolus vulgaris L.) for resistance to common bacterial blight (CBB)–current status and future directions. In: Applied Photosynthesis. IntechOpen, Rijeka, p 365

    Google Scholar 

  • Zapata M, Freytag GF, Wilkinson RE (1985) Evaluation for bacterial blight resistance in beans. Phytopathology 75:1032–1039. https://doi.org/10.1094/Phyto-75-1032

    Article  Google Scholar 

  • Zapata M, Beaver JS, Porch TG (2011) Dominant gene for common bean resistance to common bacterial blight caused by Xanthomonas axonopodis pv. phaseoli. Euphytica 179(3):373–382

    Article  Google Scholar 

  • Zapata M, Freytag G, Wilkinson R (2004) Release of five common bean germplasm lines resistant to common bacterial blight: W-BB-11, W-BB-20-1, W-BB-35, W-BB-52, and W-BB-11-56. J Agric Univ Puerto Rico

    Google Scholar 

  • Zaumeyer WJ, Thomas HR (1948) Pod mottle, a virus disease of beans. J Agric Res 77:81–86

    Google Scholar 

  • Ziems AD, Giesler LJ, Graef GL, Redinbaugh MG, Vacha JL, Berry S, Madden LV, Dorrance AE (2007) Response of soybean cultivars to bean pod mottle virus infection. Plant Dis 91(6):719–726

    Article  PubMed  Google Scholar 

  • Zuiderveen GH, Padder BA, Kamfwa K, Song Q, Kelly JD (2016) Genome-wide association study of anthracnose resistance in andean beans (Phaseolus vulgaris). PLoS One 11(6):e0156391. https://doi.org/10.1371/journal.pone.0156391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ajaz A. Lone or Bilal A. Padder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wani, S. et al. (2023). An Overview of Major Bean Diseases and Current Scenario of Common Bean Resistance. In: Jha, U.C., Nayyar, H., Sharma, K.D., von Wettberg, E.J.B., Singh, P., Siddique, K.H. (eds) Diseases in Legume Crops. Springer, Singapore. https://doi.org/10.1007/978-981-99-3358-7_5

Download citation

Publish with us

Policies and ethics

Navigation