Molecular and Conventional Breeding Strategies for Improving Biotic Stress Resistance in Common Bean

  • Chapter
  • First Online:
Accelerated Plant Breeding, Volume 3

Abstract

Common bean (Phaseolus vulgaris L.) is one of the most important grain legumes for direct human consumption worldwide. However, several diseases limit its production and deteriorate quality of bean. Hence, breeding for disease resistance is of global importance in common bean which is addressed with emphasis on conventional and molecular breeding strategies. Disease resistance does not directly increase yield, but in the absence of adequate levels of resistance to diseases like viruses (bean common mosaic virus (BCMV), bean golden mosaic virus (BGMV)), similarly, fungal diseases like anthracnose (ANT), angular leaf spot (ALS), powdery mildew (PWM) and rust and bacterial diseases like common bacterial blight (CBB), halo blight and other major diseases, bean yields will fall below optimum. Adequate levels of disease resistance to a number of pathogens are needed to help stabilize dry bean yield. Therefore, breeders need to recognize the disease constraints within their production zones and restrict resistance breeding to these specific pathogens. Given this constraint, breeders attempt to choose parents that are genetically diverse based on measures such as the coefficient of parentage (CP) and could be have higher disease resistance level. On the other hand, conventional plant breeding relies on the discovery, phenotypic selection and introgression of disease-resistant gene to develop superior cultivars. This process usually takes 7–10 years and significant economic resources. However, the application of marker-assisted selection (MAS), for the detection of genes or genomic regions underlying a trait of interest, can increase the genetic gain over phenotypic selection in breeding programs by reducing time and costs. Till date, more than 30 individual genes for disease resistance and a similar number of genes for QTL underlying major traits with significant impact to common bean cultivation in the tropics have been successfully linked with markers. The current status of MAS in breeding for resistance to angular leaf spot, anthracnose, bean common mosaic and bean common mosaic necrosis viruses, common bacterial blight, halo blight and rust is discussed in this chapter. In addition to that, examples are given of gene tagging for major disease that are important for bean breeding for tropical environments and aspects considered that contribute to successful application of MAS. Subsequently, the use of markers for disease resistance traits in marker-assisted backcrossing and introgression across Andean and Mesoamerican gene pools is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aggarwal VD, Marcial A, Pastor C, Rowland M, Chirwa BRA (2004) Andean beans (Phaseolus vulgaris L.) with resistance to the angular leaf spot pathogen (Phaeoisariopsis griseola) in Southern and Eastern Africa. Euphytica 136:201–210

    Google Scholar 

  • Aggour AR, Coyne DP (1989) Heritability, phenotypic correlations, and associations of the common blight disease reactions in beans. J Am Soc Hortic Sci 114:828–833

    Google Scholar 

  • Alavi SM, Sanjari S, Durand F, Brin C, Manceau C, Poussier S (2008) Assessment of genetic diversity of Xanthomonas axonopodis pv. phaseoli and Xanthomonas fuscans subsp. fuscans as a basis to identify putative pathogenicity genes and a type III secretion system of the SPI-1 family by multiple suppression subtractive hybridizations. Appl Environ Microbiol 74:3295–3301

    CAS  PubMed  PubMed Central  Google Scholar 

  • Almeida AMR, Binneck E, Piuga FF, Marin SRR, do PRZ RV, Silveira CZ (2008) Characterization of powdery mildews strains from soybean, bean, sunflower, and weeds in Brazil using rDNA-ITS sequences. Trop Plant Pathol 33:20–26

    Google Scholar 

  • Alzate-Marin AL, Souza TLPO, Ragagnin VA, Moreira MA, Barros EG (2004) Allelism tests between the rust resistance gene present in common bean cultivar Ouro negro and genes Ur-5 and Ur-11. J Phytopathol 152:60–64

    CAS  Google Scholar 

  • Alzate-Marin AL, Souza KA, Silva MGM, Oliveira EJ, Moreira MA, Barros EG (2007) Genetic characterization of anthracnose resistance genes Co-43 and Co-9 in common bean cultivar Tlalnepantla 64 (PI207262). Euphytica 154:1–8

    CAS  Google Scholar 

  • Araya CM, Alleyne AT, Steadman JR, Eskridge KM, Coyne DP (2004) Phenotypic and genotypic characterization of Uromyces appendiculatus from Phaseolus vulgaris in the Americas. Plant Dis 88:830–836

    CAS  PubMed  Google Scholar 

  • Arnaud-Santana E, Coyne DP, Eskridge KM, Vidaver AK (1994) Inheritance, low correlations of leaf, pod, and seed reactions to common blight disease in common beans, and implications for selection. J Am Soc Hortic Sci 119:116–121

    Google Scholar 

  • Asensio C, Martin E, Montoya JL (1993) Inheritance of resistance to race 1 of Pseudomonas syringae pv. phaseolicola in some varieties of beans. Invest Agrar Prod Prot Veg 8:445–456

    Google Scholar 

  • Ballantyne BJ (1978) The genetic bases of resistance to rust, caused by Uro- myces appendiculatus in beans (Phaseolus vulgaris). PhD thesis, University of Sydney, Sydney, 262 pp. Available online: http://www.css.msu.edu/bic/PDF/Ballantyne%20Thesis%20Bean%20Rust.pdf

  • Barrus MF (1911) Variation of cultivars of beans in their susceptibility to anthracnose. Phytopathology 1:190–195

    Google Scholar 

  • Beaver JS (1999) Improvement of large-seeded race Nueva Granada cultivars. In: Singh S (ed) Common bean improvement in the twenty-fi rst century. Kluwer Acad. Press, Dordrecht, pp 275–288

    Google Scholar 

  • Beaver JS, Rosas JC, Myers J, Acosta J, Kelly JD, Nchimbi MS, Misangu R, Bokosi J, Temple S, Arnaud-Santana E, Coyne DP (2003) Contributions of the bean/ cowpea CRSP to cultivar and germplasm development in common bean. Field Crops Res 82:87–102

    Google Scholar 

  • Beebe SE, Rojas‐Pierce M, Yan X, Blair MW, Pedraza F, Munoz F, Tohme J, Lynch JP (2006) Quantitative trait loci for root architecture traits correlated with phosphorus acquisition in common bean. Crop Science 46(1):413–423

    Google Scholar 

  • Beebe SE, Pastor-Corrales MA (1991) Breeding for disease resistance. In: van Schoonhoven A, Voysest O (eds) Common beans: research for crop improvement. CAB International and CIAT, Wallingford-Cali, pp 561–618

    Google Scholar 

  • Bett KE, Michaels TE (1995) A two-gene model for powdery mildew resistance in common bean. Annu Rep Bean Improv Coop 38:145–146

    Google Scholar 

  • Blair MW, Giraldo MC, Buendia HF, Tovar E, Duque MC, Beebe SE (2006) Microsatellite marker diversity in common bean (Phaseolus vulgaris L.). Theor Appl Genet 113:100–109

    CAS  PubMed  Google Scholar 

  • Blair MW, Gonzales LF, Kimani PM, Butare L (2010) Genetic diversity, inter-gene pool introgression and nutritional quality of common beans (Phaseolus vulgaris L.) from Central Africa. Theor Appl Genet 121:237–248. https://doi.org/10.1007/s00122-010-1305-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyle PDO, Kelly JD, Kirk WW (2007) Use of marker-assisted selection to breed for resistance to common bacterial blight in common bean. J Am Soc Hortic Sci 132:381–386

    Google Scholar 

  • Broughton WJ, Hernandez G, Blair M, Beebe S, Gepts P, Vanderleyden J (2003) Beans (Phaseolus spp.): model food legumes. Plant Soil 252:55–128. https://doi.org/10.1023/A:1024146710611

    Article  CAS  Google Scholar 

  • Caixeta ET, Borem A, Azate-Marin AL, Fagundes SA, Silva MGM et al (2005) Allelic relationships for genes that confer resistance to angular leaf spot in common bean. Euphytica 145:237–245

    CAS  Google Scholar 

  • Campa A, Giraldez R, Ferreira JJ (2011) Genetic analysis of the resistance to eight anthracnose races in the common bean differential cultivar Kaboon. Phytopathology 101:757–764

    PubMed  Google Scholar 

  • Cardona-Alvarez C, Walker JC (1956) Angular leaf spot of beans. Phytopathology 46:610–615

    Google Scholar 

  • Chataika BYE, Bokosi JM, Chirwa RM, Kwapata MB (2011) Inheritance of halo blight resistance in common bean. African Crop Sci J 19:325–333

    Google Scholar 

  • Coimbra-Gonçalves GK, Gonçalves-Vidigal MC, Coelho RT, Valentini G, Vidigal Filho PS, Lacanallo GF, Sousa LL, Elias HT (2016) Characterization and Map** of Anthracnose Resistance Gene in Mesoamerican Common Bean Cultivar Crioulo 159. Crop Science 56 (6):2904–2915

    Google Scholar 

  • Correa RX, Pedro IV, Oliveira MLP, Nietsche S, Moreira M, Barros EG (2001) Heranca da resistencia a mancha angular do feijoeiro e a identificaao de marcadores moleculares flanqueando o loco de resistencia. Fitopatol Bras 26:27–32

    CAS  Google Scholar 

  • Coyne DP (1961) Characteristics and performance of the Nebraska 1 dry bean. Ann Rep Bean Improv Coop 5:50–51

    Google Scholar 

  • Coyne DR, Steadman JR, Godoy-Lutz G, Gilbertson R, Arnaud-Santana E, Beaver JS, Myers JR (2003) Contribution of the bean/cowpea CRSP to management of bean disease. Field Crop Res 82:155–168

    Google Scholar 

  • Crous PW, Liebenberg MM, Braun U, Groenewald JZ (2006) Re-evaluating the taxonomic status of Phaeoisariopsis griseola, the causal agent of angular leaf spot of bean. Stud Mycol 55:163–173

    PubMed  PubMed Central  Google Scholar 

  • Damayanti T, Susilo D, Nurlaelah S, Sartiami D, Okuno T, Mise K (2008) First report of Bean common mosaic virus in yam bean [Pachyrhizus erosus L. Urban] in Indonesia. J Gen Plant Pathol 74:438–442

    CAS  Google Scholar 

  • de Oliveira EJ, Alzate-Marin AL, Borem S, De Azeredo F, de Barros EG, Moreira MA (2005) Molecular marker-assisted selection for development of common bean lines resistant to angular leaf spot. Plant Breed 124:572–575

    Google Scholar 

  • Dongfang Y, Conner RL, Yu K, Balasubramanian P, Penner WC, Yager LM (2008) Identification of anthracnose resistance genes in dry bean cultivars grown in Manitoba. Can J Plant Sci 88:771–781

    CAS  Google Scholar 

  • Diego M. Viteri, Perry B. Cregan, Jennifer J. Trapp, Phillip. N. Miklas, Shree P. Singh, (2014) A New Common Bacterial Blight Resistance QTL in VAX 1 Common Bean and Interaction of the New QTL, SAP6, and SU91 with Bacterial Strains. Crop Science 54(4):1598–1608

    Google Scholar 

  • Drijfhout E (1978) Genetic interaction between Phaseolus vulgaris and bean common mosaic virus with implications for strain identification and breeding resistance. Agricultural Research Reports, Vol. 872, pp. 1–98. Centre for Agriculture Publishing and Documentation, Wageningen, The Netherlands

    Google Scholar 

  • Dundas B (1936) Inheritance of resistance to powdery mildew in beans. Hilgardia 10:243–253

    Google Scholar 

  • Edington BR, Shanahan PE, Rijkenberg FHJ (1994) Breeding for partial resistance in dry beans (Phaseolus vulgaris) to bean rust (Uromyces appendiculatus). Ann Appl Biol 124:341–350

    Google Scholar 

  • Ernest EG, Kelly JD (2004) The Mesoamerican anthracnose resistance gene Co-42 does not confer resistance in certain Andean backgrounds. Annu Rep Bean Improv Coop 47:245–246

    Google Scholar 

  • Ester Murube A, Ana Campa A, Juan Jose Ferreira AB (2017) Identification of new resistance sources to powdery mildew and the genetic characterization of resistance in three common bean genotypes. Crop Pasture Sci 68:1006–1012. https://doi.org/10.1071/CP16460

    Article  Google Scholar 

  • Faleiro FG, Ragagnin VA, Moreira MA, Barros EG (2004) Use of molecular markers to accelerate the breeding of common bean lines resistant to rust and anthracnose. Euphytica 183:213–218

    Google Scholar 

  • FAO (2010) The report on the state of the world’s plant genetic resources for food and agriculture. FAO, Rome

    Google Scholar 

  • Faria JC, Zimmermann MJ, Yokoyama M (1991) Development of Phaseolus vulgaris L. tolerant to bean golden mosaic virus. Annu Rep Bean Improv Coop 34:11–12

    Google Scholar 

  • Ferreira RV, Bosco dos Santos J, Patto MA, Furtado D (2001) Agronomical characters and RAPD markers associated with the resistant allele to the Erysiphe polygoni in common bean. Crop Breed Appl Biot 1:11–21

    Google Scholar 

  • Ferreira JJ, Campa A, Kelly JD (2013) Organization of genes conferring resistance to anthracnose in common bean. In: Varshney RK, Tuberosa R (eds) Translational genomics for crop breeding, volume I: biotic stresses. Wiley, Chichester, UK, pp 151–181

    Google Scholar 

  • Finke ML, Coyne DP, Steadman JR (1986) The inheritance and association of resistance to rust, common bacterial blight, plant habit and foliar abnormalities in Phaseolus vulgaris L. Euphytica 35:969–982

    Google Scholar 

  • Fourie D, Herselman L, Mienie C (2011) Improvement of common bacterial blight resistance in South African dry bean cultivar Teebus. Afr Crop Sci J 19:377–386

    Google Scholar 

  • Galvez GE, Morales FJ (1989) Whitefly-transmitted viruses, p. 379–406. In: Schwartz HF, Geffroy V, Macadre C, David P, Pedrosa-Harand A, Sevignac M, Dauga C (2009) Molecular analysis of a large subtelomeric nucleotide-binding-siteleucine- rich-repeat family in two representative genotypes of the major gene pools of Phaseolus vulgaris. Genetics. 181:405–19. https://doi.org/10.1534/genetics.108.093583

  • Genchev D, Christova P, Kiryakov I, Beleva M, Batchvarova R (2010) Breeding of common bean for resistance to the physiological races of anthracnose identified in Bulgaria. Biotechnol Biotechnol Equip. https://doi.org/10.2478/v10133-010-0047-x

  • Gepts P, Debouck D (1991) Origin, domestication and evolution of the common bean (Phaseolus vulgaris). In: Van Schoonhoven A, Voysest O (eds) Common beans: research for crop improvement. CABI/CIAT, Wallingford, UK, pp 7–53

    Google Scholar 

  • Gonçalves-Vidigal MC, Kelly JD (2006) Inheritance of anthracnose resistance in the common bean cultivar Widusa. Euphytica 81(9):996–998. https://doi.org/10.1007/s10681-006-9164-x

    Article  CAS  Google Scholar 

  • Gonçalves-Vidigal MC, Silva CR, Vidigal Filho PS, Gonela A, Kvitschal V (2007) Allelic relationships of anthracnose (Colletotrichum lindemuthianum) resistance in the common bean (Phaseolus vulgaris L.) cultivar Michelite and the proposal of a new anthracnose resistance gene, Co-11. Genet Mol Biol 30:589–593

    Google Scholar 

  • Gonçalves-Vidigal MC, Lacanallo GF, Vidigal PS (2008) A new Andean gene conferring resistance to anthracnose in common bean (Phaseolus vulgaris L.) cultivar Jalo Vermelho. Plant Breed 127:592–596

    Google Scholar 

  • Gonçalves-Vidigal MC, Vidigal FPS, Medeiros AF, Pastor-Corrales MA (2009) Common bean landrace Jalo Listras Pretas is the source of a new Andean anthracnose resistance gene. Crop Sci 49:133–138

    Google Scholar 

  • Gonçalves-Vidigal MC, Cruz AS, Garcia A, Kami J, Vidigal Filho PS, Sousa LL et al (2011) Linkage map** of the Phg-1 and Co-14 genes for resistance to angular leaf spot and anthracnose in the common bean cultivar AND 277. Theor Appl Genet 122(5):893–903. https://doi.org/10.1007/s00122-010-1496-1

    Article  PubMed  Google Scholar 

  • Gonçalves-Vidigal MC, Meirelles AC, Poletine JP, Sousa LL, Cruz AS, Nunes MP, Lacanallo GF, Vidigal Filho PS (2012) Genetic analysis of anthracnose resistance in Pitanga dry bean cultivar. Plant Breed 131:423–429. https://doi.org/10.1111/j.1439-0523.2011.01939

    Article  Google Scholar 

  • Gonçalves-Vidigal MC, Cruz AS, Lacanallo GF, Vidigal Filho PS, Sousa LL (2013) Co-segregation analysis and map** of the anthracnose Co-10 and angular leaf spot Phg-ON disease-resistance genes in the common bean cultivar Ouro Negro. Theor Appl Genet 126:2245–2255

    PubMed  Google Scholar 

  • Gonçalves-Vidigal MC, Pacheco CMNA, Vidigal FPS, Lacanallo GF, Sousa LL, Martins VSR (2016) Genetic map** of the anthracnose resistance gene Co-14 in the common bean cultivar Pitanga. Ann Rep Bean Improv Coop 59:55–56

    Google Scholar 

  • Gonzalez AM, Yuste-Lisbona FJ, Rodino AP, De Ron AM, Capel C, Garcia-Alcazar M, Lozano R, Santalla M (2015) Uncovering the genetic architecture of Colletotrichum lindemuthianum resistance through QTL map** and epistatic interaction analysis in common bean. Front Plant Sci 6:141

    PubMed  PubMed Central  Google Scholar 

  • Graf W, Voss J, Nyabyenda P (1991) Climbing bean introduced in Rwanda. In: Tripp R (ed) Planned change in farming system: progress in on-farm research. Wiley, London

    Google Scholar 

  • Grafton KF, Weiser GC, Littlefield LJ, Stavely JR (1985) Inheritance of resistance to two races of leaf rust in dry edible bean. Crop Sci 25:537–539

    Google Scholar 

  • Graham PH, Vance CP (2003) Legumes: importance and constraints to greater use. Plant Physiol. 131: 872–87. PMID: 12644639.

    Google Scholar 

  • Gupta P, Varshney R, Sharma P, Ramesh B (1999) Molecular markers and their applications in wheat breeding. Plant Breed 118:369–390

    CAS  Google Scholar 

  • Guzman P, Donado MR, Galvez GE (1979) Perdidas economicas causadas por la antracnosis del frijol Phaseolus vulgaris en Colombia. Turrialba 29:65–67

    Google Scholar 

  • Guzman P, Gilbertson RL, Nodari R, Johnson WC, Temple SR, Mandala D, Gepts P (1995) Characterization of variability in the fungus Phaeoisariopsis griseola suggests coevolution with the common bean (Phaseolus vulgaris). Phytopathology 85:600–607

    Google Scholar 

  • Haley SD, Afanador L, Kelly JD (1994) Identification and application of a random amplified polymorphic DNA marker for the I gene (potyvirus resistance) in common bean. Phytopathogy 84:157–160

    CAS  Google Scholar 

  • Harter LL, Andrus CF, Zaumeyer WJ (1935) Studies on bean rust caused by Uromyces phaseoli var. typicalArth. en el Peru. Investigacion Agropecuaria 3:92–94

    Google Scholar 

  • Hillocks RJ, Madata CS, Chirwa R, Minja EM, Msolla S (2006) Phaseolus bean improvement in Tanzania 1959-F2005. Euphytica 150:225–231

    Google Scholar 

  • Jenner C, Hitchin E, Mansfield J, Walters K, Betteridge P, Teverson D, Taylor J (1991) Gene-for-gene interactions between Pseudomonas syringae pv. phaseolicola and Phaseolus. Mol. Plant Microbe Interact 4:553–562

    CAS  Google Scholar 

  • Jifeng Z, **g W, Lanfen W, Matthew WB, Zhendong Z, Shumin W (2016) QTL and candidate genes associated with common bacterial blight resistance in the common bean cultivar Longyundou 5 from China. Crop J (4):344–352. https://doi.org/10.1016/j.cj.2016.06.009

  • Jones NH, Ougham H, Thomas (1997) Markers and map**: we are all geneticists now. New Phytol 137:165–177

    Google Scholar 

  • Joshi SP, Ranjekar PK, Gupta VS (1999) Molecular markers in plant genome analysis. Curr Sci 77:230–240

    CAS  Google Scholar 

  • Keller BC, Manzanares C, Jara C, Lobaton JD, Studer B et al (2015) Fine map** of a major QTL controlling angular leaf spot resistance in common bean (Phaseolus vulgaris L.). Theor Appl Genet 128(5):813–826

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly JD (1995) Use of random amplified polymorphic DNA markers in breeding for major gene resistance to plant pathogens. HortScience 30:461–465

    Google Scholar 

  • Kelly JD (1997) A review of varietal response to bean common mosaic potyvirus in Phaseolus vulgaris. Plant Var Seeds 10:1–6

    Google Scholar 

  • Kelly JD, Miklas PN (1998) The role of RAPD markers in breeding for disease resistance in common bean. Kluwer Academic Publishers. Mol Breed 4:1–11

    CAS  Google Scholar 

  • Kelly JD, Nolan B (2018) Marker-assisted breeding for economic traits in common bean. Biotechnol Crop Improv 3:211–237. https://doi.org/10.1007/978-3-319-94746-4_10

    Article  Google Scholar 

  • Kelly JD, Vallejo VA (2004) A comprehensive review of the major genes conditioning resistance to anthracnose in common bean. Hort Sci 39:1196–1207

    CAS  Google Scholar 

  • Kelly JD, Hosfield GL, Varner GV, Uebersax MA, Haley SD, Taylor J (1994) Registration of ‘Raven’ black bean. Crop Sci 34:1406–1407

    Google Scholar 

  • Kelly JD, Afanador L, Haley SD (1995) Pyramiding genes for resistance to bean common mosaic virus. Euphytica 82:207–212

    Google Scholar 

  • Kelly JD, Stavely JR, Miklas PN (1996) Proposed symbols for rust resistance genes. Annu Rep Bean Improv Coop 39:25–31

    Google Scholar 

  • Kelly JD, Gepts P, Miklas PN, Coyne DP (2003) Tagging and map** of genes and QTL and molecular-marker assisted selection for traits of economic importance in bean and cowpea. Field Crops Res 82:135–154

    Google Scholar 

  • Lacanallo GF, Goncalves-Vidigal MC (2015) Map** of an Andean gene for anthracnose resistance (Co-13) in common bean (Phaseolus vulgaris L.) Jalo Listras Pretas landrace. Aust J Crop Sci 9:394–400

    CAS  Google Scholar 

  • Li YQ, Liu ZP, Yang YS, Zhao B, Fan ZF, Wan P (2014) First report of Bean common mosaic virus infecting Azuki bean (Vigna angularis Ohwi & Ohashi) in China. Plant Dis 98:1017

    CAS  PubMed  Google Scholar 

  • Lindgren DT, Escridge KM, Steadman JR, Schaaf DM (1995) A model for dry bean yield loss due to rust. Hort Technol 5:35–37

    Google Scholar 

  • Lopez CE, Acosta IF, Jara C, Pedraza F et al (2003) Identifying resistance gene analogs associated with resistances to different pathogens in common bean. Phytopathology 93:88–95

    CAS  PubMed  Google Scholar 

  • Mahuku G, Jara C, Cajiao C, Beebe S (2003) Sources of resistance to angular leaf spot (Phaeoisariopsis griseola) in common bean core collection, wild Phaseolus vulgaris and secondary gene pool. Euphytica 130:303–313

    Google Scholar 

  • Mahuku GS, Iglesias AM, Jara C (2009) Genetics of angular leaf spot resistance in the Andean common bean accession G5686 and identification of markers linked to the resistance genes. Euphytica 167:381–396

    CAS  Google Scholar 

  • Mahuku GS, Henrıquez MA, Montoya C, Jara C, Teran H, Beebe S (2011) Inheritance and development of molecular markers linked to angular leaf spot resistance genes in the common bean accession G10909. Mol Breed 28:57–71

    Google Scholar 

  • Marco HB, Samira MM, Mark M, Phillip EM, Perry BC, Phillip NM (2014) Application of in silico bulked segregant analysis for rapid development of markers linked to Bean common mosaic virus resistance in common bean. BMC Genomics 15:903. http://www.biomedcentral.com/1471-2164/15/903

    Google Scholar 

  • McElroy JB (1985) Breeding dry beans, P. vulgaris L., for common bacterial blight resistance derived from Phaseolus acutifolius A. Gray. Cornell University, PhD Thesis

    Google Scholar 

  • McKern NM, Shukla DD, Barnett OW, Vetten HJ, Dijkstra J, Whittaker LW (1992) Coat protein properties suggest that Azuki bean mosaic virus, Blackeye cowpea mosaic virus, Peanut stripe virus, and three isolates from soybean are all strains of the same Potyvirus. Intervirology 33:121–134

    CAS  PubMed  Google Scholar 

  • McKern NM, Strike PM, Barnett O, Dijkstra J, Shukla D, Ward C (1994) Cowpea aphid borne mosaic virus-Morocco and South African Passiflora virus are strains of the same potyvirus. Arch Virol 136:207–217

    CAS  PubMed  Google Scholar 

  • Melotto M, Afanador L, Kelly JD (1996) Development of a SCAR marker linked to the I gene in common bean. Genome 39:1216–1219

    CAS  PubMed  Google Scholar 

  • Melotto M, Balardin RS, Kelly JD (2000) Host-pathogen interaction and variability of Colletotrichum lindemuthianum. In: Prusky D, Freeman S, Dickman MB (eds) Colletotrichum host specificity, pathology, host–pathogen interaction, vol 5. APS Press, St. Paul, MN, pp 346–361

    Google Scholar 

  • Mendez-Vigo B, Rodriguez-Suarez C, Paneda A, Ferreira JJ, Giraldez R (2005) Molecular markers and allelic relationships of anthracnose resistance gene cluster B4 in common bean. Euphytica 141:237–245

    CAS  Google Scholar 

  • Miklas PN, Kelly JD (2002) The use of MAS to develop pinto bean germplasm possessing Co-42 gene for anthracnose resistance. Ann Rep Bean Improv Coop 45:68–69

    Google Scholar 

  • Miklas PN, Stavely JR, Kelly JD (1993) Identification and potential use of a molecular marker for rust resistance in common bean. Theor Appl Genet 85:745–749

    CAS  PubMed  Google Scholar 

  • Miklas PN, Larsen RC, Riley R, Kelly JD (2000a) Potential marker-assisted selection for bc-1(2) resistance to bean common mosaic potyvirus in common bean. Euphytica 116:211–219

    CAS  Google Scholar 

  • Miklas PN, Pastor CMA, Jung G, Coyne DP, Kelly JD et al (2002) Comprehensive linkage map of bean rust resistance genes. Ann Rep Bean Improv Coop 45:125–129

    Google Scholar 

  • Miklas PN, Coyne D, Grafton KF, Mutlu N, Reiser J, Lindgren DT, Singh SP (2003a) A major QTL for common bacterial blight resistance derives from the common bean great northern landrace cultivar Montana No. 5. Euphytica 131:137–146

    CAS  Google Scholar 

  • Miklas PN, Kelly JD, Singh SP (2003b) Registration of anthracnose-resistant pinto bean germplasm line USPT-ANT-1. Crop Sci 43:1889–1890

    Google Scholar 

  • Miklas PN, Kelly JD, Beebe SE, Blair MW (2006) Common bean breeding for resistance against biotic and abiotic stresses: from classical to MAS breeding. Euphytica 147:105–131

    CAS  Google Scholar 

  • Miklas PN, Fourie D, Wagner J, Larsen RC, Mienie CMS (2009) Tagging and map** Pse-1 gene for resistance to halo blight in common bean differential cultivar UI 3. Crop Sci 49:41–48

    CAS  Google Scholar 

  • Mink, Silbernagel (1992) Serological and biological relationships among viruses in the bean common mosaic virus subgroup. Arch Virol Suppl 5:397–406. https://doi.org/10.1007/978-3-7091-6920-9_42

    Article  CAS  PubMed  Google Scholar 

  • Mmbaga MT, Steadman JR, Eskridge KM (1996) Virulence patterns of Uromyces appendiculatus from different geographical areas and implications for finding durable resistance to rust in common bean. Phytopathology 144:533–541

    Google Scholar 

  • Morales FJ (2006) Common beans. In: Loebenstein G, Carr JP (eds) Natural resistance mechanisms of plants to viruses. The Netherlands, Springer, pp 367–382

    Google Scholar 

  • Morales F, Niessen I (1988) Comparative responses of selected Phaseolus vulgaris germplasm inoculated artificially and naturally with Bean Golden Mosaic virus. Plant Dis 72:1020–1023

    Google Scholar 

  • Mukeshimana G, Paneda A, Rodriguez-Suarez C, Ferreira JJ, Giraldez R, Kelly JD (2005) Markers linked to the bc-3 gene conditioning resistance to bean common mosaic potyviruses in common bean. Euphytica 144:291–299

    Google Scholar 

  • Namayanja AR, Buruchara G, Mahuku P, Rubaihayo P, Kimani S, Mayanja EH (2006) Inheritance of resistance to angular leaf spot in common bean and validation of the utility of resistance linked markers for marker assisted selection outside the map** population. Euphytica 151:361–369

    CAS  Google Scholar 

  • Nedumaran S, Abinaya P, Jyosthnaa P, Shraavya B, Parthasarathy R, Cynthia B (2015) Grain Legumes Production, Consumption and Trade Trends in Develo** Countries. Working Paper Series, No 60. ICRISAT Research Program, Markets, Institutions and Policies. Patancheru 502 324, Telangana, India: International Crops Research Institute for the Semi-Arid Tropics. 64 pp.

    Google Scholar 

  • Nemchinova YP, Stavely JR (1998) Development of SCAR primers for the Ur-3 rust resistance gene in common bean. Phytopathology 88:S67

    Google Scholar 

  • Osorno JM, Beaver JS, Ferwerda F, Miklas PN (2003) Two genes from Phaseolus coccineus L. confer resistance to bean golden yellow mosaic virus. Ann Rep Bean Improv Coop 46:147–148

    Google Scholar 

  • Pastor-Corrales MA (2003) Sources, genes for resistance, and pedigrees of 52 rust and mosaic resistant dry bean germplasm lines released by the USDA Beltsville Bean Project in collaboration with the Michigan, Nebraska and North Dakota Agricultural Experiment Stations. Ann Rep Bean Improv Coop 46:235–241

    Google Scholar 

  • Pastor-Corrales MA, Jara C, Singh S (1998) Pathogenic variation in, source of, and breeding for resistance to Phaeoisariopsis griseola causing angular leaf spot in common bean. Euphytica 103:161–171

    Google Scholar 

  • Pastor-Corrales MA, Kelly JD, Steadman JR, Lindgren DT, Stavely JR, Coyne DP (2007) Registration of six great Northern bean germplasm lines with enhanced resistance to rust and bean common mosaic and necrosis potyviruses. J Plant Regist 1:77–79

    Google Scholar 

  • Pedraza, F G. Gallego, S. Beebe, J. Tohme (1997) Marcadores SCAR y RAPD para la resistencia a la bacteriosis comun (CBB), Taller de Mejoramiento de Frijol Para el Siglo XXI: Bases para una Estrategia para America Latina, CIAT, Cali, Colombia, pp. 130–134

    Google Scholar 

  • Perez-Vega E, Trabanco N, Campa A, Ferreira JJ (2013) Genetic map** of two genes conferring resistance to powdery mildew in common bean (Phaseolus vulgaris L.). Theor Appl Genet 126:1503–1512

    CAS  PubMed  Google Scholar 

  • Petry N, Boy E, Wirth JP, Hurrell RF (2015) The potential of the common bean (Phaseolus vulgaris) as a vehicle for iron biofortification. Nutrients 7:1144–1173. https://doi.org/10.3390/nu7021144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Queiroz VT, Sousa CS, Costa MR, Sanglad DA, Arruda KMA, Souza TLPO, Ragagnin VA, de Barros EG, Moreira MA (2004) Development of SCAR markers linked to common bean angular leaf spot resistance genes. Ann Rep Bean Improv Coop 47:237–238

    Google Scholar 

  • Ragagnin VA, Sanglard DA, de Souza TLPO, Moreira MA, de Barros EG (2003) Simultaneous transfer of resistance genes for rust, anthracnose, and angular leaf spot to cultivar Perola assisted by molecular markers. Annu Rep Bean Improv Coop 46:159–160

    Google Scholar 

  • Ragagnin VA, Alzate-Marin AL, Souza TLPO, Sanglard DA, Moreira M, Barros EG (2005) Use of molecular markers to pyramiding multiple genes for resistance to rust, anthracnose and angular leaf spot in the common bean. Ann Rep Bean Improv Coop 48:94–95

    Google Scholar 

  • Rezende VF, Ramalho MAP, Corte HR (1999) Genetic control of common bean (Phaseolus vulgaris) resistant to powdery mildew (Erysiphe polygoni). Genet Mol Biol 22:233–236

    Google Scholar 

  • Richard MS, Pflieger S, Sevignac M, Thareau V, Blanchet S, Li Y et al (2014) Fine map** of Co-x, an anthracnose resistance gene to a highly virulent strain of Colletotrichum lindemuthianum in common bean. Theor Appl Genet 127(7):1653–1666. https://doi.org/10.1007/s00122-014-2328-5

    Article  CAS  PubMed  Google Scholar 

  • Rico A, Lopez R, Asensio C, Aizpun MT, Asensio-S-Manzanera MC, Murillo J (2003) Nontoxigenic strains of Pseudomonas syringae pv. phaseolicola are main cause of halo blight of beans in Spain and escape current detection methods. Phytopathology 93:1553–1559

    CAS  PubMed  Google Scholar 

  • Rodriguez-Suarez C, Mendez-Vigo B, Paneda A, Ferreira J, Giraldez R (2007) A genetic linkage map of Phaseolus vulgaris L. and localization of genes for specific resistance to six races of anthracnose (Colletotrichum lindemuthianum). Theor Appl Genet 114:713–722. https://doi.org/10.1007/s00122-006-0471-3. PMID: 17186216

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Suarez C, Ferreira JJ, Campa A, Paneda A, Giraldez R (2008) Molecular map** and intra-cluster recombination between anthracnose race specific resistance genes in the common bean differential cultivars Mexico 222 and Widusa. Theor Appl Genet 116:807–814

    CAS  PubMed  Google Scholar 

  • Sandra ADLC, Maria CGV, Thiago ASG, Giselly FL, Giseli V, Vanusa DSRM, Qijian S, Marta ZG, Oscar P, Hurtado G, APC M (2017) Genetics and map** of a new anthracnose resistance locus in Andean common bean Paloma. BMC Genomics 18:306. https://doi.org/10.1186/s12864-017-3685-7

    Article  CAS  Google Scholar 

  • Saqib M, Nouri S, Cayford B, Jones RAC, Jones MGK (2010) Genome sequences and phylogenetic placement of two isolates of Bean common mosaic virus from Macroptilium atropurpureum in Northwest Australia. Australas Plant Pathol 39:184–191

    CAS  Google Scholar 

  • Sartorato A, Nietsche S, Barros EG, Moreira MA (2000) RAPD and SCAR markers linked to resistance gene to angular leaf spot in common beans. Fitopatol Bras 25:637–642

    CAS  Google Scholar 

  • Schmutz J, McClean PE, Mamidi S, Wu GA, Cannon SB, Grimwood J, Jenkins J, Shu S, Song Q, Chavarro C, Torres-Torres M, Geffroy V, Moghaddam SM, Gao D, Abernathy B, Barry K, Blair M, Brick MA, Chovatia B, Gepts P, Goodstein DM, Gonzales M, Hellsten U, Hyten DL, Jia G, Kelly JD, Kudrna D, Lee R, Richard MMS, Miklas PN, Osorno JM, Rodrigues J, Thareau V, Urrea CA, Wang M, Yu Y, Zhang M, Wing RA, Cregan PB, Rokhsar DS, Jackson SA (2014) A reference genome for common bean and genome-wide analysis of dual domestications. Nat Genet 46:707–713

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schwartz HF, Katherman MJ, Thung MDT (1981) Yield response and resistance of dry beans to powdery mildew in Colombia. Plant Dis 65:737–738

    Google Scholar 

  • Sergey H, Ortiz R, Garkava-Gustavsson L, Hovmalm HP, Geleta M (2013) Marker-aided breeding for resistance to bean common mosaic virus in Kyrgyz bean cultivars. Euphytica 193(1):67–78

    Google Scholar 

  • Sengooba TN, Mukiibi J (1986) Studies on inoculum sources of angular leaf spot of beans caused by Phaeoisariopsis griseola in Uganda. Int J Pest Manag 32:288–299

    Google Scholar 

  • Shi C, Navabi A, Yu KF (2011) Association map** of common bacterial blight resistance QTL in Ontario bean breeding populations. BMC Plant Biol 11(1):52

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh SP (ed) (1999a) Common bean improvement for the twenty-first century. Kluwer Acad. Publ, Dordrecht

    Google Scholar 

  • Singh SP (1999b) Improvement of small-seeded race Mesoamerica cultivars. In: Singh SP (ed) Common bean improvement in the twenty-first century. Kluwer Acad. Press, Dordrecht, pp 255–274

    Google Scholar 

  • Singh SP, Miklas PN (2015) Breeding common bean for resistance to common blight: a review. Crop Sci 55:971–984. https://doi.org/10.2135/cropsci2014.07.0502

    Article  Google Scholar 

  • Singh SP, Muoz CG (1999) Resistance to common bacterial blight among Phaseolus species and common bean improvement. Crop Sci 39:80–89. https://doi.org/10.2135/cropsci1999.0011183X003900010013x

    Article  Google Scholar 

  • Singh SP, Schwartz HF (2010) Breeding common bean for resistance to diseases: a review. Crop Sci 50:2199–2223

    Google Scholar 

  • Singh SP, Morales FJ, Miklas PN, Teran H (2000) Selection for bean golden mosaic resistance in intra- and interracial bean populations. Crop Sci 40:1565–1572

    Google Scholar 

  • Singh SP, Teran H, Gutierrez JA, Pastor-Corrales MA, Schwartzv HF, Morales FJ (2003) Registration of A 339, MAR 1, MAR 2, and MAR 3 angular leaf spot and anthracnose resistant common bean germplasm. Crop Sci 43:1886–1887

    Google Scholar 

  • Sousa LL, Cruz AS, Vidigal FPS, Vallejo VA, Kelly JD, Gonçalves-Vidigal MC (2014) Genetic map** of the resistance allele Co-52 to Colletotrichum lindemuthianum in the common bean MSU 7–1 line. Aust J Crop Sci 8:317–323

    Google Scholar 

  • Sousa LL, Goncalves AO, Goncalves-Vidigal MC, Lacanallo GF, Fernandez AC, Awale H (2015) Genetic characterization and map** of anthracnose resistance of common bean landrace cultivar Corinthiano. Crop Sci 55:1–11

    Google Scholar 

  • Souza TLPO, Alzate MAL, Moreira MA, Barros EG (2005) Analise da variabilidade patogenica de Uromyces appendiculatus em algumas regioes brasileiras. Fitopatol Bras 30:143–149

    Google Scholar 

  • Souza TLPO, Dessaune SN, Sanglard DA, Moreira MA, Barros EG (2007) Rust resistance gene present in common bean cultivar Ouro Negro (Ur-ON) does not correspond to Ur-3+. Ann Rep Bean Improv Coop 50:119–120

    Google Scholar 

  • Souza TLPO, Dessaune SN, Sanglard DA, Moreira MA, Barros EG (2011) Characterization of the rust resistance gene present in the common bean cultivar Ouro Negro, the main rust resistance source used in Brazil. Plant Pathol 60:839–845. https://doi.org/10.1111/j.1365-3059.2011.02456.x

    Article  CAS  Google Scholar 

  • Stavely JR, Pastor-Corrales MA (1989) Rust. In: Schwartz HF, Pastor-Corrales MA (eds) Bean production problems in the tropics, 2nd edn. Centro Internacional de Agricultura Tropical, Cali, CO, pp 159–164

    Google Scholar 

  • Stavely JR, Steadman JR, McMillan-Junior RT (1989) New pathogenic vari-ability in Uromyces appendiculatus in North America. Plant Dis 73:428–432

    Google Scholar 

  • Stavely JR, Kelly JD, Grafton KF (1994) BelMiDak-rust-resistant navy dry beans germplasm lines. HortScience 29:709–710

    Google Scholar 

  • Stenglein S, Ploper LD, Vizgarra O, Balatti P (2003) Angular leaf spot: a disease caused by the fungus Phaeoisariopsis griseola (Sacc.) Ferrarison Phaseolus vulgaris L. Adv Appl Microbiol 52:209–243. https://doi.org/10.1016/S0065-2164(03)01009-8

    Article  CAS  PubMed  Google Scholar 

  • Strausbaugh CA, Myers JR, Forster RL (1999) Bc-I and Bc-u two loci controlling bean common mosaic virus resistance in common bean are linked. J Am Soc Hortic Sci 124:644–648

    Google Scholar 

  • Strausbaugh CA, Miklas PN, Singh SP, Myers JR, Forster RL (2003) Genetic characterization of differential reactions among host group 3 common bean cultivars to NL-3 K strain of Bean common mosaic necrosis virus. Phytopathology 93:683–690

    CAS  PubMed  Google Scholar 

  • Taran B, Michaels TE, Pauls KP (2001) Map** genetic factors affecting the reaction to pv in L. under field conditions. Genome 44(6):1046–1056

    Google Scholar 

  • Taylor JD, Teverson DM, Davis JHC (1996) Sources of resistance to Pseudomonas syringae pv. phaseolicola races in Phaseolus vulgaris. Plant Pathol 45:479–485

    Google Scholar 

  • Teshale A, Assibi Mahama A, Anne VB, Cannon EKS, Jean CR, Idupulapati MR, Matthew WB, Cannon SB (2019) A review of breeding objectives, genomic resources, and marker-assisted methods in common bean (Phaseolus vulgaris L.). Mol Breed 39:20. https://doi.org/10.1007/s11032-018-0920-0

    Article  Google Scholar 

  • Trabanco T, Perez-Vega E, Campa A, Rubiales D, Ferreira JJ (2012) Genetic resistance to powdery mildew in common bean. Euphytica 186:875–882

    Google Scholar 

  • Trabanco N, Campa A, Ferreira JJ (2015) Identification of a new chromosomal region involved in the genetic control of resistance to anthracnose in common bean. Plant Gen 8:1–11. https://doi.org/10.3835/plantgenome2014.10.0079

    Article  CAS  Google Scholar 

  • Tsiamis G, Mansfield JW, Hockenhull R, Jackson RW, Sesma A, Athanassopoulos E, Bennett MA, Stevens C, Vivian A, Taylor JD, Murillo J (2000) Cultivar-specific avirulence and virulence functions assigned to avrPphF in Pseudomonas syringae pv. phaseolicola, the cause of halo-blight disease. EMBO J 19:3204–3214

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vallejo V, Kelly JD (2009) New insights into the anthracnose resistance of common bean landrace G 2333. Open Hortic J. https://doi.org/10.2174/1874840600902010029

  • Vandemark GJ, Miklas PN (2005) Genoty** common bean for the potyvirus resistance alleles I and bc-12 with a multiplex real-time polymerase chain reaction assay. Phytopathology 95:499–505

    CAS  PubMed  Google Scholar 

  • Vaz Patto MC, Amarowicz R, Aryee AN, Boye JI, Chung HJ, Martin Cabrejas MA (2015) Achievements and challenges in improving the nutritional quality of food legumes. Crit Rev Plant Sci 34:105–143. https://doi.org/10.1080/07352689.2014.897907

    Article  CAS  Google Scholar 

  • Verma P, Gupta U (2010) Immunological detection of Bean common mosaic virus in French bean (Phaseolus vulgaris L.) leaves. Indian J Microbiol 50:263–265

    PubMed  PubMed Central  Google Scholar 

  • Viteri DM, Teran H, Asensio-S-Manzanera MC, Asensio C, Porch TG, Miklas PN, Singh SP (2014b) Progress in breeding Andean common bean for resistance to common bacterial blight. Crop Sci 54:2084–2092. https://doi.org/10.2135/cropsci2014.03.0177

    Article  Google Scholar 

  • Vivader AK (1993) Xanthomonas campestris pv. phaseoli: cause of common bacterial blight. In: Swings JG, Civerolo EL (eds) Xanthomonas. Chapman H, London, pp 121–146

    Google Scholar 

  • Vladimir K, Gancho P, Dimitrina K-P, Svetleva D (2014) Identification of I-gene for BCMV resistance with scar marker SW13 in Phaseolus vulgaris L. generations, derived from the cross (BAT 477 X Dobroudjanski ran). Tur J Agri Nat Sci 1:754–756

    Google Scholar 

  • Vlasova A, Capella-Gutiérrez S, Rendón AM, Hernández-OM MAE, Erb I, Câmara F, Prieto-Barja P et al (2016) Genome and transcriptome analysis of the Mesoamerican common bean and the role of gene duplications in establishing tissue and temporal specialization of genes. Genome Biol 17(1):32. https://doi.org/10.1186/s13059-016-0883-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welch RM, House WA, Beebe S, Cheng Z (2000) Genetic selection for enhanced bioavailable levels of iron in bean (Phaseolus vulgaris L.) seeds. J Agric Food Chem 48:3576–3580. https://doi.org/10.1021/jf0000981

    Article  CAS  PubMed  Google Scholar 

  • Winter P, Kahl G (1995) Molecular marker technologies for plant improvement. World J Microbiol Biotechnol 11:438–448

    CAS  PubMed  Google Scholar 

  • Wortmann CS, Kiluby RA, Eledu CA, Arron DJ (1998) Atlas of common Bean (Phaseolus vulgaris L) production in Africa. CIAT, Cali, CO, p 133

    Google Scholar 

  • Yaish MWF, Daynet S, Francisco JV, Francisca V (2006) Genetic map** of quantitative resistance to race 5 of Pseudomonas syringae pv.Phaseolicola in common bean. Euphytica 152:397–404. https://doi.org/10.1007/s10681-006-9227-z

    Article  CAS  Google Scholar 

  • Yu K, Park SJ, Poysa V (2000) Marker-assisted selection of common beans for resistance to common bacterial blight: efficiency and economics. Plant Breed 119:411–415

    CAS  Google Scholar 

  • Zaiter HZ, Coyne DP, Steadman JR (1989) Inheritance of resistance to a rust isolate in beans. Ann Rep Bean Improv Coop 32:126–127

    Google Scholar 

  • Zapata M, Beaver JS, Porch TG (2011) Dominant gene for common bean resistance to common bacterial blight caused by Xanthomonas axonopodis pv. phaseoli. Euphytica 179:373–382

    Google Scholar 

  • Zuiderveen GH, Bilal A, Padder KK, Song Q, Kelly JD (2016) Genome-wide association study of anthracnose resistance in Andean Beans (Phaseolus vulgaris). PLoS One 11(6):e0156391. https://doi.org/10.1371/journal.pone.0156391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Basavaraja, T., Pratap, A., Dubey, V., Gurumurthy, S., Gupta, S., Singh, N.P. (2020). Molecular and Conventional Breeding Strategies for Improving Biotic Stress Resistance in Common Bean. In: Gosal, S.S., Wani, S.H. (eds) Accelerated Plant Breeding, Volume 3. Springer, Cham. https://doi.org/10.1007/978-3-030-47306-8_13

Download citation

Publish with us

Policies and ethics

Navigation